
Volume 8, No. 5, May – June 2017 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2015-19, IJARCS All Rights Reserved                     999 

ISSN No. 0976-5697 

An Efficient Hierarchical Parsing Technique Using LR  
 

Poonam Nandal, 

 
I.  INTRODUCTION 
 
Natural Language Processing (NLP) techniques are very 
commonly used in several domains of computer science like 
machine learning, artificial intelligence, linguistic analysis 
etc. The foremost step of NLP is parsing. Parsing, in general 
terms is the analysis of given text syntactically. In this the 
words which are also called lexical items are identified to 
construct the structure of the text corresponding to the 
grammatical rules. In common, we have two approaches in 
Parsing i.e. top-down approach and bottom-up approach. In 
top-down approach we first start the construction of tree 
from the starting symbol which is the root of the text. Next, 
from root of the text various lexical entities are identified 
which are further used to construct the complete parse tree 
of the text. In bottom-up approach of parsing the minute 
level which is having all the basic lexical entities are 
identified first. Next, from these lexical entities further basic 
elements are identified which will form the nodes of the tree 
at different levels. From each level, the bottom-up approach 
will construct the different novel nodes as per grammatical 
rules till the root of the text has been reached. In both these 
approaches the processing is done either directional or non-
directional. In non-directional processing approach the 
parsing is done by retrieving the input which must not be 
specific in any order. The basic requirement of this non-
directional approach is that the whole text/input which is to 
be parsed needs to be present in the memory. However, the 
other way approach i.e. directional parsing the processing of 
construction of parse tree is done in an organized manner 
and it can be accomplished before the last symbol is 
examined. 

Deepa Bura and Meeta Singh 
Department of Computer Science & Engineering 

Faculty of Engineering & Technology, Manav Rachna International University 
Faridabad, India 

 
Abstract: In recent years, Natural Language Processing techniques have been most widely used in various fields like Mining, Information 
Retrieval, Machine Learning etc.  Parsing is one of the important steps when dealing with the processing of natural language. In general, the 
World Wide Web in which information is present majorly in the form of natural language. This natural language information needs to be dealt 
properly for tasks like Crawling, Indexing, Ranking etc. Firstly, while parsing the text written in natural language we van follow either the Top-
down approach or Bottom-up Approach for validating the text according to the grammar rules specified for it. In this paper, we have given a 
technique for parsing the natural text following the bottom-up approach. The proposed technique will construct a tree of the natural text by first 
identifying the fundamental units and then constructing the tree by identifying further higher-order structure entities. It has been found that the 
proposed technique will produce an efficient parse tree in terms of time complexity.  
 
Keywords: Hierarchical, Parsing, Natural languages Processing, Bottom-Up, Parse-Tree 

Whenever, the Parsing is done, it means the given text/input 
is being analyzed syntactically. This will identify that 
whether the given input/text is according to the specified 
grammar rules. From computational point of view, parser is 
one of the components in an interpreter or compiler, which 
authorize for precise syntax and constructs a data 
organization implied in the given input lexicalized items. 
The parser frequently uses a distinct lexical analyzer to 
construct tokens from the structured characters of input. 

Most of the common search approaches used in parsing have 
exponential time dependence in the worst instance. It needs 
to be noted that the best parsing approach in combination of 
the above methods involves cubic time. Thus, it becomes 
deceptive to appear into other approaches specially the 
linear time common parsing approaches. Considering in 
view, the time dependency of the static analysis of given 
input/text common methods like LL and LR parsing 
techniques following top-down and bottom-up approach 
respectively are very useful.  
In LL; the initial L stands for Left-to right, the other for 
“recognizing the Left-most construction”.  LL parsing, 
specifically LL(1) is very prevalent. LL(1) parsers are 
frequently produced by a parser creator but a modest variant 
can be created by using recursive-descent techniques. 
Frequently, the LL(1) parsing is used beginning from the 
last token of the input; it is formerly known as RR(1). There 
are numerous linear bottom-up approaches; the most 
influential is LR, where L stand for Left-to-right and the R 
stand for “recognizing the Right-most construction”. This 
paper discusses the parsing techniques and gives a novel 
hierarchical based approach following bottom-up approach 
in constructing the parse tree. 
In this paper section II gives the related work, section III 
gives the proposed approach. The observation of the 
proposed approach is given in section IV. Finally, the 
conclusion is given in section VI. 
 
