
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 853

ISSN No. 0976-5697

MapReduce with Hadoop for Simplified Analysis of Big Data

Ch. Shobha Rani
Research Scholar

Department of Computer Science
Kakatiya University, Warangal, Telangana

Dr. B. Rama
Assistant Professor

Department of Computer Science
Kakatiya University, Warangal, Telangana

Abstract: With the development of web based applications and mobile computer technology there is a rapid growth of data, their computations
and analysis continuously in the recent years. Various fields around the globe are facing a big problem with this large scale data which highly
supports in decision making. The traditional relational DBMS’s were unable to handle this Big Data. The most classical data mining methods are
also not suitable for handling this big data. Efficient algorithms are required to process Big Data. Out of the many parallel algorithms
MapReduce is adopted by many popular and huge IT companies such as Google, Yahoo, FaceBook etc. In Big data world MapReduce has been
playing a vital role in meeting the increasing demands on computing resources affected by voluminous data sets. MapReduce is a popular
programming model suitable for Big Data Analysis in distributed and parallel computing. The high scalability of MapReduce is one of the
reasons for adapting this model. Hadoop is an open source; distributed programming framework with enables the storage and processing of large
data sets. [1]

I. INTRODUCTION

In the current era, enormous data is being generated day by
day continuously. With the rapid expansion of data, we are
moving from the Petabyte to exabytes and zettabytes age. At
the same time, new technologies progressing with high
speed make it possible to organize and manipulate the
voluminous amounts of data presently being generated. With
this trend there exists a greater demand for new data storage
and analysis methods.

 In this paper we try to focus especially on MapReduce with Hadoop for the analytical processing of big data.

Keywords: Big Data, Hadoop, MapReduce, BigData Analytics.

 [2]

 Fig. 1 : 5v’s of big data

Along with the three V’s, there also exists ambiguity,
viscosity, and virality.

 Especially, the real world aspects
of extracting knowledge from huge data sets have become
utmost important.
 “Big Data” is the biggest observable fact that has captured
the attention of the modern computing industry today since
the expansion of Internet globally. Big Data is gaining more
popularity today is because of the technological revolutions
that have emerged are providing the capability to process
data of multiple formats and structures without worrying
about the constraints associated with traditional systems and
database platforms.

II. IMPORTANCE OF BIG DATA

Big Data can be defined as large volumes of data which is
either structured or unstructured and generated at high
speeds globally by various new technological devices.
 Big Data includes the data that is generated every second by
sensors, mobiles, and consumer-driven data from social
networks. Big Data is evolving from various facets within
organizations legal, sales, marketing, procurement, finance,
and human resources departments etc.

 Ambiguity— which comes into existence if the metadata
lags behind the clarity of data in Big Data. For example,
in a graph, 1 and 0 can depict degree or can depict status
as true and false.

 Viscosity—measures the resistance (slow down) to flow
in the volume of data. Resistance can manifest in
dataflow, business rules, and even be a limitation of
technology. For example, social network predictions
come under this category, where a number of enterprises
just cannot understand what impact is there on business
and how it resists the usage of the data in many cases

 Virality—measures and describes how quickly data is
shared in a people-to-people (peer) network.

.

Big Data is non relational
MapReduce is complementary to DBMS phenomenon, not a
competing technology
• Parallel DBMS are for efficient querying of large data

sets.

. [3]

[4]

Ch. Shobha Rani et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,853-856

© 2015-19, IJARCS All Rights Reserved 854

• Big Data exits mostly in real-manner rather than the
traditional Data Warehouse applications.

• Traditional DW architectures (like Exadata, Teradata)
are not well suited for Big data applications.

[8]

• The architectures like Shared nothing and massively
parallel processing are very well suited for big data
applications.

• MR-style systems are suitable for complex analytics and
especially ETL tasks.

• Parallel DBMS require data to fit into the traditional
relational representation of rows and columns.

• In contrast, the MapReduce architecture does not require
that data files must and should stick to a particular
schema such as the relational data model. That is, the
MR programmer can structure their data in any manner
or even to have no structure at all. As MR supports both
structured and unstructured data this is possible.

 Big Data Pillars
• Big Table – consisting of relational tables.
• Big Text – comprising of text in the form of structured,

semi-structured data, natural language, and semantic
data.

• Big Metadata – collects and stores the data about data
stored in big data.

[4]

• Big Graphs – Graphs include connections between
objects, their semantic discovery, and the degree of
separation, linguistic analytics, and subject predicates.

