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Abstract: This paper proposes a new multi-population based global optimization algorithm called Parallel Three Parent Genetic Algorithm 
(P3PGA). The proposed approach is an extension of 3PGA approach. Performance of the proposed algorithm was evaluated on the eleven CEC-
2014 benchmark functions. We compared the performance of proposed P3PGA algorithm with 16 other algorithms. It was observed that out of 
the 11 benchmarks functions P3PGA outperformed all other 16 approaches on 5 benchmark functions. Out of 5, for 2 functions the best 
performance of P3PGA was also equaled by few other approaches. For the other 3 functions the performance of P3PGA was unmatched by any 
of the other 16 algorithms. Further, this paper proposes a new P3PGA based optimal route evaluation approach for routing in Wireless Mesh 
Networks. The proposed approach was implemented in MATLAB and simulated for various WMN sizes and scenarios. We compared its 
performance with 8 other approaches namely, Ad-hoc On Demand Distance Vector (AODV) approach, Dynamic Source Routing (DSR), 
Genetic Algorithm (GA), Biogeography Based Optimization (BBO), Firefly Algorithm (FA),  Ant Colony Optimization (ACO), BAT and Big 
Bang-Big Crunch (BB-BC) based optimal cost route evaluation approaches. The P3PGA based approach outperformed all other 8 approaches for 
the WMNs sized 1000 nodes and above.  

Keywords: global optimization algorithm, P3PGA, WMNs, AODV, DSR, ACO, BBO, FA, BAT, BBBC, optimal cost path routing 

I. INTRODUCTION  
Genetic Algorithm (GAs) are widely used computer based 
search and optimization algorithms based on the mechanics of 
natural genetics and natural selection [ 1]. In the decade 
between 1950 and 1960 many researchers worked on 
evolutionary systems with the idea that evolution could be 
used as optimization approach for many engineering problems 
[2]. In 1960s Rechenberg introduced the initial work on 
“Evolutionary Strategies” [ 3]. Prof. Holland of University of 
Michigan envisaged concept of the genetic algorithms [4]. 
 
Apart from general genetic algorithm which is based upon two 
parent genetic process some literature on multi-parent 
recombination can also be found in [ 5, 6, 7 8]. Mühlenbein 
and Voigt [5] presented the concept of gene pool 
recombination (GPR) and applied it to find solutions in 
discrete domain. Eiben and Van Kemenade [6] proposed the 
concept of diagonal crossover as the generalized case of 
uniform crossover in GA and applied it to numerical 
optimization problems. Wu et al. [ 7] proposed multiparents 
orthogonal recombination and applied it to find out the identity 
of an unknown image contour. Though the crossover operators 
used in those areas proved to have the good search ability yet 
they were found to be very much problem dependent. Amar et 
al. introduced the concept of three parent genetic algorithm 
(3PGA) [ 9]. Its performance was  tested on CEC-2014 test 
bench and was compared with 16 other algorithms. They 
successfully proved the supermacy of 3PGA over the other 16 
algorithms. 3PGA algorithm was successfully applied to 
deployment of nodes in WSNs for optimal coverage issue [10]. 
 

In this paper we propose an improved 3PGA based new 
unconstrained global optimization algorithm named “ Parallel 
Three Parent Genetic Algorithm (P3PGA)”. The work 
reported in this paper was motivated by two factors. The first 
one was to evaluate the performance of P3PGA on some 
standard functions of an established test suite and to compare 
its performance with few other well-known recent algorithms. 
The second motivation was to test the performance of 
proposed algorithm on optimal cost path evaluation for routing 
in WMNs. WMNs are highly dynamic networks. Routing in 
WMNs is one of the challenging issues faced by the research 
community today [11]. Conventional static network shortest 
path routing approaches are highly unsuitable for application 
to WMNs due to the fact that shortest path evaluation is quite 
a difficult task due to dynamic nature of WMNs. Since,  in 
WMNs most or all the network nodes can be mobile. 
 