II. RELATED WORK 

 
LR parser follows bottom-up parsing approach as it stabs to 
infer the topmost level grammar constructions by 
developing up from the leaf nodes of the tree which is 
constructed. Generally, the parser which is denoted by 
LR(k) is used where the user wants to specify in the 
approach the value of k, which refers to count of 
unexamined symbols of input called as "look ahead". These 
look ahead input symbols are used in building parsing 
resolutions. It is also known that when the look ahead 
symbol k equals to one, it is denoted by simply LR. This 
bottom up approach based parsing has various applications 

http://en.wikipedia.org/wiki/Interpreter_(computing)�
http://en.wikipedia.org/wiki/Compiler�
http://en.wikipedia.org/wiki/Lexical_analysis�


Poonam Nandal et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,999-1002 

© 2015-19, IJARCS All Rights Reserved                     1000 

due to its efficiency in terms of time or space. Several 
programming languages are parsed by means of various 
variations in LR parser. The most common language used to 
implement LR is C++, which scans the input string from left 
to the right generating various tokens called lexical items. 
The grammar which exists for parsing the string using 
LR(K) is called context free grammar LR(K). 
[1] have given the extensions to the existing dependency 
parsing algorithm by enhancing it so that it can be applied to 
rich set of languages. The authors replaced the initial 
transition-based parses by lookup-based representations. 
This representations are built from the input words based on 
LSTMs.  
 [2] have given a tool known as MaltOptimizer. This tool is 
designed and developed to ease optimization of Maltparsers.  
MaltOptimizer achieves an exploration of the data sets and 
guides the handler by means of three-phase optimization 
process. This can also be recycled to achieve entirely 
automatic optimization. It has been shown and proven 
empirically that the given parser produce results which are 
more accuarte up to 9 percent.  
 [4] have given an efficient algorithm which follows 
dependency parsing with association with deterministic aim. 
The given algorithm that constructs simple and novel arcs 
using non-directional way in the structure. According to 
authors, earlier parsing algorithms following the 
deterministic aid are dependent on shift-reduce framework. 
These algorithms examine the input sentence from left-to-
right and, at every step of execution. The performance 
depends on the construction of tree by applying the possible 
set of rules/actions. The disadvantages of such algorithms 
are that these follow and evaluate the given input locally, 
however the decisions on construction is dependent   on 
complex input structures. In comparisons, the authors gave 
algorithm constructs a dependency tree by selection of best 
neighbors to further establish the connection between earlier 
developed nodes recursively. This approach permits 
unification of structures from previously constructed 
structures. The results of authors deterministic algorithm is, 
best-first, O(nlogn), which is precisely and more exact than 
transition dependent parsers. 
[5] discusses the prediction for building systems which are 
more intelligent and reliable using machine learning 
techniques. The prediction is significant that is to be applied 
on sequences of inputs/actions as stochastic processes. The 
authors have given a prediction algorithm named Active 
LeZi based on approach of Information Theoretic and 
algorithms of data compression. The efficiency of the given 
algorithm in a evaluated by retaining the Active LeZi 
algorithm to envisage device convention in the home. The 
synthetic data sets are used to analyze the algorithm 
performance interfaces between a Smart Home besides the 
inhabitant. 
[6] validate parsing following the dependency approach as 
penetrating for maximum spanning trees (MSTs) 
constructed for directed graphs. The illustration is protracted 
also to parsing which is non-projective by means of Chu-
Liu-Edmonds. The authors evaluated the above approaches 
on Prague Dependency Treebank by means of techniques of 
machine learning [3] [8] and demonstrated the MST parsing 
rises competence and exactness for then the non-projective 
dependencies Parsing. 

[7] have given MaltParser, which is a generated for parsing 
the input using dependency parsing. This data driven parser 
is given a treebank as an input in dependency format. The 
given parser can be used to construct a parser based on 
treebank language. It supports numerous parsing and 
learning algorithms and permits user-defined feature 
models. The given parser is freely accessible for research 
and instructive purposes. 
[9] have given a framework for parsing the sentence its 
Abstract Meaning Representation (AMR) majorly in two 
stages. In first stage, the dependency parser is used to create 
a dependency tree for the given input. In the second stage, 
the authors designed an algorithm based on transition 
technique which converts the constructed dependency tree to 
AMR graph. The advantages of the given approach is that 
dependency parser can be skilled on a much larger data set 
giving overall accuracy in terms F-measure. In addition to 
this the rules designed are linguistically instinctive and 
detect the uniformities during the mapping of constructed 
dependency tree and the AMR.  
[10] presents a novel algorithm for parsing using scalable 
scene. The algorithm is based on retrieval of image and 
superpixel matching. The authors focused on classes of rare 
object, which are significant to achieve more understanding 
on semantic associations. The major contributions given by 
the authors are rare class expansion and semantic 
association description. Firstly, the authors considered the 
labeled distribution for evaluating the set retrieved by rare 
class exemplars. Secondly, the global and local association 
of semantic information with respect to its context is used to 
improve image retrieval and superpixel matching.  
Although many researchers have given various approaches 
for parsing the input given by the various users, but still 
there is a need to improve the technique in terms of 
efficiency considering the time and space from 
computational point of view. In next section, we are giving 
the proposed algorithm following the bottom up approach in 
hierarchical manner. 

 
III. PROPOSED FLOWCHART OF HIERARCHICAL 
LR ALGORITHM 
 
Bottom-up parsing would be examining a sentence by 
recognizing words initially. Next, by means of properties of 
the examined words the grammatical connections are 
inferred and various phrase structures are constructed to 
further create a parse tree of the given input sentence. In 
general, a parser constitutes 
i. an input buffer, holding the input string  
ii. stack on which to accumulate the variables in terms of 
terminals and non-terminals 
iii. a parsing table which articulates the various grammar 
rule which are to be applied for given input symbols 
examined on the top of the constructed stack 
In the proposed technique, the parser applies the rule found 
in the table by corresponding the top-most symbol on the 
stack with the present symbol in the input stream 
(column).Initially, the stack already contains two symbols:[ 
S, $ ], 
where '$' is a special terminal to indicate the bottom of the 
stack and the end of the input stream, and 'S' is the start 
symbol of the grammar. The parser will attempt to rewrite 
the contents of this stack to what it sees on the input stream. 

http://en.wikipedia.org/wiki/Sentence_(linguistics)�
http://en.wikipedia.org/wiki/Phrase_structure_rules�
http://en.wikipedia.org/wiki/Parse_tree�


Poonam Nandal et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,999-1002 

© 2015-19, IJARCS All Rights Reserved                     1001 

The proposed technique is given in figure 1 following the 
hierarchical approach. The algorithm for the proposed 
approach is given in Algorithm 1. 
 
Algorithm 1: 
Input: Set of Rules R {R1, R2, ….Ri

1. Add $ as end marker in input string S 

} , Input String S 
Output: Parse Tree 
Method:  

2. Construct State Set SS and Parse Set PS.  

        ¥ {Vari € S} Extract{NTi © Ti
3. Read S Var by Var and ¥ Var 

} 

    If(Vari€SS) Set State=NR i.e. Not Reduced 
Else  
(Vari€PS) Set State=R i.e. Reduced  
  ¥ (Var and Ri) apply £ Ri 

4. If $ is achieved then Stop 
 © R 

Else Goto Step 3 and repeat. 
string is accepted. 

 
 

Figure 1: Overall flow of Proposed Hierarchical Approach 
. 

Let us take the same grammar as was taken in previous 
chapter for LR parsing: 
E->E+B 
E->E*B 
E->B 
B->0 
B->1 
And input string to be parsed is 1+1*1. 
For this grammar parse set={E,B,+,*} and state set={0,1}. 

 
Step1: Read 1 present in state set [v | NR]. Read next. 
Step2: 1+ (present in parse set) [V | NR]. Read next. 



