
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1105

ISSN No. 0976-5697

Open Daylight as a Controller for Software Defined Networking

Sumit Badotra
Department of Computer Science and Engineering

Shaheed Bhagat Singh State Technical Campus, Ferozepur,
Punjab, India

Japinder Singh
Department of Computer Science and Engineering

Shaheed Bhagat Singh State Technical Campus, Ferozepur,
Punjab, India

Abstract: For making programmable networks which are responsive and flexible to organizations as well as to users, an industry movement has
started called as Software-Defined Networking (SDN). Open Daylight the comprehensive open source controller of SDN, which is helping to
make it possible, around a common SDN platform by combining the industry as well the Open Daylight community it helps not only to solution
providers, developers but also to all the users who are working together for delivering interoperable, programmable networks to all service
providers, various enterprises, universities and a number of organizations around the world. In this paper an overview on Open Daylight is
provided with its history, architecture, various released versions, installation steps followed by its features.

Keywords: Software Defined Networking, Open Daylight NETCONF, YANG, Service Abstraction Layer Open Flow Network Function
Virtualization, Open Network Foundation.

1. INTRODUCTION

Due to having the immense amount of data nowadays, this
ultimately resulted into large data centers. Further due to the
availability of large compute and storage through these large
data centers it resulted into new business models. Increase in
the complexity of computing and storing this data has also
resulted into more complex computer networks for a
network administrator [1]. In a data centre, with virtual
machines virtual networks are now common along with.
Managing networking in data centers is a difficult task
which requires innovation through transformation and there
the new technology has emerged called as Software Defined
Networking (SDN) [1]. Today computer networks are very
complex as more and more devices are increasing day by
day along with the content they access. The kind of
equipment used in networks like Intrusion Detection
system,switches,firewalls,Load balancers are typically very
hard to manage by network administrator individually, the
solution for this is Software Defined Networking. It has
changed the way we used to manage the networks. The two
main basic principles of Software Defined Networking
(SDN) are 1) It separates the control plane from data plane
(control plane contains the intelligence, control logic while
data plane contains the physical infrastructure or low level
network elements that are used for packet forwarding and
switching) 2) Control plane acts as a brain of the network
which has a direct control over the Data plane, all the
elements in the Data plane can be manipulated as per the
needs, there is no need to configure each and every element
of data plane individually. Network Function Virtualization
(NFV) and Software Defined Networking (SDN)
complement each other, although they do not depend upon
each other [2].
For designing, managing and decoupling networking
services Network Function Virtualization (NFV) is used.
The network functions such as Domain Name Services
(DNS), Network Address Translation (NAT), and Intrusion
Detection System (IDS) etc. are decoupled by the NFV from
propriety hardware appliances as they can run in software
[2].For providing the multiple services to the customers,

service provider has to implement the multiple virtual
network function (VNF) instead of single virtual network
function (VNF) ,the new concept came where multiple
virtual Network Function(VNF) are providing services
through concatenation is called as service chaining after this
Quality of Service (QOS) is the issue to handle in for [2].
NFV standardization committee is ETSI NFV group. On the
other hand SDN is an emerging technology which separates
central logic from its infrastructure. SDN can be centrally
managed and dynamic changes can be made, it is cost
effective and easy to use. It is founded by Open Networking
Foundation (ONF) group.

2. OPENDAYLIGHT OVERVIEW

 Open source platform for Software Defined Networking
(SDN) is OpenDaylight .To provide the centralized,
programmatic control as well as network device monitoring
open protocols are used. Like many other SDN controllers,
such as Ryu, Pox etc.OpenDaylight also supports OpenFlow,
as well as offering ready-to-install network solutions as part
of its platform [3]. An interface for the devices that
comprise your computer is provided by your operating
system in the same way, to connect network devices quickly
and intelligently for optimal network performance an
interface is also provided by the OpenDaylight.Fig.1 shows
the logo of the OpenDaylight.