We have organized this paper into 6 sections. Section I of 
the paper presents the problem, section II of the paper 
proposes the P3PGA concept, section III presents the 
simulation and performance of P3PGA algorithm on 11 
functions of CEC-2014 test bench and compares it with the 
performance of 16 other algorithms. Section IV proposes a 
new P3PGA based minimal cost path evaluation approach  for 
WMNs. Section V presents its implementation and 
performance on WMNs. This section also compares the 
performance of this newly proposed algorithm with 8 other 
algorithms found in the literature. Section VI presents the 
conclusions. 

II. PARALLEL THREE PARENT GENETIC ALGORITHM 
In human beings Mitochondrial diseases can effect body parts 
of children which use lot of energy; leading to problems such 
as loss of muscle coordination, heart diseases, liver diseases 
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neurological problems etc. Mitochondrial diseases are caused 
by the faulty mitochondria inherited from the parents. In order 
to eliminate mitochondria based problems researchers 
proposed various techniques of producing a 3 parent child. 
Some of the techniques can be found in [ 12, 13, 14, 15]. In 
one of such techniques called spindle nuclear transfer [12] Dr. 
Zang Johan Zhang and his colleagues at new fertility Centre in 
New York city removed the nucleus from defective egg cell of 
mother and inserted it into the cell body of a donor whose 
nucleus was removed. The donor’s cell body had healthy 
mitochondria. The resulting egg cell with nucleus DNA of 
mother and the healthy mitochondrial DNA from the donor 
was fertilized with the father’s sperm. This lead to the birth of 
first 3 parent child with healthy mitochondria on 6th

Begin 

 April 
2016. Based upon the above process Amar et al. [9] proposed 
3PGA global optimization algorithm and proved it to be much 
superior to 16 other optimization algorithms. 
 

P3PGA algorithm is a multi-population algorithm in which 
evolution process takes place on many populations in parallel. 
It is based upon the single population three parent genetic 
algorithm (3PGA) [9]. The pseudocode for the proposed 
P3PGA algorithm is as given below: 

 Generate N populations each of size NC candidates 
randomly,  every candidate consisting of NG genes; 
For Gen = 1 : Number of Generations 

For i = 1 : N 
Effect Mitochondrial Change to ith

Combine current i

 population to 
Generate new 3 Parent (3-P) population. 
 
//*We perform this process by adding a small random 
number in every gene of the individual. This is an 
attempt to produce a healthier offspring. *// 
 

th

Generate new i

  two parent (2-P) population with 
new 3-P population  
Evaluate fitness, sort population and choose best ‘NC’ 
individuals.  
Find and record best solution. 
 

th

1. Select fit individuals for recombining/breeding  
2. With high probability recombine parents / perform 
cross-over.  
3. With low probability, mutate each offspring. 
4. Evaluate fitness. 
5. Reinsert (Replace weak individual by stronger 
offspring keeping pop size fixed at N). 

 2-P population using general genetic 
process (using GA) as given below: 

Check bounds violation & correct if needed. 
Select local best candidates ℓbest(i) for ith

End For 
 population; 

From amongst the local N best candidates select the 
globally best gbest
for i = 1: N do //* move local best towards global best 

 candidate; 

With a given probability replace a gene of ℓbest(i) with 
the corresponding gene of global best (gbest(i)

End for 
) candidate; 

 End for 
End 

III. SIMULATION, RESULTS AND DISCUSSION 
We implemented the proposed P3PGA algorithm in MATLAB 
and tested its performance on 11 functions of CEC-2014 test 
bench. The details of selected 11 functions each with 10 
dimensions are as given in table 1. 