Poonam Nandal et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,999-1002 

© 2015-19, IJARCS All Rights Reserved                     1002 

Step3: 1+1 (1 present in state set) [V | NR]. Read parsing 
tree  
Step4: Check + in second child node of parsing tree and 
reduce the string  
                    1<-E  +    1<-B 
                  Now again reduce it to E using rule1. 
Step5: E [V | R]. read next character * (present in parse set) 
i.e. E* [V| NR] again read next. 
Step6: E*1 (1 present in state set) [V | NR].Read parsing 
tree 
Step7: Check * in second child node of parsing tree and 
reduce 1 to B. Now again reduce E*B to E according to 
rule2 read next. 
Step8: Next character not present. E is found then 
 
IV. CONCLUSION 
 
The technique for parsing proposed in this paper has been 
used to examine whether the specified mathematical 
expression is rendering to specified rules of grammar or not. 
The grammar rules are constructed in such a manner that 
these rules can parse the mathematical expressions which is 
given as an input. In comparison to LR parsing algorithm in 
which a parsing table is constructed, this paper gives a novel 
and efficient technique of parsing following bottom-up 
approach in which no table is constructed. The proposed 
technique uses the tree structure which is created step by 
step as and when the input is parsed which gives the 
efficiency in terms of computation performed. 
One of the simplifications is that the proposed flowchart 
works only for mathematical expressions. Thus, it supports 
for +, -, /, %. In conclusion, this paper has given an 
approach for bottom-up parsing in which string is parsed 
without construction of item sets and parsing ACTION, 
GOTO table. 

 
 
 
 
 

REFERENCES 
 
[1] Ballesteros, M., Dyer, C., & Smith, N. A. (2015). Improved 

transition-based parsing by modeling characters instead of 
words with LSTMs. arXiv preprint arXiv:1508.00657. 

[2] Ballesteros, M., & Nivre, J. (2012, April). MaltOptimizer: an 
optimization tool for MaltParser. In Proceedings of the 
Demonstrations at the 13th Conference of the European 
Chapter of the Association for Computational Linguistics (pp. 
58-62). Association for Computational Linguistics. 

[3]  Crammer, K., & Singer, Y. (2003). Ultraconservative online 
algorithms for multiclass problems. Journal of Machine 
Learning Research, 3(Jan), 951-991. 

[4]  Goldberg, Y., & Elhadad, M. (2010, June). An efficient 
algorithm for easy-first non-directional dependency parsing. 
In Human Language Technologies: The 2010 Annual 
Conference of the North American Chapter of the Association 
for Computational Linguistics (pp. 742-750). Association for 
Computational Linguistics. 

[5]  Gopalratnam, K., & Cook, D. J. (2004). Active lezi: An 
incremental parsing algorithm for sequential 
prediction. International Journal on Artificial Intelligence 
Tools, 13(04), 917-929. 

[6] McDonald, R., Pereira, F., Ribarov, K., & Hajič, J. (2005, 
October). Non-projective dependency parsing using spanning 
tree algorithms. In Proceedings of the conference on Human 
Language Technology and Empirical Methods in Natural 
Language Processing (pp. 523-530). Association for 
Computational Linguistics. 

[7]  Nivre, J., Hall, J., & Nilsson, J. (2006, May). Maltparser: A 
data-driven parser-generator for dependency parsing. 
In Proceedings of LREC (Vol. 6, pp. 2216-2219). 

[8]  Polman, C. H., Reingold, S. C., Edan, G., Filippi, M., 
Hartung, H. P., Kappos, L., ... & Sandberg‐Wollheim, M. 
(2005). Diagnostic criteria for multiple sclerosis: 2005 
revisions to the “McDonald Criteria”. Annals of 
neurology, 58(6), 840-846. 

[9]  Wang, C., Xue, N., Pradhan, S., & Pradhan, S. (2015). A 
Transition-based Algorithm for AMR Parsing. In HLT-
NAACL 

[10] Yang, J., Price, B., Cohen, S., & Yang, M. H. (2014). Context 
driven scene parsing with attention to rare classes. 
In

(pp. 366-375). 

 Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition 

 
(pp. 3294-3301). 