Fig.1 OpenDaylight logo

Hosted by the Linux Foundation OpenDaylight is a
collaborative open-source project. To accelerate the
adoption of SDN and creating a solid foundation for NFV as
well is the primary goal of this project [3]. A guarantee for

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1105-1111

© 2015-19, IJARCS All Rights Reserved 1106

an open, community decision making process on business
and technical issues is made and for achieving the goal with
the project of OpenDaylight, a community has come
together through the unity of open community developers,
open-source code and project governance as well.
For any SDN architecture OpenDaylight can be a core
component. Due to the open-source nature of the controller
it enables the users to minimize operational complexity, and
hence extending the life of their existing infrastructure.
Basically hardware and enable new services, capabilities are
only available with SDN [3]. For different kind of
enterprises such as enterprise IT providers, network service
providers or cloud services provider such open-source
controller framework can be of great utility.
As shown in fig.2 the architecture of OpenDaylight it is
multi layered architecture; the main layer is controller
platform because controller resides in it, and acts as a brain
to the network because it manages the flow of traffic from
switches using flow tables [3,4].The OpenDaylight
Controller acts as a pure software and it can be run on any
Operating System as a JVM (java virtual machine) and
Metal as long as it supports Java. Multiple protocols (as
plug-in), e.g. OpenFlow 1.0, OpenFlow 1.3, BGP-LS, etc on
the Southbound can be supported.

Fig.2 OpenDaylight Architecture

Service Abstraction Layer is located at the heart of the
modular design of the Controller as shown in the fig.2 of
OpenDaylight architecture and to support multiple protocols
on the Southbound and providing consistent services for
modules and Apps (where the business logic is embedded) is
allowed by it only.
The starting of Open Daylight Controller is initiated with an
OpenFlow 1.0 Southbound plug in. As part of their
contributions/projects etc. other Open Daylight contributors
would add to those. Into a Service Abstraction Layer (SAL)
the linking of these modules is done dynamically, In
between the Controller and the network devices to fulfill the
requested service irrespective of the underlying protocol
used is figured out by the SAL [4].
There are some dynamically pluggable modules, present
which are responsible for performing network tasks and are
contained in the controller itself in OpenDaylight. To insert
other services and extensions for enhanced SDN
functionality it is also possible in it. These all modules are
linked to a Service Abstraction Layer (SAL) dynamically.
To fulfill the requested services independently of the
underlying protocol used and the network devices the
infrastructure layer is exposed by the SAL to the
applications north of it. When programming applications for

OpenDaylight is concerned there are two different
approaches to the SAL that can be taken into account [4]:
• The API-Driven SAL (AD-SAL)
• And the Model-Driven SAL (MD-SAL).

AD-SAL
The AD-SAL approach has the following main
characteristics:
• It can be used with both southbound and northbound

plug gins.
• It is stateless.
• It is limited to flow-capable devices and services only

[4,5].
• The applications are programmed into the controller as

OSGi bundles.
• The flow programming is reactive, by receiving events

from the network

Fig.3 architectural diagram of API-Driven SAL and Model-Driven
SAL

MD-SAL
This approach has the following features:
• It has a common REST API for all the modules.
• It can store data for models in permanent or volatile

APIs.
• It is model agnostic. It supports any device or service

models.
• The applications are programmed outside the controller.
• The flow programming is proactive, without the

possibility to receive events from the network [5].

Fig.4 working model of AD-SAL and MD-SAL

OpenDaylight has the structure of a SDN environment. The
controller exposes open northbound APIs which are used by
applications. It supports the OSGi framework and
bidirectional REST for the northbound API.OSGi is a
modular system and service platform for the Java
programming language that implements a completely
dynamic component model, something that does not exist in
standalone JVM environments.
While REST is used by applications running outside the
controller itself, and even in different machines, the inner
applications use OSGi [5]. All in all, the applications are the
ones providing the logic, and using the controller together

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1105-1111

© 2015-19, IJARCS All Rights Reserved 1107

network intelligence or run algorithms, and then to
orchestrate the new rules throughout the network.

3. HISTORY

On February 8, 2013, a new coalition forming around SDN
was announced by the SDN Central. One month later, on
April 8, [6] announcement of founding the OpenDaylight
Project is done by the Linux Foundation, as a community-
led and industry-supported framework to promote the
adoption of the new network paradigms of SDN and
NFV.The original founders of the project were: Arista
Networks, Big Switch Networks, Brocade, Cisco, Citrix,
Ericsson, HP, IBM, Juniper Networks, Microsoft, NEC,
Nuage Networks, PLUMgrid, Red Hat and VMware. They
committed to providing economical and engineering
resources to help in the development of the platform [6].