Table 1: CEC-2014 Test bench functions selected for 
performance evaluation 

Function 
Category 

Name of the Function 

Unimodal f2: Rotated Bent Cigar Function 
f3: Rotated Discus Function 

Simple 
Multimodal 
Functions 

f5: Shifted and Rotated Ackley’s 
Function 
f6: Shifted and Rotated Weierstrass 
Function 
f8: Shifted Rastrigin’s Function 
f14: Shifted and Rotated HGBat 
Function 
f16: Shifted and Rotated Expanded 
Scaffer’s F6 Function 

Hybrid Function 
1 

f20: Hybrid Function 4 (N=4) 
f22: Hybrid Function 6 (N=5) 

Composition 
Functions 

f23: Composition Function 1 (N=5) 
f30: Composition Function 8 (N=3) 

 
 
The evaluated performance of P3PGA algorithm along with 16 
other algorithms is placed as table 2. We conducted 15 trials 
for each of the 11 functions. We considered mean error of all 
the 15 trials as the performance measure. Based upon the data 
presented in table 2, Table 3 presents the comparative 
performance of 17 algorithms including P3PGA algorithm. A 
look at the table 3 clearly indicates that out of 11 functions 
chosen for comparison P3PGA gave best performance in 5 
functions. Out of these 5 functions there are 3 functions 
namely f5, f14 and f16 for which no other algorithm out of the 
other 16 algorithms could touch the performance achieved by 
P3PGA. For the other two function i.e., f3 and f8, P3PGA 
gave the best performance but this performance was achieved 
by some other algorithms as well. For f3 the performance of 
P3PGA was equaled by the performance of UMOEAS, RSDE, 
FCDE and GaAPADE algorithm as well. In the case of 
function f8 the performance of P3PGA was matched by the 
performance of UMOEAS, FERDE, DE_b6e6rlwithrestart, 
GaAPADE, LSHADE and RMA-LSCh-CMA algorithm. For 
the given 11 functions, LSHADE algorithm scores the number 
two position with best performance for 4 functions. Out of the 
four, LSHADE gave unmatched best performance for one 
function only and for the 3 functions its best performance was 
equaled by other algorithms also. The UMOEAS was ranked 
at number 3. The UMOEAS algorithm also gave best 
performance for 4 functions, but for all the 4 functions its best 
performance was matched by some or other algorithms also. 
UMOEAS did not give unmatched best performance for any of 
the 4 four function. Hence, UMOEAS was placed at number 3.  
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Table 2: comparative performance of 17 Algorithms 

