
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 944

ISSN No. 0976-5697

Metric Models for Object Oriented Frameworks

Manjari Gupta
Department of Computer Science

Institute of Science
Banaras Hindu University

,
Abstract: Software Reuse by frameworks attempts to capture, document and specify the architectural design experiences in form of a semi-code.
It seems that high level reuse by design patterns and frameworks are more promising than other reuse techniques. We define a possible
framework for metric models for object-oriented frameworks that can be used by an organization easily and further newer metric models can be
added herein easily. The whole thing is divided into Metric models for a domain, Metric models for a framework for a domain, Metric models
for applications (wherein this framework’s reuse is expected) and Metric models to evaluate the success of framework-based development.

Keywords: Metric, object oriented framework, domain reuse

1. INTRODUCTION

The idea of Formal Software Reuse, as first introduced by
Mcllroy, was proposed at the NATO Software Engineering
Conference in 1968 [1]. In the earlier days of software
engineering (at the time of structured programming),
programmers began developing standard block of code to
perform operations like printing, and then copied and pasted
that code into every application they wrote. While this
reduced the application time for new applications, it was
difficult if a change was needed in that block of code,
because the developer had to make change everywhere that
code had been copied. Object-oriented programming helps
to reuse within application by avoiding repeating same code
more than one [2]. Later the need to formally reuse across
applications, with not much effort, is realized. Object-
oriented programming does not provide a straight forward
method to reuse across applications. This paradigm is “put
together a bunch of objects, and then just focus on specific
application”. To collect and arrange these objects is another
time-taking activity. Object-oriented frameworks were
introduced to solve it. An object-oriented framework is the
whole architecture that can be reused in many similar
applications.
Metrics play a central role in any software development. It is
essential to develop and use metrics to predict, evaluate and
hence to improve the software development process so that
it may result in acceptable quality products. Chidamber et.
al. [6] proposed metrics to quantify the characteristics of
object-oriented design. Several reuse metrics [7-11] are also
presented in the literature but unfortunately it is difficult to
find metrics for framework reuse. To make framework
development, as well as its reuse process clear and
understandable, it is necessary to quantify these processes
and the products resulted by them.
It is essential to understand various characteristics and
qualities of products, processes, project and people, in
software engineering. Metrics play a central and vital role in
software engineering. Frameworks must be highly reusable
so as to be able to obtain the benefits promised by reuse. To
make framework-based software development successful, it
is necessary to quantify its characteristics. In this paper, we
propose some metric models relevant to framework reuse
technology.

In the next section we discuss briefly metric models for
Framework-Based Software Development. Section 3
describes in detail metric models for a domain. Metric
models for frameworks to be used in a domain and for
applications to be developed using frameworks are
explained respectively in section 4 and 5. To evaluate the
success of framework-based development we proposed
metrics in section 6. Finally we conclude in section 7.

2. METRIC MODELS FOR FRAMEWORK-BASED

SOFTWARE DEVELOPMENT

In spite of the importance of frameworks, a widely accepted
set of measures to quantify its characteristics has not been
established. To make framework-based software
development successful, it is necessary to do quantitative
analysis of cost/benefit of frameworks. We have tried to
address the question of metric development for software
frameworks. Obviously, the reusability of a framework is an
important issue. One should be able to quantify the
reusability of, and the benefits promised by, a framework
being developed. It is essential to consider various factors
that affect these characteristics of interest.
In this paper, some metric models for frameworks are
presented that can help organizations develop a business
case to support the early development and easy reuse of
frameworks. We, here, consider metric models that may be
useful, early in the software life-cycle for estimating
framework-based development benefits and after that for
calculating the benefits that actually resulted from using this
framework. Metrics for a framework must be different from
other proposed reuse metrics because these metrics assume
Reused Source Instruction (RSI) to count as reuse while,
framework is not only the code, and thus the same cannot be
used in this context.
Several metrics have been defined for reuse by different
researchers. Many of them are having the same meaning but
proposed the metrics in different ways. Thus, we can say the
metrics for reuse proposed in the literature have redundancy.
Because of this redundancy and gap it is very difficult for an
organization to follow a set of metrics with confidence to
measure their reuse effort and their benefits. Thus, first of
all, we define a possible framework for metric models for an
object-oriented framework that can be used by an