3.1 Releases:
Since the creation of the project, there have been these
major releases of the OpenDaylight controller [7]:
• Hydrogen (February2014)
• Helium (September2014)
• Lithium (August2015)
• Beryllium (March2016)
• Boron (December 2016)
• Carbon (Current Release)

3.1.1 Hydrogen:
It was released on February 4, 2014. In three different
editions it was delivered, each one of the edition is oriented
to a different kind of user: The three editions of it are as
follows:
• Base Edition: It is meant for those who are exploring
SDN and academic initiatives or OpenFlow in physical or
virtual environments this edition is oriented towards them.
• Virtualization Edition: This edition is designed for data
centers and also included the basics plus functionality for
creating VTN (Virtual Tenant Networks) and virtual
Overlays, as well as applications for security and network
management [7].
• Service Provider Edition: Oriented towards providers and
carriers who are managing the existing networks and wanted
to start using SDN and NFV. Protocol support as well as
security and network management applications are also
included in this service provider edition. The architectural
diagram of the Hydrogen is provided in fig.5.

Fig.5 Architecture of Hydrogen released version of OpenDaylight

3.1.2 Helium:
Firstly it was released on September 29, 2014. However,
some of its revisions of it were being released until March
2015. It got the idea of different editions and was released as
a unique version as compared to other versions of
OpenDaylight. Introduction of karaf as the tool to manage
the controller is done in this version only [7]. The dynamic
management of the available modules, so that, starting from
the base controller; the user can install the features
accordingly which satisfy its particular needs are included in
it only. The architectural diagram of the Helium is provided
in fig.5.1

Fig.5.1 Architecture of Helium released version of OpenDaylight

3.1.3 Lithium:
It was released on June 29, 2015 and the basic idea it
followed was introduced by Helium itself. On broadening
the programmability of intelligent networks a particular
focus is made. It also introduced some new features in many
of the functionalities included in the OpenDaylight
controller [7].
For an OpenDaylight, which is an open source platform for
building programmable, software-defined networks Lithium
is the third release. With the help of this released version of
lithium now more number of service providers and
enterprises can transition to SDN with particular focus only
on broadening the programmability of making the networks
intelligent [7].They can compose their own service
architectures or leverage an OpenDaylight-based
commercial offering to deliver dynamic network services in
a cloud environment, craft dynamic intent-based policies
and begin virtualzing functions with Service Function
Chaining (SFC).The architectural diagram of lithium is
shown in fig.5.2.

Fig.5.2 Architecture of Lithium released version of OpenDaylight.

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1105-1111

© 2015-19, IJARCS All Rights Reserved 1108

3.1.4 Beryllium:
Beryllium (Be) is the fourth release of OpenDaylight (ODL)
that leads the open source platform for programmable and
software-defined networks. ODL is the industry’s SDN
platform, for supporting a broad set of use cases and thus
provisioning the foundation for networks of the future.
 To solve many key network challenges related to Network
Resource Optimization, Cloud and NFV; Research,
Education and Government etc. all enterprises are using
OpenDaylight [8].
To strength the architecture of ODL it uses the Model which
is based on Driven Service Abstraction Layer (MD-SAL)
and delivery of high scale and the ability to easily
incorporate new applications as well as protocols is easily
achieved [8]. The architecture of Boron is a shown in the
figure 5.3

Fig.5.3 Architecture of Beryllium released version of OpenDaylight.

3.1.5 Boron:
Boron (B) is the fifth release of OpenDaylight (ODL),
which is the leading open source platform for all
programmable as well as software-defined networks [9].
OpenDaylight has become the platform for service providers
and enterprises making the amendments to the networks.
With the release of Boron, a new mark towards the path of
OpenDaylight in the field of technology and community
maturity is achieved. Boron is the result of significant
collaboration between users, network equipment vendors
[9]. For building OpenDaylight-based solutions to make use
of unique use cases and user requirements is done by the
growing ecosystem of systems integrators and application
developers .By using their own all deployment experiments
and experiences, due to this many of the leading user
organizations have already invested their own resources into
the OpenDaylight developer community. (More than half of
the new projects are proposed only for Boron).
A strong practical focus on two leading types of
deployments is provided by the Boron which gives all the
enhancements to cloud and NFV support as well as large-
scale network engineering [9]. The improvement of
performance and documentation is enhanced by the new
operational tooling. Delivering the new tooling and
documentation to support application developers is also
provided by the boron. The greater integration with larger
industry frame works from OPNFV and OpenStack to
CORD and Atrium Enterprise is also done [9].

Fig.5.4 Architecture of Boron released version of OpenDaylight.

3.1.6 Carbon:
This is the current release plan of OpenDaylight and it is the
fifth release of OpenDaylight and this release plan has some
differences from its predecessors [10]. The difference in its
features from already released versions of OpenDaylight is
as follows:
• Feature:

• Top-Level Feature:

Grouping of code and functionality in a project
in a logical way [10]. While this Feature is usually a
Karaf feature but it could also be any other component or
grouping for better performance.