LGORITHM F2 F3 F5 F6 F8 F`14 

NRGA 9.147E+02 1.517E+03 1.961E+01 2.450E+00 5.585E+00 2.537E-01 

FWA-DM 1.342E-04 1.877E-09 2.003E+01 7.063E-01 2.536E-01 2.139E-01 

UMOEAS 0.000E+00 0.000E+00 1.683E+01 0.000E+00 0.000E+00 1.100E-01 

OO+BOBYQA 3.600E-02 5.843E+03 2.000E+01 2.000E-03 .890E+01 1.300E-01 

SOO 6.343E+00 6.644E+03 2.000E+01 2.000E-03 .890E+01 1.300E-01 

RSDE 0.000E+00 0.000E+00 1.922E+01 5.291E-02 6.608E-01 1.360E-01 

POBL_ADE 2.270E+03 5.740E-04 1.910E+01 1.040E+00 7.810E+00 2.600E-01 

FERDE 6.288E-05 1.346E-03 1.906E+01 8.890E-01 0.000E+00 9.359E-02 

FCDE 0.000E+00 0.000E+00 2.033E+01 3.566E+00 .607E+01 3.470E-01 

b6e6rlwithrestart 0.000E+00 0.000E+00 1.845E+01 0.000E+00 0.000E+00 1.113E-01 

CMLSP 1.115E-15 1.056E-04 1.686E+01 6.201E-02 2.071E+00 1.892E-01 

GaAPADE 0.000E+00 0.000E+00 1.968E+01 1.484E-01 0.000E+00 9.424E-02 

OptBees 9.883E-03 9.213E-01 2.000E+01 3.017E+00 1.159E-13 3.687E-01 

LSHADE 0.000E+00 0.000E+00 1.415E+01 1.754E-02 0.000E+00 8.136E-02 

MA-LSCh-CMA 0.000E+00 1.025E-07 1.365E+01 1.479E-04 0.000E+00 1.265E-01 

MVMO 7.098E-09 9.860E-11 1.658E+01 3.445E-03 6.687E-15 8.906E-02 
P3PGA 1.480E+01 0 4.444E+00 7.236E-01 0 2.537E-02 

LGORITHM F16 F20 F22 F23 F30 

NRGA 2.747E+00 1.719E+03 37.56658082 329.4574872 1727.5377 

FWA-DM 1.757E+00 1.337E+01 3.409E+01 3.295E+02 3.943E+02 

UMOEAS 1.530E+00 3.706E-01 2.448E-01 3.295E+02 2.339E+02 

OO+BOBYQA 2.520E+00 6.925E+03 1.265E+02 2.000E+02 2.000E+02 

SOO 2.520E+00 9.364E+03 1.265E+02 2.000E+02 2.000E+02 

RSDE 2.233E+00 7.215E-01 1.165E+01 3.295E+02 5.052E+02 

POBL_ADE 1.410E+00 1.260E+01 3.000E+01 3.290E+02 6.380E+02 

FERDE 1.530E+00 1.704E+00 3.242E+00 3.295E+02 5.348E+02 

FCDE 3.191E+00 1.778E+01 2.750E+01 3.295E+02 8.667E+02 

b6e6rlwithrestart 1.872E+00 5.593E-02 1.541E-01 3.295E+02 4.673E+02 

CMLSP 1.555E+00 1.994E+01 8.953E+01 2.018E+02 2.164E+02 

GaAPADE 1.977E+00 4.316E-01 3.247E+00 3.295E+02 4.672E+02 

OptBees 2.640E+00 8.958E+00 1.702E+01 2.724E+02 3.892E+02 

LSHADE 1.241E+00 1.849E-01 4.410E-02 3.295E+02 4.649E+02 

MA-LSCh-CMA 1.054E+00 8.057E+00 8.475E+00 3.295E+02 5.851E+02 

MVMO 1.449E+00 3.126E-01 2.629E-01 3.295E+02 4.917E+02 
P3PGA 1.662E-01 1.751E-01 1.192E-01 3.295E+02 4.925E+02 

IV. P3PGA FOR MINIMAL ROUTE EVALUATION 
This section proposes a new optimal route evaluation 
approach. In this approach first of all an adjacency matrix is 
created for all the nodes of the network. The adjacency matrix 
represents the set of nodes that are adjacent to the current 
node. Using the adjacency matrix, a set of populations, each 
consisting of a given number of routes is evaluated. Each route 
is treated as one individual of the population. From the current 
set of populations, for every population the proposed 
algorithm evolves a new population and hence, a new set of 
populations. New path evolution process from a given path is 
based upon the process as described in [16] [9]. Following the 
P3PGA process we evolve the optimal cost for each 

population. From the local optimal cost route of each of the 
population we derive the global optimal path of all the 
populations which is the optimal under given processing time 
constraint. Once the routes are evaluated, each node of the 
WMN constructs routing tables. Thereafter, the general data 
transfer process can take place on the minimal cost routes. 
Being parallel in nature the convergence rate of this algorithm 
is expected to be quite small.  
We can compute the cost of a route using any existing routing 
metrics. One can find a large number of routing metrics 
available in literature.  
Some of these routing metrics are as follows: minimum hop 
count, Per-Hop Packet Pair Delay (PktPair) [17], per hop 
Round Trip Time (RTT) [18], Weighted Cumulative ETT 
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(WCETT) [19], Expected Transmission Time (ETT), Expected 
Transmission Count (ETX) [20], Effective Number of 
Transmission (ENT) and Modified Expected Nu mber of 

Transmissions (mETX) [21], Expected Transmission on a Path 
(ETOP) [22], Bottleneck Link Capacity (BLC) path metric 
[23] , Metric of Interference and Channel Switching (MIC) 
[24], interference aware, low overhead routing metric was 
proposed by Liran Ma et al. [25], cross layer link quality and 
congestion aware(LQCA) metric [26]. For the WMNs 
integrated link cost (ILC ) was defined as follows [27, 28, 29]: 
 

ILC =  ƒ(throughput, delay, jitter, node_residualenergy

 

)   
 
For our model we used the same route cost evaluation method 
as given in [29]. 
 