Manjari Gupta, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,944-949

© 2015-19, IJARCS All Rights Reserved 945

organization easily and further newer metric models can be
added herein easily. The whole thing can be divided into
following categories:
Metric models for a domain: these metric models help in
deciding for which applications in a domain, development of
frameworks would be useful. That is, this sub-area contains
metric models that help in identifying the reusability
potential in a domain.
Metric models for a framework for a domain: these metric
models would help in finding the quality related attributes of
a framework.
Metric models for applications (wherein this framework’s
reuse is expected): these metric models help in finding the
quality of applications that have been developed using a
framework.
Metric models to evaluate the success of framework-based
development: metric models in this last section help in
comparing traditional versus framework-based software
development to get the economic benefits of framework-
based software development over traditional development.
These metric models are described in detail in the following
sections.

3. METRIC MODELS FOR A DOMAIN

As mentioned earlier, these metric models would help
framework developers to decide whether developing a
framework for similar applications in a domain would be
profitable or not. An application domain is modeled by
analyzing the common and variant aspects of the family of
applications in the domain. To decide it, one should analyze
scope of various reusability types in a domain. Further, it is
needed to decide about the structure of a framework, to be
developed, by considering its size and complexity.

3.1 SCOPE OF VARIOUS REUSABILITY TYPES IN A
DOMAIN
As said above, a domain may have common as well as
variant aspects applicable in various applications for some
purpose. Variant aspects in a family of applications may be:
1. Different functional requirements of similar applications

in a domain.
2. Different behavioral requirements of similar applications

in a domain.
3. Different languages in which similar applications, in a

domain, are required to be developed.
4. Different environment in which similar applications, in a

domain, are required to be used.

Many other variant aspects may also be there. We can define
reusability index by concentrating on the following terms
regarding some possible application or software system in a
domain:
Total number of reusable aspects (NTra
Number of variable aspects (N

),
Va

Total number of aspects (N
)

Ta) = NTra + N
Number of common reusable aspects (N

Va
Cra

Number of variant reusable aspects (N
),

Vra
Total number of reusable aspects (N

),
Tra) = NCra + N

Reusability of a domain (R
Vra

d

)

Crad NR ∝

Vra
d N

1R ∝

Reusability (for reusable aspects)

Tra

Cra

N
N

k ×=

Reusability Index
VraTa

Tra

Tra

Cra

NN
N

N
N

k 1
×××=

VraTa

Cra

NN
N

k 1
××=

3.2 Monolithic Frameworks versus Multi-Framework
Arrangements
Here, in this section, we address the question of heaviness of
a framework because of multiple activities, in similar
applications of a domain, being performed. In such complex
skeleton structures there may be sub structures that merit to
be considered as separate candidates for development of a
framework for the activity that it carries out. This
consideration would help us in considering the over all
skeleton structure as a framework that itself may contain
some other frameworks. The overall skeleton structure, now,
becomes a system and the sub-structures may be designed
and implemented as subsystems. The traditional method of a
rigid framework development, with no frameworks for its
substructures, would be known as a monolithic framework.
Such a framework would be rigid as the substructures would
also be fixed up to substantive extent. In a non-monolithic
framework arrangement, multiple frameworks may be
designed and implemented for the internal different
activities whenever they can be represented by separate
control abstractions. Any change in these structures can be
separately managed rather newer frameworks developed for
these purposes can always be taken up without disturbing
the overall framework.
To be able to decide about inclusion of some activity as part
of the framework definition, one should consider whether it
can be defined once and reused many times. If the activity
has to be performed in many different ways for various
applications, then there is no point in accommodating it in
the framework. Thus,

Consideration of an activity in a main framework
N
N S∝

where, NS

N is the total number of ways this activity can be performed.

 is the number of similar ways in which this
activity can be performed and

4. METRIC MODELS FOR A FRAMEWORK TO BE

USED IN A DOMAIN

In this area, we define one of the most important metrics for
judging a framework; reusability of a framework metric.
Other metrics in this section are understandability,
complexity, customizability of a framework etc.