• User-Facing Feature:

 One of the major pieces of
functionality delivered by a project is provided this
Feature. There is no requirement of understanding to
know the internals that how and when to install it as such.
Most of the projects will have a small number of; Top-
level features maybe even only one. But in many cases
this could be the only meta-feature grouping together
lower-level features [10].

 when somebody looking to
install and run OpenDaylight it is a Top-Level Feature
that should be known [10]. Installation of it should be
accomplished by them and be able to tell that it's been
installed in the form of new user interface elements,
which ultimately support for new southbound devices, or
other mechanisms [10].
Release Distributions of carbon

• Stable Distribution of carbon:
:

• Extended Distribution of carbon:

A Karaf stable
distribution containing of carbon contains the collection
of all the Stable Features as when the compilation of
Carbon Stable Release Feature is done all repositories
hosted in the Integration project [10].

A Karaf extended
distribution contains the collection of both Stable and
Extended Features because repository hosted in the
Integration project when they are compiled in the Carbon
Extended Release Feature [10].

4. INSTALLATION PROCEDURE

Step 1: Install any virtual machine (like VMware or virtual
box).
Step 2: Make a separate machine of Ubuntu by the name of
OpenDaylight and download the latest released version of
OpenDaylight in it. (In our case we have downloaded
Ubuntu 14.04 and beryllium released version of
OpenDaylight).Download it
from www.opendaylight.org/downloads.
Step3: Make two separate machines of Ubuntu and mininet
on virtual box (you can download the mininet
from www.mininet.org) as shown in the fig.4

http://www.opendaylight.org/downloads�
http://www.mininet.org/�

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1105-1111

© 2015-19, IJARCS All Rights Reserved 1109

Fig.6 creating two machines on virtual box

Step 4: The OpenDaylight SDN controller is a Java program
so install the Java run-time environment with the following
command:
• -sudo apt-get install openjdk-7-jdk
• -sudo apt-get install openjdk-7-jre
Step 5: Install maven (The project management and
comprehension tool is called as Maven a complete build
lifecycle of framework is provided by it. Automation of the
project's build infrastructure by the development team is
done in almost no time because layout of standard directory
and a default build lifecycle is used by the Maven [11].
Maven can set-up the way to work as per standards in a
very short time in case of multiple development teams
environment Because most of the project setups are simple
and reusable, it makes life of developer easy as it creates
the reports and checks the building and testing automation
setups also [11].
• -sudo apt-get install maven
Step 6: Extract the zip file of the released version of
OpenDaylight which you done in step 2. (We gave the
names as odl.zip and odl to the extracted files respectively)
as shown in the figure 4.1.

Fig 6.1 making two separate folders after extraction.

Now run the following command on Ubuntu terminal no.1
• cd ODL/bin
• :-/ODL/bin$./karaf –of13
After running above stated commands following screen will
appear as shown in the figure 4.2. It will accelerate the karaf
feature [12]. The deployment of OSGi applications is
supported by the apache karaf which is an OSGi container.
In OSGi, dependency of one bundle on another is there. So,
it implies the fact that most of the time, you have to first

deploy a lot of other bundles (due to the dependency upon
each other) required by the application to deploy an OSGi
application, it increases the overhead also.
 Providing a simple and flexible way to provision
applications is the basic feature of apache karaf. The
application provisioning is an Apache Karaf feature in
apache karaf [12].

Fig.6.2 accelerating the karaf feature

Step 7: Open the terminal no.2 in Ubuntu and run the
following command
• Sudo apt-get-install nmap
• nmap local host
Nmap (Network Mapper) originally written by Gordon
Lyon is a security scanner and it is used for discovering
the hosts and services on a computer network and then
finally building a "map" of the network that is why called
as nmap. To achieve its goal, sending specially
crafted packets by the nmap

Step 7: Install the features to the odl in the terminal no.1
where karaf features were installed using the following
commands:

to the target host(s) is done and
then analyzes the responses provided by them [13].

>feature
>feature: install odl-l2switch-switch-ui

Fig.6.3 adding features to the controller

>feature: install odl-dlux-all (OpenDaylight doesn't ship
with any features installed by default. You'll need to use the
Karaf console to install the features required by DLUX)
[14].
In the terminal no.2 run the command ifconfig

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1105-1111

© 2015-19, IJARCS All Rights Reserved 1110

Fig 6.4 IP address of mininet machine

And go to the URL as 192.168.247.177:8181/index.html as
shown in the figure

Fig.6.5 web interface in OpenDaylight

and then use
• Username- admin
• Password- admin.

Fig.6.6 cont.web interface

Step 8: Open the second machine (Mininet) on your virtual
box.
Put the username-mininet
Password-mininet

Fig.6.7 turning on the mininet machine

Now on the terminal no.2 of Ubuntu machine run the
following command

ssh-X mininet@192.168.247.158 (this is our ip of mininet
machine and we have obtained it using the command
ifconfig)
Now,we are remotely accessing the mininet on the Ubuntu
machine,we will create a topology in which there are 16
hosts and 15 switches by using the command as follows:
sudo mn –controller=remote, ip=192.168.247.177--
topo=tree,4,2

Fig.6.8 creating the topology

This will create a topology of tree with corresponding
number of switches and hosts. Now to have a look
(graphically) on these topologies go to the web address
192.168.247.177:8181/index.html#/topology

Fig.6.9 graphical representation of the tree topology

With the help of Yang visualizer we can change the
statictics-work-node ,get flow statistics and many other
operations.

Fig.6.10 different operations of yang visualize.

Fig.6.11 get flow statistics

Sumit Badotra et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1105-1111

© 2015-19, IJARCS All Rights Reserved 1111

7. CONCLUSION

OpenDaylight as an SDN controller offers many
possibilities as we have already seen this in our
document .The controller is not at all difficult to manage,
although all experiments have been done on mininet because
in order to work, already existing tools such as Maven or
OSGI are used. The two approaches are used to program
applications, AD-SAL and MD-SAL. Depending upon the
choice these two help to choose between two approaches
called as reactive approach or proactive approach.
OpenDaylight is supposed to be one of the most documented
controllers. All in all, with a massive industry support and a
constant updating allowing compatibility of OpenDaylight
with more protocols and standards, and hence in future
OpenDaylight is very likely going to become an essential
part of the developing of telecommunication networks.

8. ACKNOWLEDGEMENT

We would like to thank almighty for his constant blessings.
Then we would like to dedicate our gratitude towards
parents, family, friends, and in essence, all sentient one
beings.

9. REFERENCES

[1] Khattak, Muhammad Awais and Adnan Iqbal “Performance

evaluation of OpenDaylight SDN controller”

Distributed Systems (ICPADS), 20th IEEE International
Conference 16-19 December, 2014.

Parallel and

[2] Jammal, Manar, Taranpreet Singh, Abdallah Shami , Rasool
Asal , Yiming Li”Software defined networking: State of the
art and research challenges” Elsevier computer Networks
72(2014)74-98.

[3] “Software-Defined Networking: The New Norm for Networks,”
ONF White Paper, April 13, 2012

[4] Medved,Jan, Anton Tkacik, Robert Varga, Ken
Gray”OpenDaylight: Towards a Model-Driven SDN
Controller Architecture”.

[5] “OSGi”, http://www.osgi.org/
[6] ”OpenDaylight Project,”

https://wiki.opendaylight.org/view/Main_Page
[7] “OpenDaylight”

https://www.opendaylight.org/
[8] “OpenDaylight Documentation” Release Beryllium

OpenDaylight Project Sep 06, 2016.
[9] ”Release boron at”

https://www.opendaylight.org/odlboron
[10] ”Release carbon at”

https://wiki.opendaylight.org/view/Simultaneous_Release:Ca
rbon_Release_Plan

[11] “Maven at”
https://maven.apache.org/

[12] ” Apache karaf feature documentation at”
http://karaf.apache.org/documentation.html

[13] “Nmap (network Mapper)” at
https://nmap.org/docs.html

[14] ”Documentation of karaf feature at”
https://karaf.apache.org/documentation.html

http://www.osgi.org/�
https://wiki.opendaylight.org/view/Main_Page�
https://www.opendaylight.org/�
https://www.opendaylight.org/odlboron�
https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan�
https://wiki.opendaylight.org/view/Simultaneous_Release:Carbon_Release_Plan�
https://maven.apache.org/�
http://karaf.apache.org/documentation.html�
https://nmap.org/docs.html�
https://karaf.apache.org/documentation.html�

	10TRelease Distributions of carbon10T:
	9. REFERENCES
	[1] Khattak, Muhammad Awais and Adnan Iqbal38T “11T38TPerformance evaluation of OpenDaylight SDN controller”11T37T 0T37T 0TParallel and Distributed Systems (ICPADS), 20th IEEE International Conference 16-19 December, 2014.
	[2] Jammal, Manar, Taranpreet Singh, Abdallah Shami , Rasool Asal , Yiming Li”Software defined networking: State of the art and research challenges” Elsevier computer Networks 72(2014)74-98.