V. IMPLEMENTATION AND PERFORMANCE OF THE 
PROPOSED APPROACH 

To evaluate the performance of the proposed P3PGA based 
minimal cost route evaluation approach for WMNs, We 
implemented all the approaches in MATLAB and simulated 
for 100, 500, 1000 and 2000 node client WMNs. The 
architectural detail of the different network scenarios is shown 
in table 4. To evaluate the performance of all approaches on 
every network scenario we conducted 10 trial set, one set for a 
given timing constraint. Each trial set consisted of 20 trials. 

Hence, for each network scenario we have conducted total 
number of 200 trials. 
 
Table 4: Architectural Details of Client WMN considered 

for Simulation 

No. of 
Nodes 

Area 
(m×m) 

Radio 
Range 

Timing Constraint 

(in Seconds) 

100 500× 500 150 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1.0 

500 500× 500 150 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 
3.5, 4.0, 4.5, 5.0 

1000 1000× 1000 250 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 
3.5, 4.0, 4.5, 5.0 

2000 2000× 2000 250 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 
4.0, 4.5, 5.0, 5.5 

 

A. Comparative Performance Of 100 Node Client WMNs 
For 100 node client WMNs we evaluated the performance of 9 
approaches. The performance results of the all 9 approaches 
are shown in figure 1. From results, we observe that ACO, and 
DSR are unreliable protocols for the given network scenarios 
because most of the time these protocols failed to discover any 
of the paths between source-terminal pair. Being a proactive 
approach BAT approach successfully discovered the paths but 
failed to produce the minimum cost path in any of the trials. 
 
We also observe that for the timing constraint of 0.1 second 
AODV produced minimum cost path 7 times, BBBC 5 times 
and P3PGA produced minimum cost path 3 times. 5 times 
multiple approaches produced same best performance. On the 
timing limits of 0.2 second P3PGA produced minimum cost 
path 8 times, AODV 6 times, BBBC 3 times and BBO 
produced minimum cost path 1 time. 2 times best performance 
is equaled by multiple approaches. Further, we observe that for 
the 0.4 second timing constraints the performance of AODV 
had started to degrade. On the timing constraint of 0.9 second 
P3PGA produced minimum cost path 7 times, AODV 4 times, 
BBBC 3 times, Firefly 2 times, GA, 1 time. 3 times multiple 
approaches produced same minimum cost path. With timing 
constraint of 1 second P3PGA produced minimum cost path 5 
times, AODV 3 times, Firefly 2 times and BBBC produced 
minimum cost path 1 time. 9 times multiple algorithms 
produced same best performance. Thus, from the figure 1, one 
could say  that for 100 node networks and for timing constrints 
less than 0.5 seconds AODV performs better than all other 
algorithms. For timing constraint of 0.5 seconds and 0.6 
seconds the performance of FA is best. For timing constraint of 
0.7 seconds FA and P3PGA both give best performance. But as 
timing constraints is further relaxed it provides more 
computing time to P3PGA algorithm. In terms of producing 
shortest path, for the timing constraint of 0.8, 0.9 and 1.0 
second, P3PGA algorithm out scores all other algorithms. 

