
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 18

ISSN No. 0976-5697

Meta-Heuristic Approaches for Solving Travelling Salesman Problem

Elham Damghanijazi
Dept. of Computer Engineering

Islamic Azad University of Aliabad Katool Branch
Aliabad Katool, Iran

Arash Mazidi
Dept. of Computer Engineering

Islamic Azad University of Aliabad Katool Branch
Aliabad Katool, Iran

Abstract: Travelling Salesman Problem (TSP) is one of the problems which is being widely used in transportation industry which its
optimization would speed up services and increase customer satisfaction. In this paper, first, TSP is optimized using dynamic programming for
Iran59 dataset and a dataset including 10 cities of Iran. Then this problem is solved using 5 meta-heuristic algorithms including Hill Climbing,
Simulated Annealing, PSO, Ant Colony and Genetic Algorithm and performance of these algorithms is compared with the optimized solution.
Comparison is performed in terms of optimal solution, execution time, and memory. Results show that simulated annealing and hill climbing
stop at the local minimum and the proposed tour is longer than other methods. But other algorithms result in better solutions and GA achieves
the optimal solution. Comparing the algorithms in terms of execution time shows that GA achieves the optimal solution in shortest time.
Moreover, hill climbing method has the lowest memory consumption.

Keywords: Travelling salesman problem; Meta-heuristic algorithms; Genetic algorithm; Dynamic programming

I. INTRODUCTION

Travelling salesman problem was proposed by
mathematicians, Carl Menger and Hustler Wietni in 1930 [1].
The problem is that a travelling salesman wants to visit a large
number of cities and his goal is to find the shortest path; such
that it passes all cities and each city is only passes once and
finally returns to the starting point. An example of this
problem is shown in Figure 1. In first part of Figure 1, there
are 40 points which show cities and in part "B", the optimal
path which the salesman should pass to visit all cities is
represented.

TSP is one an NP-hard problem [1]. Complexity order of
these problems is exponential which does not have an
acceptable execution time. In solving such problems, obtaining
certain solutions might require much more time than lifetime
of the system.

Figure 1. An example of TSP: a) location of 40 cities. B) Optimal path for

travelling salesman

Dynamic programming solutions are one of the best
methods for solving such terms in terms of execution time and
convert time order of the problem into polynomial form.
Problem of dynamic programming problems is their memory
consumption where in large problems, system cannot meet
dynamic programming requirements.
Size and complexity of optimization problems like travelling
salesman and real world problems, have attracted attentions of
researchers towards meta-heuristic algorithms and local
investigation to inspire from social intelligence of creatures
[2]. Meta-heuristic algorithms try to obtain logical results in an

acceptable time by consuming minimum memory. For
example, approaches based on biology and social sciences like
evolutionary algorithms, neural networks, swarm intelligence
algorithms, genetic algorithm and etc have shown that they
provide suitable solutions for different optimization problems.
In this paper, dynamic programming method is used for
solving TSP using different heuristic methods like GA, Hill
Climbing, PSO, Ant colony and Simulated Annealing and the
results are compared. Different algorithms are performed on
Iran59 dataset including 59 cities and a smaller dataset
including 10 cities of Iran and the results are compared.
The rest of this paper is organized as follows. Section 2
investigates previous works and related algorithms. Section 3
introduces heuristic algorithms, dynamic programming. The
implementing and evaluating results obtained from algorithms
are in section 4. Finally, section 5 concludes the paper.

II. RELATED WORKS

Several algorithms have been proposed to solve TSP. most
of these algorithms are meta-heuristic algorithms and compute
the approximate solution in a very short time. Travelling
salesman problem is very similar to routing vehicles. Several
algorithms are proposed to solve vehicle routing problem
which can be used to solve TSP.

Mazidi et.al. have combined GA and Ant colony to solve
vehicle routing problem. They have used ant colony to
construct the initial population of the GA and have obtained
better results compared to meta-heuristic algorithms like PSO
[3].