4.1 Reusability of Frameworks
As for any general software product, the reusability of a
framework would be based on four things:
),,,(PCECfR RFr ∝

Manjari Gupta, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,944-949

© 2015-19, IJARCS All Rights Reserved 946

where, C is the commonality among applications belonging
to a domain, for which this framework is developed,
E is the efficiency of the framework,
CR
P is the portability of the framework.

 is the rarely changed code in the framework and

Three types of things are reusable in a framework:
1. Reuse of code (RC
2. Reuse of abstract code (R

)

AC
3. Reuse of non code portion (R

) and
NCP

First type of reuse is better than the second type of reuse
which is better than the third type of reuse. But, first type of
reuse makes a framework rigid while second and third type
of reuse leads to more flexible framework. Thus, there
should be balance among these types of reuse in a
framework.

)

Further, a framework defines the whole architecture of
several similar applications in a domain. As described
earlier, different applications may have some variability in
their architecture. By generalizing these different
architectures the framework is developed. But some times it
is hard to develop generalized architecture without some
pre-assumptions. These pre-assumptions make it difficult to
reuse a framework in many applications. Hence, a
framework’s reusability can also be defined as

AN

1
∝FrR

where, NA

If certain assumption(s) is (are) not valid/ true for some
application, then it would be difficult to deploy this
framework in that case.

 is the number of architectural assumptions in a
framework.

Another way, as for any general reusable asset, of specifying
reusability of a framework is constrained by the extent of
new code that needs to be written by the application
developers at the time of its instantiation and the
customization required in these applications. That is,

M

Fr E
1

CCQ
1

NCQ
1R ××∝

where, NCQ is the new code quantity, CCQ is the code
quantity that needs to be customized and EM

 is the extent of
(and type of) these modifications required.

4.2 Customizability of Frameworks
The most common way to instantiate a framework is to
inherit from some abstract classes defined in the framework
hierarchy and write the code that is called by the framework
itself [3]. Thus, customizability of a framework (FC

Framework a of Complexity
1

∝CF

) would
be good if it is easy to identify which code and where this
code should be written. One of the factors that hinder in
identifying this information is the complexity of a
framework’s class hierarchy. Thus, we can say

A requirement, that is similar in most of the applications,
would be a good candidate to be included in a framework as
it would increase the customizability. More the number of
such requirements more would be the customizability of
such a framework. That is, if a requirement, similar in more
number of applications, is addressed in a framework, it

would be easy to customize it in those many instantiations.
By considering each similar requirement addressed in a
framework, we can say that

 ∑
=

∝
n

i
AC i

NF
1

where, for a requirement addressed in a framework, NA

n is the number of similar requirements addressed in a
framework

 is
the number of applications having this requirement in
slightly different forms and

4.3 Usability of Frameworks
In the case of frameworks, usability is always reusability. It
is the ease in identification, understanding and deployment
of a framework. As in general software products, users may
not (possibly do not) require to understand its design and
design decisions. While, in case of frameworks, its users
must not only understand the internal design but also
understand the philosophy and reasoning of the design
decisions taken. As the general software product that needs
only to be compiled and run, it needs to be understood
and translated

Such a metric model should address the question of
framework requirements to be identified by the user and
consequent selection of the same for deployment. If it is
difficult to understand the scope and functionality of the
framework and it demands a good deal of modification in
the framework and the software being developed, then the
(re)usability of the framework is poor. Thus,

 into a specific software architecture
implementation.

Usability = f (Ease in identification, Ease in understanding,
Ease in deployment)
Difficulty in identification can be defined as follows,

 Difficulty in identification =
N
N M

where, NM

N is the total number of architectural requirements of an
application.

 is the number of mismatches between a
framework specification and architectural requirements of
the application and,

Difficulty in deployment can be defined as follows,

 Difficulty in deployment = ∑
n i

i

S
C

where, Ci is the customizability of ith

S
 element,

i is the size of ith

And n is the total number of such elements in a framework.
 element,

Understandability of a framework is described later in this
section.