 

Table 3: Comparative Performance of Various Algorithms on CEC-2014 
Test Bench 

Sl. 
No. 
at 

Table 
1 

Algorithm Name 
 

No. of 
Functions 
for which 

this 
algorithm is 
winner i.e., 

performance 
is 

unmatched 
best 

No. of 
Functions 
for which 
algorithms 

is joint 
winner i.e., 

Best 
performance 
is observed 

but is 
equaled by 

other 
Algorithms 

also  

Total No. 
of 

functions 
for which  
algorithm 
is winner  

+ joint 
winner 

9 SOO+BOBYQA 0 2 2 

8 DE_b6e6rlwithrestart 1 2 3 

7 FCDE 0 2 2 

6 FERDE 0 1 1 

5 UMOEAS 0 4 4 

4 CMLSP 0 0 0 

3 RMA-LSCh-CMA 0 2 2 

2 LSHADE 1 3 4 

17 NRGA 0 0 0 

16 FWA-DM 0 0 0 

15 GaAPADE 0 3 3 

14 POBL_ADE 0 0 0 

13 MVMO 0 0 0 

12 OptBees 0 0 0 

11 RSDE 0 2 2 

10 SOO 0 2 2 

1 P3PGA 3 2 5 
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Figure 1: Performance on 100 Nodes Client WMN 

 

B. Comparative Performance Of 500 Node Client WMNs 
For 500 nodes client WMNs we evaluated the performance of 
all given 9 optimal route evaluation approaches. The 
performance results of the all approaches are given in table 5 
and figure 2. From results we observe that on the given WMN 
scenario upto 3.5 seconds timing constraints the AODV 
routing protocol outperforms all its competitors. But after 3.5 
seconds all other approaches also started to perform. On the 
timing constraint of 4 second P3PGA produced minimum cost 
path 9 times, AODV 6 times, BBBC 1 time, Firefly 1 time and 
GA produced minimum cost path 1 time only. 2 times all 
approaches except ACO, AODV and DSR produced same 
minimum cost path. With 5 seconds timing limit P3PGA 
generated minimum cost path 10 times, AODV 4 times, GA 2 
times, BBO 1 time and BBBC produced minimum cost path 3 
times.  
 

Table 5:  Performance of 500 Node Client Network 
                                                             Timing Constraints 

Algo 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
AOD

V 16 10 15 14 9 19 11 6 10 4 
DSR 0 0 0 0 0 0 0 0 0 0 
ACO 0 0 0 0 0 0 0 0 0 0 

GA 0 A 1 + B 0 4 + C 0 0 
1 + 
D 0 2 

BBO 0 A 0 0 0 0 0 
1 + 
D 0 1 

BBBC 0 
1 + 
A 1 2 4 1 2 

1 + 
D 0 3 

FA 0 A 0 1 0 0 1 D 0 0 
BAT 0 A 0 0 0 0 0 D 0 0 
P3PG

A 4 
3 + 
A 2 + B 3 2 + C 0 6 

9 + 
D 10 10 

A = 5, B = 1, C = 1, D = 2  
 

 

 
Figure 2: Performance on 500 Nodes Client WMN 

 

C. Comparative Performance Of 1000 Node Client WMNs 
Table 6 and figure 3 present the simulation performance for 
1000 node client WMNs. From the performance we observe 
that DSR and ACO approaches failed to discover the path for 
the given timing constraints in any of the trial set. Upto 2 
seconds timing limits AODV also failed to discover any of the 
routes. As shown in the figure 3, P3PGA outperforms other 8 
approaches for the timing constraints of 0.5, 1.0, 1.5, 2.5 and 
3.0 seconds. With timing constraints of 2.0 seconds P3PGA 
and BBBC gave the same best performance. Further, we also 
observed that after the 3.0 seconds timing constraint the 
performance of AODV improved considerably to the extent 
that it outperformed all other 8 approaches. Hence, for the 
given WMN scenario AODV is unsuitable approach if the 
network size is 1000 node with allowable computing time less 
than 3 seconds. If timing constraint could be relaxed beyond 3 
seconds then AODV gives the best performance. 

 
Table 6:  Performance of 1000 Node Client Network 

                                                             Timing Constraints 
Algo 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
AODV --- --- --- --- 5 6 8 10 14 19 
DSR --- --- --- --- --- --- --- --- --- --- 
ACO --- --- --- --- --- --- --- --- --- --- 
GA 3 2 3 2 2 1 2 0 1 0 
BBO 0 0 0 0 0 0 0 0 0 0 
BBBC 7 8 6 8 4 3 3 4 1 0 
FA 1 0 4 2 1 1 0 0 1 0 
BAT 0 0 0 0 0 0 0 0 0 0 
P3PGA 9 10 7 8 8 9 7 6 3 1 

“---“ means failed to produce path in any of the trials 
 

 
Figure 3: Performance on 1000 Nodes Client WMN 

 



Shakti Kumar et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,968-975 

© 2015-19, IJARCS All Rights Reserved                    973 

D. Comparative Performance Of 2000 Node Client WMNs 
We simulated the performance of all the 9 approaches on the 
timing constraints of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 
and 5.5 seconds. The performance results of all approaches are 
shown in figure 4 and table 7. The results clearly indicate the 
supremacy of P3PGA approach over all the other 8 approaches 
for the every timing constraint. 

Table 7:  Performance of 2000 Node Client Network 
                                                             Timing Constraints 

Algo 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 
AODV --- --- --- --- --- --- 0 3 4 1 
DSR --- --- --- --- --- --- --- --- --- --- 
ACO --- --- --- --- --- --- --- --- --- --- 
GA 1 3 4 3 4 3 3 2 1 3 
BBO 0 0 0 0 0 0 0 0 0 0 
BBBC 5 2 2 4 6 4 3 0 1 1 
FA 0 0 1 1 0 0 2 1 0 0 
BAT 0 0 0 0 0 0 0 0 0 0 
P3PGA 14 15 13 12 10 13 12 14 14 15 

“---“ means failed to produce path in any of the trials 
 

 
Figure 4: Performance on 2000 Nodes Client WMN 

 

E. Overall Performance Considering All The Networks 
In order to evaluate the performance of all 9 approaches, 
overall we had conducted total of 800 trials. The overall 
performance of the 9 approaches are given in figure 5. From 
the simulation results, we observe that out of total number of 
800 trials P3PGA provided minimum cost path 290 times, 
AODV 221 times, BBBC 111 times, GA 64 times, Firefly 23 
times, and BBO 3 times and DSR produced minimum cost 
path 2 times only. 86 times multiple approaches produced 
same best performance. Also, ACO and BAT approaches 
failed to produce the minimum cost path in any of the trials. A 
look at figure 5 makes it apparent that as the size of the WMN 
becomes 1000 node P3PGA algorithm gives best performance 
but the margin is small. As the WMN size touches 2000 node 
mark the P3PGA gives best performance with a very big 
performance lead over its counterparts.  
 

 
Figure 5: Comparative Performance of All Approaches 

 
 

VI. CONCLUSIONS 
This paper proposes a new P3PGA based multi-population 
global optimization algorithm. The proposed algorithm 
extended the 3PGA approach by adding the parallel evolution 
behavior. We implemented the proposed algorithm in 
MATLAB and simulated its performance on 11 functions of 
CEC-2014 benchmark. We compared its performance with 
other 16 algorithms. P3PGA gave best unmatched 
performance for 3 functions out of the selected 11 functions. 
On the other two functions the best performance of P3PGA 
was equaled by few other algorithms. Hence, overall out of the 
11 selected function of CEC-2014 test suite, P3PGA given 
best performance on 5 functions. The performance of P3PGA 
was followed by LSHADE that gave unmatched best 
performance on one function and equaled best performance on 
3 functions totaling 4 functions with best performance.  
UMOEAS algorithm followed on the the third place. It also 
produced the best performance in 4 benchmark functions. But 
in all the 4 cases this best performance was not unique best; 
the same best was achieved by few other algorithms as well.  
This paper also proposed a P3PGA based new optimal cost or 
near shortest route evaluation approach for WMNs. The 
approach was compared with other 8 approaches namely 
AODV, DSR, BBBC, ACO, BBO, BAT, GA and Firefly 
based optimal cost path evaluation approaches. From the 
simulation results we conclude that the proposed approach is 
very suitable for large WMNs with sizes greater than 1000 
nodes.  
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