Joshi et.al. have used ant colony algorithm to solve TSP.
they have used 2-opt methods for local search and roulette
wheel to select the next city. Results have shown that the
proposed algorithm determines optimal paths among
thousands of cities in shortest time with least cost [4].

Kanthavel et.al. have proposed PSO to solve vehicle routing
problem. In this method, two nested optimization algorithms
are used and the obtained results show that the proposed
method performs better compared to other methods [5].

Elham Damghanijazi et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,18-23

© 2015-19, IJARCS All Rights Reserved 19

Sanchez et.al. have solved TSP using GA on a GPU. The
proposed method is implemented on GPU in parallel [6].

Tan et.al. have solved vehicle routing problem through
combining ant colony and heuristic methods which improve
route. In the proposed method, an evaporation function is
proposed for pheromones left by ants according to the found
route which improves searching optimal paths by the ants [7].

Lei et.al. have investigated vehicle routing problem with
time constraint for delivering to each customer and random
capacities and an algorithm is proposed for heuristic
exploration depending on neighbor is proposed for routing[8].

Urrutia et.al, in their paper have used stack data structure
and dynamic programming to solve TSP. results show that
optimal solutions are obtained [9].

Marinakis et.al. have combined GA and PSO to obtain
better results. In this paper, PSO principles are used to
progress solution of GA. This results in better choices in
selecting parents of GA and increases exploration in problem
space [10].

Mazzeo et.al. have implemented ant colony for vehicle
routing with capacity constraint using meta-heuristic
algorithms and the results are compared with other algorithms
[11].

Yu et.al. have proposed improved ant colony. Main idea of
this paper is to increase pheromone. Pheromones increase
according to weight of the path which the ant has passed [12].

III. ALGORITHMS FOR SOLVING TRAVELLING
SALESMAN PROBLEM

In this section, heuristic methods and dynamic
programming method used to solve TSP are presented. In all
methods, a vector including cities (no city is visited twice)
where starting city is equal to final city is used and sequence
of cities is represented. A solution can be seen in Equation (1).

(1)

Purpose of solving this problem is to minimize the path
passed by the salesman which can be seen in Equation (2).

 (2)

A. Dynamic Programming Algorithm
One of the most widely used methods in designing

algorithms is dynamic programming method. This method
works on sub-problems like division method and division-
based methods. When sub-problems do not overlap, the
method performs well. Dynamic programming is widely used
in optimization problems. Basic condition for using the
method for calculating optimal case is known as optimality
principle.

Optimality principle is to solve the problem optimally
including optimal solution of all sub-problems. In other words,
the problem should be such that upon finding its optimal
solution, optimal solution of all sub-problems is also obtained.
For example, in finding shortest path between two cities, path
between origin and each node on the optimal path is the most
optimal path between those cities [13].

In this paper, this algorithm is used to solve TSP.
considering optimality principle and dynamic programming, it
should be noted which sub-problem is suitable for this
problem? It is assumed that we have started from city 1 and a
few number of cities have been visited and now we are in city

j. Best city should be selected considering that it has not been
visited previously.

For a subset of cities , length of shortest
path visited at S is shown with C(S,j) which has started from
city 1 and has ended at city j. In this method, C(S,1) = ∞,
because the path could not have started from city 1 and ended
at city 1. Now the subproblems should be developed to
achieve the main problem. After visiting city j, city i should be
visited which is calculated based on length function
represented in Equation 3.

 (3)
In this equation, C(S,j) is size length of the path between

city 1 and city j and dij is the length of path between city i and
j. Figure 2 shows Psudo-code of the dynamic programming
algorithm for TSP.

Figure 2. Psudo code of the dynamic programming

The number of sub-problems in this method is 2n*n and each
sub-problem can be solved in a time in linear order. Therefore,
cost of this method is equal to O(n2×2n

B. Hill Climbing Algorithm

).