III. MAPREDUCE

MapReduce is a an emerging programming paradigm which
is designed for processing extremely large volumes of data
in parallel mode by splitting the job into various
independent tasks.[3]

Map()
 A MapReduce program in general is a

combination of a function and a Reduce() function.
The job of Map() is to perform filtering and sorting
operations as such, sorting customers by first name into
queues, by generating one queue for each name and the
 Reduce() performs a summary/aggregate operations like
counting the number of customers in each queue, thereby
yielding the name counts. [3]

fault
tolerance

The "MapReduce System" well
known as MapReduce "framework" or “architecture”
demonstrates the processing with the distributed servers,
running the various tasks in parallel, managing all
communications and data transfers between the various parts
of the system, and providing for redundant data and

.
MapReduce is a framework for processing voluminous data
splitted and distributed across huge datasets using a large
number of computers (nodes). The group of nodes
collectively treated as a

[3]

cluster, if all nodes are with similar
hardware configurations working on the same local network
or else the nodes are treated as a grid, if they are
geographically shared and distributed with varying hardware
specifications. Processing may occur on the data that is
stored either in system log files (unstructured) or in
a database (structured). MapReduce takes advantage of
locality of data, to minimise the data transfer distance.

Fig. 2 : Map Reduce workflow

Map Phase: In the map phase, the master node takes the
input, divides it into smaller sub-tasks, and distributes them
to worker nodes. A worker node may do this again
repeatedly, leading to a multi-level tree structure. The
worker node processes the smaller task only, and passes the
intermediated result back to its master node.

a) Input reader: The input reader splits the input file into
appropriate sizes (in practice typically 64 MB to 512 MB
as per HDFS) and one split is assigned to one Map
function by MapReduce framework. The input reader
takes input from stable storage (typically as in our case
Hadoop distributed file system) and generates the output
as key/value pairs.

Reduce Phase: During the reduce phase, the master node
collects all the intermediated outputs of all the sub-tasks
generated by various worker nodes and combines them in
some way to form the final output – the solution to the
problem it was originally trying to solve.

b) Map function: Each Map function takes a series of
key/value pairs generated by the input reader, processes
each, and in turn produces zero or more output key/value
pairs.

[5]

c) Partition function: Each Map function output is
assigned to a particular reducer by the application'
partition function for sharing purposes. The partition
function is given as input the key and the number of
reducers and it return the index of desired reduce.

 The input and output types of the map can be and
often are different from each other.

d) Comparison function: The input for every Reduce is
fetched from the machine where the Map run and sorted
using comparison function.

e) Reduce function: The frame work calls the applications
Reduce function for each unique key in the sorted order.
It also iterates through the values that are associated with
that key and produce zero or more outputs.[6]

f) Output writer: It writes the output of the Reduce
function to stable storage, usually a Hadoop distributed
file system.

Performance:

MapReduce programs do not produce the output with high
speed. The main benefit of this programming model is to
make use of the optimized shuffle operation of the platform,
and the only task of the programmer is to write
the Map and reduce functions of the program. While
execution, the author of a MapReduce program needs to
shuffle the intermediate results.[8] However, the partition
function and the amount of data generated by
the Map function highly influence the performance of the
program. In addition to the partitioner,
the Combiner function helps to reduce the amount of data
written to storage (disk), and transmitted over the network.

https://en.wikipedia.org/wiki/Map_(parallel_pattern)�
https://en.wikipedia.org/wiki/Fault-tolerant_computer_system�
https://en.wikipedia.org/wiki/Fault-tolerant_computer_system�
https://en.wikipedia.org/wiki/Fault-tolerant_computer_system�
https://en.wikipedia.org/wiki/Computer_cluster�
https://en.wikipedia.org/wiki/Grid_Computing�
https://en.wikipedia.org/wiki/Filesystem�
https://en.wikipedia.org/wiki/Database�

Ch. Shobha Rani et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,853-856

© 2015-19, IJARCS All Rights Reserved 855

IV HADOOP

Apache Hadoop[1] open-source which is an software
in Java is used majorly for distributed storage and
processing of extremely large data sets on computer clusters.
Apache Hadoop mainly coupled with a storage part (Hadoop
Distributed File System (HDFS)) and a processing part
(MapReduce). Splitting up of files into large blocks and
distributing them on the nodes in the cluster is take care by
Hadoop only. It is not the job of the programmer to do the
distribution over the cluster, Hadoop itself looks into it. In
Hadoop the data processing is done with MapReduce, by
transferring the program code to the nodes in parallel based
on the data requirements of each node i.e, the process code
travels to the node.[7]
The Hadoop framework is encapsulated with the following
modules:
• Hadoop Common

[1]

• Hadoop Distributed File System (HDFS
• Hadoop MapReduce.