4.4 Portability of Frameworks (P)
As for general software products, this metric attempts to
capture the requirement of a framework being language
and/or software architecture independent. The frameworks
that are written for a fixed language or environment may not
be portable at all, whereas a framework becomes highly
portable if it can be deployed in diverse situations in various
applications. Thus,

Manjari Gupta, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,944-949

© 2015-19, IJARCS All Rights Reserved 947

P ∝ The number of direct (“As-is”) deployments / the total
number of applications wherein such a framework has
potential of being deployed.

Or we can say,

LP

LP

NR
NSP ∝ ⇒

LP

LP

NR
NSkP =

where, NSLP

NR

 is the number of languages and platforms on to
which the framework can be ported,

LP

k would be constant that will specify the constraints
imposed by status of the technology.

 is the number of languages and platforms that such a
framework may be required to be ported, and

4.5 Complexity
As for any general software product, the complexity of a
framework can be defined as follows:

 Complexity = f (structure, content, size)

Since, frameworks are built to be more flexible so that they
can accommodate changing requirements, their complexity
cannot be measured. Apart from domain classes we always
have in a system control flow (application logic)
objects/classes. These application logic objects hide the
complexity of the control flow into these application logic
classes. That is why an object-oriented framework will be
easy to understand as the domain objects, application
objects, interface objects, utility objects and their interaction
would be easily understandable.

Another way of defining the complexity of a framework
(CFr

) may be by considering the complexity of domain,
control logic, utility and interface classes along with the
complexity of their interaction. That is,

),,,,(FAICUCCLCDCFr CCCCCfC ∝

where, CDC

C

 is the complexity of domain classes of the
framework,

CLC
C

 is the complexity of control logic classes,
UC

C
is the complexity of utility classes,

IC
C

 is the complexity of interface classes, and
FA

 is the complexity of framework architecture that is the
complexity of the interactions among different parts of a
framework.

4.6 Understandability (Un
As described earlier, frameworks support reuse by having
aspects that can be reused “as-is”, aspects that need
customization and some material that guide how to add
application specific aspects consistently so that reuse of it
can be done as intended by a framework developer. Thus, to
reuse a framework it is required to understand the above
said. As a framework contains both, design and semi-code,
its understandability will depend on the understandability of
both. Thus,

)

Un ∝ design clarity,
Un ∝ document clarity.

Further, as for any general software product, the
understandability of a framework would be inversely
proportional to its complexity. That is,

Complexity

1
∝nU ,

The complexity of a framework is defined earlier in this
paper. And hence,

complexity

claritydocument claritydesign ×
∝nU

Further, clarity =
ambiguity

1

The total clarity (of design and document) can be found by
reducing ambiguity.
If we define the ambiguity factor as follows:

 Ambiguity factor =
N

N AM

where, NAM

N is the total number of specified items in the framework.
Hence,

 is the number of specified items that can have
more than one interpretation,

)(

1clarityDesign

DesignI

AM

N

N
Design

∝ ⇒

 Design clarity
DesignAM

DesignI

N
N

∝

where,
DesignAMN is the number of items in a framework’s

design that can have more than one interpretation and

DesignIN is the total number of specified items in a
framework’s design.
Similarly,

)
N
N

(

1claritydocument

DocumentI

AMDocument

∝ ⇒

 Document clarity
DocumentAM

DocumentI

N
N

∝

where,
DocumentAMN is the number of items in a framework’s

document that can have more than one interpretation and

DocumentIN is the total number of specified items in a
framework’s document.

Manjari Gupta, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,944-949

© 2015-19, IJARCS All Rights Reserved 948

Maintainability, testability and reliability etc. are other
interested quality attributes that may be defined in the
context of framework reuse.

5. METRIC MODELS FOR APPLICATIONS

Under this section metric models that quantify the quality of
applications, that are developed using frameworks, are kept.
The enhancement in each element of the quality (QEnh

) of
applications developed using frameworks can be expressed
by:

WOF

WF
Enh Q

Q
Q ∝

where,
QWF

and Q

 is the quality factor of an application developed with
framework,

WOF

Quality of an application, i.e. of any software, has been
rigidly described by McCabe. This model has been
extensively referenced for non-reuse based software
development. Whether it needs to be redefined or some
newer ones are required is the basic question that needs to
be addressed.

 is the quality factor of an application developed
without using a framework.

5.1 Reliability of applications
The reuse of frameworks will enhance the reliability of an
application due to the obvious fact that a software skeleton
structure will work properly, if it has already worked for
someone else. The reason is that framework-based
applications would have many parts that have been
rigorously exercised and verified in the previous
development of applications developed using a framework.
As in general,
 Software Reliability = f (number of bugs in the
application, profile of execution)

The possibility of introduction of new bugs increases during
customization and deployment of a framework because of
need of writing newer code. Thus, the reliability of an
application (ARL), developed using framework, would be
proportional to number of ‘as-is’ reused aspects (NARA) and
it would be inversely proportional to number of aspects that
need customization (NCA) and newly developed aspects
(NNDA

NDACA
ARARL NN

NA 11
××∝

) because new code writing may introduce bugs.
Thus,

It only shows that software reliability models will have to
consider this situation.

5.2 Complexity of Applications
An application, based on a framework, not only reuses the
frameworks source code, but also its architectural design.
This amounts to a standardization of the application
structure, and allows a significant reduction in the size and
complexity of the source code that has to be written by
developers who instantiate a framework [4]. By
modularization of the architecture, a framework manages
the complexity of a solution architecture and consequently
the complexity of the applications also gets reduced. Since a

framework is the main architecture, of such applications,
that calls application specific code which is generally in less
quantity; one can describe the complexity of these
applications (AC) in terms of complexity of frameworks
(FC

) that they use. The complexity of a framework interface
may complicate the interaction among newly developed
code and the framework. Thus, we can say

CC FA ∝

5.3 Testability of Applications
Testability of an application, developed using a framework,
due to use of standard architecture, would be high.
Testability is inversely proportional to testing effort. Testing
of an application requires testing of an application specific
parts, along with the testing of their integration with
framework. To test this integration, much of the test suits
developed to test the framework used, would be reused and
some test cases need to be extended. That is, unit testing of
application specific aspects and integration testing of these
aspects with frameworks (because of dependency of these
aspects on prewritten aspects of the framework) and system
testing to test overall requirements of the application are
needed. Thus, testability of such applications (T) can be
estimated by calculating the size of “as-is” reusable part of
framework (FAS) and the total size of the application (ATS

).

TS

AS

A
F

T ∝

Other metric models like understandability, maintainability,
portability etc. for applications, wherein this framework
reuse is expected, may also be developed on the similar line.

6. METRIC MODELS TO EVALUATE THE

SUCCESS OF FRAMEWORK-BASED
DEVELOPMENT

These metric models are basically used by managers.
Managers primarily need to know if reuse results in
improved productivity and in reduction of program risks
such as cost, quality and schedule overrun etc. They may
want to check whether the quality of software development
process using frameworks reuse has enhanced or not, what
are the economic effects of this reuse etc. We require to
have Cost/Benefit Estimation models and Investment
analysis models. The following observations (drawn in this
section) are possible in the context of cost/benefit analysis.

Managers are always interested to know the productivity of
developers, whether it is enhanced by framework reuse or
not, whether the software development process has become
difficult or easy because of framework reuse etc. In this sub
section we consider the requirements for these three metric
models in context of framework reuse.

6.1 Productivity enhancement of developers
Productivity, most often refers to the relationship between
inputs and outputs, is typically a ratio of outputs to a single
input such as lines of code per person/day [4]. In FBSD, we
need to concentrate on the productivity of framework
developers and application developers (who develop it using
a framework). Productivity of framework developers would

Manjari Gupta, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,944-949

© 2015-19, IJARCS All Rights Reserved 949

be improved as long as they would get confidence in a
domain. One of the keys to improve productivity is to
improve quality [5]. Since applications based on existing
frameworks are of better quality than non-reuse based
applications thus productivity would certainly improve. In
any general reuse, there is confusion that whether the
reusable code part should be considered in a developer’s
productivity or not. In framework reuse, generally, a
developer needs to learn the framework functionality; and
thus the productivity of application developers should
include the size of framework also.

6.2 Difficulty in Development
To analyze difficulty in FBSD, we need to concentrate on
the difficulty in framework development and further
difficulty in developing an application by using frameworks.
Extra difficulty in framework development comes because
the scope for estimated vertical requirements of different
applications (which may be developed by reusing it) need be
left for developers to write. Further, the need of
documentation is there to explain how to use a framework
for development of applications (so that it may not be used
wrongly) also makes the process of framework development
more difficult. Developers may feel certain limitations in
adjusting their requirement with that of architectural
specifications of the framework to be deployed for this
purpose. Framework designers may propose a framework
considering this difficulty.

6.3 Development Time Reduction
Development time (TAD) of applications using framework
would always be proportional to number of reusable
components in an application.
Once the architectural design of a framework has been
developed, the time to develop an application based on that
framework could be estimated very early.
 TAD= m × FC + n × FS + c,
where, TAD is the estimated time for completion of an
application wherein this framework reuse is expected,
FC is the number of aspects in the framework that need to be
customized,
FS

7. CONCLUSION

 is the number of aspects specific to the application,
m, n and c are constants that can be estimated by analyzing
other applications’ development time that have been
developed using the same framework.

We have tried to address the question of metric development
for software frameworks. Some metric models have been

presented, for frameworks, which can help organizations
develop a business case to support the early development
and easy reuse of frameworks. Several metrics have been
defined for reuse by different researchers. Many of them are
having the same meaning but have proposed the metrics in
different ways. Thus, we can say the metrics for reuse
proposed in the literature have redundancy. Because of this
redundancy and gap it is very difficult for an organization to
follow such a set of metrics with confidence to measure the
reuse effort and benefits. Thus, first of all, we defined a
possible framework for metric models for an object-oriented
framework that can be used by an organization easily and
further newer metric models can be added herein easily.

REFERENCES

1. Smolarova M. and Navrat P., Software Reuse: Principles,

Patterns, Prospects, Journal of Computing and Information
Technology, Vol. 5, No.1, 1997, Page(s) 33-49.

2. Boggs W. and Boggs M., Mastering UML with Rational Rose
2002, Sybex Inc., ISBN: 0-7821-4017-3.

3. Fontoura M., Braga C., Moura L. and Lucena C., Using
Domain Specific Languages to Instantiate Object-Oriented
Frameworks, IEE proc-Softw., Vol 147, No.4, August 2000,
Page(s) 109-116.

4. Arthur L.J., Measuring Programmer Productivity and
Software Quality, John Wiley & Sons, ISBN 0-471-88713-7,
1985.

5. Bieman J.M., Zhao J.X., Reuse Through Inheritance: A
Quantitative Study of C++ Software, ACM SIGSOFT
Software Engineering Notes, Volume 20, 1995, Page(s) 47-
52.

6. Chidamber S and Kemerer C., Towards a Metrics Suite for
Object Oriented Design, In Proc. OOPSLA, 1991, Page(s)
197-211.

7. Devanbu P., Karstu S., Melo W. and Thomas W., Analytical
and Empirical Evaluation of Software Reuse Metrics, Proc. of
the 18 Int. Conf. on Software Engineering, 1995, Page(s)

11. Frakes W. and Terry C., Software Reuse and Reusability
Metrics and Models,

189
- 199.

8. Ferri R.N., Pratiwadi R.N., Rivera L.M., Shakir M., Snyder
J.J. and Thomas D.W., Chen Y.F., Fowler G.S.,
Krishnamurthy B. and Vo K.P., Software Reuse Metrics for
an Industrial Project, 0-8186-8093-8/97 IEEE, 1997, Page(s)
165-173.

9. Frakes W. and Terry C., Reuse Level Metrics, IEEE, 1994,
Page(s) 139-148.

10. Frakes W. and Terry C., Software Reuse: Metrics and Models,
ACM Computing Surveys, Vol. 28, No. 2, 1996, Page(s) 415-
435.

ACM Computing Surveys, Volume
28, Issue 2, 1996,

Page(s) 415 – 435.

	Productivity enhancement of developers