Hill climbing algorithm is one of the simplest local search
algorithms. This algorithm starts from a random point in the
search space as the initial solution and calculates the objective
function. In the next step, neighbors of the initial solution are
investigated. If a neighbor with lower value of objective
function exists, it changes its location to that point and if there
is no better neighbor, current location is selected as the
optimal solution.
In this algorithm, search tree is not stored, thus data structure
of the current node should only store state and value of the
objective function. Hill climbing looks at current neighbors.
Hill climbing is sometimes called Greedy local search because
it selects a good neighbor without thinking about where to go.
Hill climbing usually converges fast because it can improve
bad state [14].
In order to solve TSP using hill climbing, it should be noted
that due to inherent problems, this method might give local
results which are different from real result, however this
method can be used to obtain an acceptable result fast. Most
important issue in hill climbing is to select the objective
function which is considered for the travelling salesman
through the passed route. It is obvious that shorter lengths are
closer to the final result. Hill climbing algorithm used to solve
TSP is shown in Figure 3.

1. C({1},1) = 0
2. for s = 2 to n
3. for all subsets S ⊆ {1,2,...,n} of size s and containing 1
4. C(S,1) = ∞
5. for all j∈S,j≠1
6. C(S, j) = min{C(S−{j},i)+dij:i∈S,i≠j}
7. return minjC({1,...,n},j)+dj1

Elham Damghanijazi et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,18-23

© 2015-19, IJARCS All Rights Reserved 20

Figure 3. Hill Climbing Algorithm [3]

In this algorithm, memory is consumed for the current solution
and the neighboring solution. As mentioned, size of each
solution is equal to number of cities in the problem. Therefore
it requires 2n memory where n is the number of cities.

C. Simulated Annealing Algorithm
This algorithm is inspired from MonteCarlo model (which is a
relation between atomic structure, Entropy and temperature
during annealing of a material) and it is shown in Figure 4. In
this model, first temperature of the material is very high and it
is lowered gradually to reach the balance temperature. It is
very important that how fast is this temperature lowered and if
it is lowered very quickly, material does not reach balance and
faces some problems [15].
The idea of minimizing temperature is used to optimize TSP.
in implementing this algorithm, first, a solution is created
randomly [16].

Figure 4. Simulated Annealing [3]

In the next step, a neighbor of the initial solution is required
for which local search is used. Using the probability in line 10
of the algorithm, neighboring solution is considered as the
current solution, even if it does not improve the objective
function. Thus, chance of being trapped in local minimum
decreases. As time passes. Probability of accepting a solution
which does not improve the objective function becomes lower.
This process continues until stopping condition is satisfied. In
this algorithm, a function called g(T) is used. This function is
represented in Equation (4).

 (4)

In this equation, Max Iteration is number of iterations, where
in this paper is 5000, T0 is the initial temperature and Tf is the
final temperature which are 1000 and 1 respectively. In this
algorithm, like hill climbing algorithm, memory is required for
the current solution and the neighboring solution. Therefore,
2n memory is required where n is the number of cities.

D. Genetic Algorithm
main idea of genetic algorithm is to transfer inherited
characteristics by the genes. In this algorithm, solutions are
known as chromosomes. Procedures of this algorithm include
mutation (random changes in chromosomes) and crossover for
combining two chromosomes in order to generate a new
chromosome. This algorithm is shown in Figure 5.

Figure 5. Genetic Algorithm [3]

Genetic algorithm is a population based algorithm which is
performed on a population of solutions. First, 100 solutions are
created randomly and route of each solution is obtained using
(2). Then parents are selected using several mechanisms.
Selecting two superior solutions randomly among 5 superior
solutions is the mechanism adopted to select parents. After
selecting parents, two solutions are combined by crossover.
In crossover, first one of the parents is selected with equal
probability and its initial city is considered as the initial city of
the child and another solution is selected between two solution
with equal probability and the next city is transferred to the
child. This operation continues until child solution is formed.
Mutation is performed considering probability of the created
chromosome. Mutation is considered as displacement of two
cities in a solution. Algorithm continues until stopping
condition is met. At each step, best paths are determined and
finally after finishing the algorithm, best path with least cost is
explored. In GA, memory is required considering size of
population. If population size is m and memory consumed for
each solution is n, memory of this algorithm is m*n.

E. Partial Swarm Optimization Algorithm
PSO is one of the most intelligent algorithms in swarm
intelligence area. This algorithm is inspired from social
behavior of animals like fishes and birds (which live together
in small or large groups) and was introduced by James
Kennedy and Russel Aberhurt in 1995. In PSO, members of
the population are connected directly and interact through
exchanging information and remembering memories. PSO is
suitable for solving a wide range of continuous and discrete
problems and has presented a lot of suitable solution is wide
range of optimization problems. Each solution is the search
space is a bird which is called a particle. PSO is first initialized
by particles which are formed randomly and then it is repeated
to search for the optimal solution. In each iteration, each
particle changes its future location according to its best

1. HillClimbing(Path: sequence of points)
2. Begin
3. Compute the initial length of Path
4. Loop
5. Choose the pair of points U,V such that
6. swapping U with V in Path has the shortest length;
7. if there is no improvement, then return Path;
8. swap U and V in the path and decrement the length

by the change
9. End of Loop
10. End

1. Procedure Genetic
2. Begin
3. Choose initial population
4. Repeat
5. Evaluate the individual cost of the population
6. Select pairs of individuals to reproduce
7. Apply crossover operator
8. Apply mutation operator
9. until terminating condition
10. End

1. Procedure Simulated Annealing
2. begin
3. t  0, initialize T
4. select a current point Vc at random and evaluate Vc
5. Repeat
6. Repeat
7. select Vn from the neighborhood of Vc
8. if cost(Vc) < cost(Vn) then
9. VcVn
10. else if random[0,1) < e^((cost(Vn) – cost

(Vc))/T)
11. Vc Vn
12. until(termination-condition)
13. T  g(T)
14. until (halting-criterion)
15. End

Elham Damghanijazi et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,18-23

© 2015-19, IJARCS All Rights Reserved 21

location and best location of the population [17]. Psudo-code
of solving TSP using PSO is shown in Figure 6.

Figure 6. PSO algorithm

F. Ant Colony Algorithm
Ant colony algorithm is a tool for solving TSP which was
proposed by Durrigo et al in 1992. This algorithm which is an
example of multi-operator systems is inspired from food
finding behavior of real ants, where each operator is an
artificial ant [18,19]. In general, in order to solve TSP using
ant colony, 4 steps are required including: 1) initializing
parameters including number of ants m, pheromone α,
heuristic function operator β, pheromone evaporation ρ,
amount of pheromone, maximum iteration. 2) construction
solution space; that is each ant is located at several starting
points, cities to be visited are computed and it continues until
all cities are visited. 3) Updating pheromone; length of each
path through which ants pass and record of the optimal
solution in the current counter is calculated. 4) Determining
stopping condition; determining whether number of iterations
has reached its maximum or not. If it has not, one unit is added
to counter and associated record is erased and returns to
constructing the solution space. Otherwise, it is stopped.
Output is the optimal solution. Psudo-code of this procedure is
shown in Figure 7.

Figure 7. Ant Colony Algorithm

IV. IMPELEMENTATION AND RESULT

All algorithms are implemented using C#. test data are
extracted from two dataset including 59 and 10 cities,
respectively. Results of the offered length for both datasets are
shown in Figures 8 and 9. As can be seen, path length in GA is
the same as length of the optimal path. Results obtained for

different algorithms, is the average of 10 times executing the
algorithm in 60s on test data.

Figure 8. Comparing length of paths obtained from different algorithms in the

dataset including 10 cities

Figure 9. Comparing length of paths obtained from different algorithms in

Iran59 dataset

In implementations, two factors are very important to achieve
better results. Searching in the problem space (exploration)
and searching around the intent solution (extraction) is done
locally. The more these factors are balanced, better results are
obtained. In simulated annealing algorithm, first a high
temperature is considered and exploration is large but as
temperature decreases, extraction becomes more. Therefore,
first T is considered to be high and a cooling function is
designed, which is used to lower the temperature gradually to
obtain a high extraction. In hill climbing algorithm, since T is
constant, it is selected empirically so that it has both extraction
and exploration factors relatively. In GA, crossover operation
is used to increase exploration and mutation operation looks
for a better solution by performing local search on a solution,
thus it performs extraction. In the ant colony algorithm,
parameters α and β control extraction of the algorithm which
are empirically selected as 1 and 2, respectively. In PSO, by
changing weight of matrices, exploration and extraction are
controlled. As can be seen in the results, GA and dynamic
programming have given the best results but considering
computation time, dynamic programming is not suitable and
computation time of GA is better than other methods. Figures
10 and 11 show execution time of different algorithms for the
two mentioned datasets.

1. Procedure Ant Colony
2. Begin
3. Set Parameter, initialize pheromone trails
4. While termination condition not met Do
5. Construct Ant Solution
6. Update Pheromones
7. End While
8. End

1. Procedure Particle Swarm
2. Begin
3. For each particle
4. Initialize particle
5. For each particle
6. Calculate cost
7. If the cost is better than the best cost (pbest)

in history
8. Set current value as the new pbest
9. Choose particle with best cost of all the

particles as gbest
10. Update particle position
11. While maximum iterations or optimum result
12. End

Elham Damghanijazi et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,18-23

© 2015-19, IJARCS All Rights Reserved 22

Figure 10. Comparing computation time in the dataset including 10 cities.

Figure 11. Comparing computation time in Iran59

V. CONCLUSION

In this paper we investigated and compared performance of 5
heuristic algorithms and dynamic programming for solving
travelling salesman problem. Dynamic programming is an
accurate method, by heuristic methods are approximate which
obtain the result in a shorter time. Considering that TSP is an
NP-hard problem, using dynamic programming is time
consuming and heuristic algorithms are used to obtain the
optimal solution in a short time. Results of implementing 5
algorithms and dynamic programming shows that GA gives
the best results. In terms of space required for memory, hill
climbing has the least memory consumption. Therefore, in this
paper, GA is proposed as the best algorithm for solving TSP.
In future studies, performance of other algorithms like gravity
search for solving TSP can be studied. In order to guarantee
the results, similar experiments are performed on other
standard data.

VI. REFERENCES

[1]. D. L. Applegate., R. E. Bixby, V. Chvatal, and W. J. Cook.
The traveling salesman problem: a computational study.
Princeton university press, 2011.

[2]. Giagkiozis, R. C. Purshouse, and P. J. Fleming. "An
overview of population-based algorithms for multi-
objective optimisation." International Journal of Systems
Science, Vol. 46, No. 9 pp. 1572-1599, 2015.

[3]. A. Mazidi, M. Fakhrahmad, and M. Sadreddini. "A Meta-
heuristic Approach to CVRP Problem: Local Search
Optimization Based on GA and Ant Colony." Journal of
Advances in Computer Research, Vol. 7, No. 1, pp. 1-22,
2016.

[4]. S. Joshi and S. Kaur. "Ant Colony Optimization Meta-
heuristic for Solving Real Travelling Salesman Problem."
In Emerging Research in Computing, Information,
Communication and Applications, pp. 55-63. Springer
Singapore, 2016.

[5]. K. Kanthavel and P. Prasad. "Optimization of Capacitated
Vehicle Routing Problem by Nested Particle Swarm
Optimization". American Journal of Applied Sciences, Vol.
8, No. 2, pp. 107-112, 2011.

[6]. L. Sánchez, "Parallel Genetic Algorithms on a GPU to
Solve the Travelling Salesman Problem." Revista en
Ingeniería y Tecnología, UAZ , Vol.8, No. 2 , 2015.

[7]. W. F. Tan, L.S. Lee, Z.A. Majidi and H. W. Seow, "Ant
Colony Optimization for Capacitated Vehicle Routing
Problem.", Journal of Computer Science, Vol. 8, No. 6, pp.
846-852, 2012.

[8]. H. Lei, G. Laporte and B. Guo, "The Capacitated Vehicle
Routing Problem with Stochastic Demands and Time
Windows", Computers & Operations Research, Vol. 38,
No.12, pp. 1775-1783, 2011.

[9]. S. Urrutia, A. Milanés, and A. Løkketangen. "A dynamic
programming based local search approach for the double
traveling salesman problem with multiple stacks."
International Transactions in Operational Research, Vol.
22, No. 1, pp. 61-75, 2015.

[10]. Y. Marinakis, and M. Marinaki, "A Hybrid Genetic–
Particle Swarm Optimization Algorithm for the Vehicle
Routing Problem". Expert Systems with Applications, Vol.
37, No. 2, pp. 1446-1455, 2010.

[11]. S. Mazzeo, and I. Loiseau, "An Ant Colony
Algorithm for the Capacitated Vehicle Routing.",
Electronic Notes in Discrete Mathematics, Vol. 18, pp.
181-186, 2004.

[12]. B. Yu, Z.Z. Yang, and B. Yao. "An Improved ant
Colony Optimization for Vehicle Routing Problem",
European Journal of Operational Research, Vol. 196, No.
1, pp. 171-176, 2009.

[13]. V. L. De Matos, A. B. Philpott, and E. C. Finardi.
"Improving the performance of stochastic dual dynamic
programming." Journal of Computational and Applied
Mathematics 290, pp. 196-208, 2015.

[14]. Y. Bykov and S. Petrovic. "A Step Counting Hill
Climbing Algorithm applied to University Examination
Timetabling." Journal of Scheduling, pp. 1-14, 2014.

[15]. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi.
"Optimization by Simmulated Annealing.", Science,
220(4598), pp. 671-680, 1983

[16]. Sh. Zhan, J. Lin, Z. Zhang, and Y. Zhong. "List-
Based Simulated Annealing Algorithm for Traveling
Salesman Problem." Computational intelligence and
neuroscience 2016, 2016.

[17]. F. Glover and M. Laguna, Tabu Search, Kluwer
Academic Publishers, 1997simulated annealing, Science,
Vol. 220, No. 4598, pp. 671–680, (1983).

[18]. M. Yousefi Khoshbakht and A. Zafari, A new ant
colony algorithm for solving multiple traveling salesman
problem. The 2th Joint Congress on Intelligent and Fuzzy

Elham Damghanijazi et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,18-23

© 2015-19, IJARCS All Rights Reserved 23

Systems (ISFS2008), 28-30 .October, Malek-Ashtar
University of Technology, Tehran, Iran. (2008).

[19]. Horri, A., Rahmanian, A., & Dastghaibyfard, G. H.
(2015). Energy and performance-aware virtual machine
consolidation in Cloud computing a two dimensional
approach. Turkish Journal of Engineering, 1, 20–35.

[20]. Rahmanian, A., Dastghaibyfard, G., & Tahayori, H.
(2017). Penalty-aware and cost-efficient resource

management in cloud data centers. International Journal of
Communication Systems, 30(8).

[21]. Ghobaei-Arani, M., Shamsi, M., & Rahmanian, A. A.
(2017). An efficient approach for improving virtual
machine placement in cloud computing environment.
Journal of Experimental & Theoretical Artificial
Intelligence, 1–23.

	Introduction
	Related Works
	ALGORITHMS FOR SOLVING TRAVELLING SALESMAN PROBLEM
	Dynamic Programming Algorithm
	Hill Climbing Algorithm
	Simulated Annealing Algorithm
	Genetic Algorithm
	Partial Swarm Optimization Algorithm
	Ant Colony Algorithm

	Impelementation and Result
	Conclusion
	References