Fig.3 HDFS architecture

V MAPREDUCE IMPLEMENTATION

While designing the MapReduce programs the user may not
specify the mappers since it depends on the file size and the
block size, where as the number of reducers can be
configured by user based on number of mappers. In general
the Partitioner decides to choose reducers or else Hadoop
takes over the job. With the help of the combiner the
network traffic will be highly reduced.
If map() is not defined by the user then the output of Record
reader is sent to identity mapper(without any logic) then to
reduce without any reducer defined in the program then the
output of the identity reducer is stored in the data node itself
and is not sent to HDFS.
When multiple mappers are running there may be a situation
where some mappers may be running very slow, Hadoop
then identifies such slow running jobs and triggers the same
job to other data node, this concept is called as Speculator
execution in Hadoop.

Fig .4. MapReduce Program execution sequence

If we consider a sample input file consisting the text as :
hello hadoop bye hadoop
hello google goodbye google
The internal execution process will be as follows:

INPUT SPLITTING MAPPING OUTPUT REDUCE
SHUF
FLE /
SORT

https://en.wikipedia.org/wiki/Open_source�
https://en.wikipedia.org/wiki/Software_framework�
https://en.wikipedia.org/wiki/Software_framework�
https://en.wikipedia.org/wiki/Software_framework�
https://en.wikipedia.org/wiki/Java_(programming_language)�
https://en.wikipedia.org/wiki/Clustered_file_system�
https://en.wikipedia.org/wiki/Distributed_processing�
https://en.wikipedia.org/wiki/Distributed_processing�
https://en.wikipedia.org/wiki/Distributed_processing�
https://en.wikipedia.org/wiki/Computer_cluster�
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS�
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS�
https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS�
https://en.wikipedia.org/wiki/MapReduce�

Ch. Shobha Rani et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,853-856

© 2015-19, IJARCS All Rights Reserved 856

VII CONCLUSION

With the invent of new technologies emerging at a rapid
rate, one must be very careful to understand the global
competition and the big data analysis that support decision
making. This paper analyzes the concept of big data analysis
and how it can be simplified as from existing traditional
relational database technologies. This paper clearly specifies
the Hadoop environment, its architecture and how it can be
implemented using MapReduce along with various
functions. As Big Data Analysis is still in its infancy stage
we are sure that this paper helps the researchers to better
understand the concepts of Big Data its processing and
analysis. Big Data will definitely bring a major social
change. Though programming languages like R, SPSS are
evolving for Big Data analytics further research is still
required to ensure integrity, security for the large data sets
being processed. Big Data Analytics should be exploited for
sustainable and unbiased society.

REFERENCES

[1] http://hadoop.apache.org,2010
[2] V. Patil, V.B. Nikam, “Study of Mining Algorithm in cloud

computing using MapReduce Framework”, Journal of
Engineering, Computers & Applied Sciences (JEC&AS)
Vol.2, No.7, July 2013.

[3] https://en.wikipedia.org/wiki/MapReduce
[4] D. Usha, A.P.S. AslinJenil, “ A Survey of Big Data

Processing in Perspective of Hadoop and Mapreduce”,
International Journal of Current Engineering and Technology,
Vol.4, No.2,April 2014.

[5] S. Ghemawat et al .“The Google File System.” ACM SIGOPS
Operating Systems Review, 37(5):29–43, 2003.

[6] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of OSDI’04:
Sixth Symposium on Operating System Design and
Implementation, December 2004.

[7] T. White. Hadoop: “The Definitive Guide.”,Yahoo
Press,2010.

[8] Russom,P “Big Data Analytics”, TDWI Best Practices Report,
pp.1-40, 2011.

http://hadoop.apache.org,2010/�
https://en.wikipedia.org/wiki/MapReduce�

	Performance:
	MapReduce programs do not produce the output with high speed. The main benefit of this programming model is to make use of the optimized shuffle operation of the platform, and the only task of the programmer is to write the Map and reduce functions of...
	Fig .4. MapReduce Program execution sequence
	If we consider a sample input file consisting the text as :
	hello hadoop bye hadoop
	hello google goodbye google
	The internal execution process will be as follows:

