
��������	�
����	�������������

��������������������������������������������� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������

© 2010, IJARCS All Rights Reserved   509 

Analyzing Software Evolution Using the MOOD Metric Set  

 

Kuljit Kaur* and Hardeep Singh 
Deptt. Of Computer Science and Engineering,  

Guru Nanak Dev University, Amritsar 

India 

kuljitchahal@yahoo.com

 

Abstract: A reusable component once developed can be used several times in different applications. It is tested before every use and this 

repeated testing removes defects, and increases (re)user’s confidence in the quality of the software component. For a reusable component, 

quality of the component is expected to improve as it matures. However, it is also believed that the quality of a program degrades if it is not 

managed in successive version releases. In this research, an attempt has been made to identify metrics trends in successive evolutions of a 

reusable component in order to understand the trends in its design quality. Metrics defined in the MOOD metric set have been used to measure 

system level properties of the software component. 

 

Keywords: Component Based Software Engineering, Software Components, Software Metrics, MOOD Metrics, Software Evolution  

 

I. INTRODUCTION  

In component based software development, selection of 
suitable components at the proper time is a prerequisite to 
achieve objectives of improved product quality within time 
and budget constraints. Component evaluation is a critical 
activity in the component selection process.  A component 
has to be evaluated technically (functionality and quality) as 
well as non-technically (cost, and vendor support etc.) [1]. 
Several component quality attributes such as reusability, and 
maintainability depend upon the structural properties of its 
design [2]. One method of component evaluation is to 
evaluate its design for various concepts such as complexity, 
coupling, and cohesion using software metrics. 

Software component level metrics fall into two 
categories: component interface related metrics, and 
component structure related metrics. Metrics in the former 
category are collected from information available in 
component interfaces and are applicable to black box 
components [3]). In the latter category, metrics are collected 
from internal structure (design or code) of a component [4-6] 
and are applicable to white box components only.  

Researchers define metrics for internal structure in light 
of the guidelines prescribed for designing reusable 
components.  Poulin et al. discusses several internal 
properties of the structure of a program that make it reusable 
[7]. Modern technologies such as object oriented software 
development concentrate on building reusable artifacts from 
the early stages of life cycle rather than at later stages [8]). 
Object oriented programming provides features to build 
generic software components which can be reused in 
multiple applications with little or no modification [9]. The 
application of object-oriented design-principles like 
modularity, abstraction, and de-coupling ("good design") 
lead to better maintainability and reusability. However, the 
object-oriented paradigm alone does not guarantee good 
design. Developers have to understand design principles and 
to check whether those have been obeyed.  

This paper analyzes a reusable software component with 
the help of the system level metrics, popularly known as the 
MOOD metric set,  proposed by Abreu et al. [10] Next 

Section discusses the object oriented concepts and the related 
metrics from the MOOD metric set. Third section of the 
paper gives details about the data collection. Fourth section 
provides the metrics analysis. Fifth section concludes the 
paper.  

II. OBJECT ORIENTED CONCEPTS AND METRICS 

This section gives an account of the metrics to measure 
the structural properties of an object oriented software 
component. Metrics are categorized according to the 
elements of the object oriented paradigm they measure.  

A. Inheritance  

Inheritance is the relationship between two or more 
classes in which definition of a new class is based on the 
definition of existing classes. The existing class is called the 
super/parent/base class and the newly defined class is called 
the subclass/child/derived class. A subclass inherits features 
from its super class and adds new features to refine the 
definition of the super class. Inheritance represents ‘is a kind 
of’ relationship so an instance of a sub class is also an 
instance of its super class. A subclass can also respond to all 
the operations to which its super class can respond. Method 
Inheritance factor (MIF) and Attribute Inheritance Factor 
(AIF) are the system level metrics that measure the usage of 
inheritance mechanism [10].  

B. Polymorphism  

Polymorphism is the ability of a message to take many 
forms depending upon the message sender. The operation to 
be called to answer the message may be decided at compile-
time or at run-time. So polymorphism can be static (compile 
time) or dynamic (run time). Also polymorphism can be 
adhoc or universal.  If different classes (may not be from the 
same hierarchy) use just the same name for a similar kind of 
operation it is called adhoc polymorphism. However, if 
classes in the same hierarchy implement the same operation 
in different ways, it is known as universal polymorphism. 
Implementation of an operation may vary along the hierarchy 
of classes. At the system level, the Polymorphism Factor 



Kuljit Kaur et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,509-512 

© 2010, IJARCS All Rights Reserved   510 

(PF) metric from the MOOD metric set [10] measures the 
polymorphic behaviour of classes taken together.  

C. Information Hiding   

In object oriented paradigm, encapsulation means 
grouping data structures with the methods that manipulate 
them. It is advised that parts of a complex system should not 
depend on the internal details of one another [11]. Clients 
should access the services of the class through message 
passing. There is no need to know internal details/ 
implementation of the class elements. Parnas introduced the 
idea of information hiding [12]. Encapsulation and 
information hiding both lead to a stable software design as 
changes are localized and changes to a class (if it does not 
affect its behaviour) do not affect clients of the class. 
Software becomes flexible and can accommodate changes 
easily.  Method Hiding Factor (MHF) and Attribute Hiding 
Factor (AHF) measure the degree of information hiding in a 
system [10].   

D. Coupling  

In any system, components of the system cannot exist in 
isolation. They have to depend upon one another in order to 
support the behaviour of the system. Coupling refers to the 
inter-dependencies in components of the system.  Classes 
depend upon one another to provide functionality of the 
system. Two classes are said to be tightly (loosely) coupled if 
they depend highly (lowly) upon details of each other. A 
Loosely coupled class is easy to understand, and change 
because understanding such a class does not require 
understanding many other related classes and changing such 
a class does not have any impact on many other classes. It is 
also easy to reuse such a class. So loose coupling between 
classes improves maintainability and reusability of the 
system. In an object oriented design, coupling metrics 
measure the interdependencies of different classes. A design 
with a large number of inter class dependencies (coupling) is 
weak and fragile. CF metric measures coupling between 
classes at system level [10]. 

III. DATA COLLECTION 

The metric data is collected from an open source 
reusable component, JFreeChart, available in the repository 
of open source software at www.sourceforge.net/jfreechart. It 
is a JAVA based software for creating different types of 
charts/graph. The software component JFreeChart is 
downloaded from its home page. All the versions of the 
component starting from the first one released in November, 
2000 are available at this link. In this research only 43 
versions starting from JFreeChart 0.5.6 to JFreeChart 1.0.11 
are considered.  

Borland Together is a product of Borland Software 

Corporation. Borland Together can be used for modeling 

new applications as well as for extracting design information 

from the existing ones. It also facilitates quality assurance by 

providing metrics and audits at model and code level to 

analyze and assess an application’s quality. In addition to 

this, Together provides many more features (for details see 

http://techpubs.borland.com/together/2008R2/EN/Together.p

df). 

Together includes a variety of metrics to analyze an 

application at different levels: system, package, and class 

level. Here only system level metrics are collected using the 

Borland Together tool.  

IV. METRICS ANALYSIS 

System level metrics are the metrics which measure the 
properties of a system at the highest level of abstraction. In 
this category, this study includes metrics from the MOOD 
metric set [10]. This set has metrics to measure the basic 
properties of an object oriented design such as encapsulation, 
inheritance, polymorphism, and coupling.  It is believed that 
these mechanisms, if incorporated in the design of a software 
product, help to make it easy to reuse and maintain [13]. But 
use of these features in a design depends upon the abilities of 
its designer. It is important to correlate improvements in 
software quality with the use of these mechanisms.  

System level metrics for different versions of the 
software component were collected. Trends in the metric 
values are discussed next: 

A. Method Hiding Factor (MHF) and Attribute 

Hiding Factor (AHF)  

MHF and AHF represent average amount of class 
members (attributes or methods) hidden from other classes in 
a system.  If all members of all the classes are hidden, then 
MHF and AHF both are 100% for the system. But this could 
not be possible practically. A class cannot exist in isolation in 
a system. It has to communicate with other classes to support 
the functionality of the system. It has to declare some of its 
methods as public. Therefore AHF may attain value 100% 
(and it is ideal too), but MHF should not. Number of visible 
methods of a class indicates its functionality. Larger is the 
value, more will be the functionality. High values of MHF 
indicate very less functionality. On the other hand, if all 
members of all the classes are public, then AHF and MHF 
both are 0% for the system. This is also an alarming 
situation. A large number of public members of classes 
increase the probability of errors in a system.  

An acceptable range of 8% to 25% is suggested for 
MHF

1. In another study of MOOD metrics on 9 commercial 
projects, MHF takes values in this range [14].  

 

 
 

Figure.1: Method Hiding Factor (MHF) Metric Trend 
 

It could be observed from Figure 4.4, that the method 
hiding factor (MHF) metric remains within the prescribed 
limits for all the releases of the software component. MHF 
values in the lower range may be due to the fact that a proper 
top down decomposition process has not been followed for 
implementing abstractions in the system. On the other hand 
in Figure 2, attribute hiding factor (AHF) was initially low 
but it has improved over time. AHF is close to the optimal 
value. So MHF and AHF both show positive trends for this 

                                                            

 



Kuljit Kaur et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,509-512 

© 2010, IJARCS All Rights Reserved   511 

software component. It can be said that the design of the 
software component adheres to the concept of information 
hiding. 

 

 
 

Figure.2: Attribute Hiding Factor (AHF) Metric Trend 
 

B. Method Inheritance Factor (MIF) and Attribute 

Inheritance factor (AIF) 

MIF and AIF measure the extent to which individual 
classes of a system inherit properties from their respective 
base classes. MIF (AIF) is the ratio of the sum of inherited 
methods (attributes) in all classes of a system to the total 
number of available methods (attributes) in all the classes. 
Systems in which classes inherit a large number of properties 
have large values of MIF/AIF. 

 

 
 

Figure.3: Attribute Inheritance Factor and Method Inheritance Factor 
Metrics Trends 

 

All the releases show sufficient amount of inheritance. 
In Figure 3, MIF takes values in the range 80% to 95%, and 
AIF varies from 37% to 75%. These high values indicate 
satisfactory use of method inheritance. However in recent 
versions, there is a significant reduction in values of AIF with 
a very sharp decline from version JFreeChart 0.9.20 to 
JFreeChart 0.9.21. It may be due to increase in average class 
size as well as the number of classes of the software 
component over the period of time. As the denominator in 
case of AIF (MIF) metric is the sum of attributes (methods) 
of all classes in a system, increase in the value of the 
denominator may have resulted in decreasing trend for the 
metric values.  

C. Polymorphism Factor (PF) 

Polymorphism means having the ability to take several 
forms. For object-oriented systems, polymorphism allows the 
implementation of a given operation to be dependent on the 
object that contains the operation. An operation can be 
implemented in different ways in different classes. Classes 

with polymorphic operations are easier to extend and modify. 
The polymorphism factor (PF) metric is defined as the ratio 
of the actual number of different polymorphic situations to 
the maximum number of possible distinct polymorphic 
situations for all classes in a system.  

In successive versions of this software component, PF 
takes values from 4% to 10%. Decreasing values of PF show 
less use of dynamic binding. Figure 3 shows that MIF is very 
high, i.e. there is considerable use of method inheritance. But 
decreasing values of PF in Figure 4 indicate that inherited 
methods are not extensively redefined in the subclasses. It is 
not desirable to redefine a large number of inherited methods 
as it indicates that hierarchy is created out of convenience 
rather than a natural one. Moreover the exact behaviour of a 
program in this regard can be studied with the help of 
dynamic metrics [15].  

D. Coupling Factor (CF) 

Two or more classes are said to be coupled if they 
exchange messages or have other kind of relationships such 
as inheritance, aggregation, or association. More couplings in 
classes means that classes are more inter-dependent, difficult 
to understand and therefore harder to change and repair. 
Coupling factor is the ratio of actual number of couplings to 
the maximum possible pair wise couplings in a system. It 
does not include inheritance based class relationships.  

 

 
 

Figure.4:  Polymorphism Factor (PF) Metric Trend 

 
Metric value for the successive releases has decreased 

gradually except one peak that too in the second release only 
(Figure 5). CF took value 2 in JFreeChart version 0.9.4 and 
remained at that level for long time. After version JFreeChart 
0.9.16, value of the metric CF is further reduced to 1 and has 
remained there till JFreeChart 1.0.11. Low values of CF 
indicate that classes communicate less with other classes 
which are not in the same  

 
 

Figure.5: Coupling Factor (CF) Metric Trend 



Kuljit Kaur et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,509-512 

© 2010, IJARCS All Rights Reserved   512 

Inheritance hierarchy (as CF does not include inheritance 
based coupling). Excessive coupling between classes across 
the inheritance hierarchies does not indicate a good design as 
it is difficult to understand and modify for future extensions.  

V. CONCLUSIONS 

Metrics defined in the MOOD metric set have been 

used to measure system level properties of the software 

component. MHF and AHF measure the extent to which 

classes hide their information from other classes in the 

system. CF measures the degree of interclass coupling in the 

system. MIF and AIF measure the usage of inheritance 

mechanisms. PF measures the ability of the classes to 

behave in polymorphic ways. System level metrics attribute 

hiding factor (AHF) and method hiding factor (MHF) show 

that the software component incorporates the concept of 

information hiding. As the component evolves, AHF almost 

achieves its ideal value i.e. 100%. MHF is high for the 

initial releases and as the functionality increases MHF 

decreases in successive versions. Attribute inheritance factor 

(AIF) and method inheritance factor (MIF) also show 

significant use of inheritance. Polymorphism factor (PF) 

also follows a downward trend across the releases which 

shows a controlled overriding of the inherited features. The 

metric coupling factor (CF), for measuring coupling 

between classes, also shows a decreasing trend.  

VI. REFERENCES 

[1] Brereton, P. and Budgen, D. (2000). Component-Based 
Systems: A Classification of Issues, IEEE Computer 
33(11): 54-62.  

[2] Cai et al., 2000 Cai, X., Lyu, M. R., Wong, K. and Ko, 
R. (2000). Component-Based Software Engineering: 
Technologies, Development Frameworks, and Quality 
Assurance Schemes. Proceedings of Seventh Asia-
Pacific Software Engineering Conference (APSEC'00). 
pp 372. Singapore. 

[3] Washizaki, H., Hirokazu, Y. and Yoshiaki, F. (2003). A 
Metrics Suite for Measuring Reusability of Software 
Components. Proceedings of the 9th International 
Symposium on Software Metrics. pp: 211-223. Sydney, 
Australia. 

[4] Gui and Scott, 2009 Gui, G. and Scott, P. (2009). 
Measuring Software Component Reusability by 

Coupling and Cohesion Metrics. Journal of Computers 
4(9): 797-805. Academy Publishers. 

[5] Choi, M., Lee, J. and Ha, J. (2006). A Component 
Cohesion Metric Applying the Properties of Linear 
Increment by Dynamic Dependency Relationships 
Between Classes. In Gavrilova, M. et al. (Eds.): 
International Conference on Computational Science and 
Applications (ICCSA 2006). Lecture Notes in Computer 
Science 3981. pp 49 – 58. Springer-Verlag Berlin 
Heidelberg. 

[6] Wu et al., 2007 Wu, F. and Yi, T. (2007). A Structural 
Complexity Metric for Software Components. 
Proceedings of the 1st International Symposium on Data, 
Privacy, and E-Commerce (ISDPE 2007). pp161-163. 
Chengdu, China. IEEE Computer Society Press.  

[7] Poulin, 1994 Poulin, J. (1994). Measuring Software 
Reusability. Proceedings of 3rd International Conference 
on Software Reuse. pp. 126-138. Rio de Janeiro, Brazil. 

[8] Fauzi et al., 2004 Fauzi, A. and Du, W. (2004). Towards 
Reuse of Object-Oriented Software Design Models, 
Information and Software Technology 46:499–517. 

[9] Sametinger, 1997 Sametinger, J.  (1997). Software 
Engineering with Reusable Components, Springer, -
Verlag New York, Inc., USA.  

[10] Abreu et al. Abreu, F.B. and Melo, W.(1996). 
Evaluating the Impact of Object Oriented Design on 
Software Quality. Proceedings of the 3rd International 
Symposium on Software Metrics (Metrics’96), pp 90-
99, Berlin, Germany. 

[11] Ingalls, 1981 Ingalls, D. (1981). Design Principles 
behind Smalltalk, BYTE Magazine, August 1981. 

[12] Parnas (1972 Parnas, D. (1972). On the Criteria to be 
Used in Decomposing Systems into Modules. 
Communications of the ACM 15(12): 1053-1058. 

[13] Rumbaugh et al., 2002 Rumbaugh, J., Blaha, M, 
Premerlani, W., Eddy, F. and Lorensen, W. (2002). 
Object Oriented Modeling and Design. Pearson 
Education, Prentice Hall, India. 

[14] Harrison et al., 1998a Harrison, R., Counsell, S.J. and 
Reuben,V.N. (1998). An evaluation of the MOOD set 
of object-oriented software metrics, IEEE Transactions 
on Software Engineering 24(6): 491–496. 

[15] Yacoub, S.M., Ammar, H.H. and Robinson, T. (1999). 
Dynamic metrics for object oriented designs. 
Proceedings of Sixth International Symposium on 
Software Metrics, USA. IEEE Computer society. pp 50-
61. Boca Raton, USA. 

 

 

 

 

 

 

 

 

 

 

 

   


