
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 591

ISSN No. 0976-5697

Dynamic Software Metric Estimation (DSME): Tool using ArgoUML

P.L. Powar
Department of Mathematics and Computer Science

 R. D. University, Jabalpur, India

 Samar Upadhyay
Department of Computer Application

JEC, Jabalpur, India

 M.P. Singh
Department of Computer Science

 Dr. B. R. Ambedkar University, Agra, India

 Bharat Solanki

Department of Mathematics and Computer Science
R. D. University, Jabalpur, India

Abstract: Software c ost e stimation h ad been a ch allenge f or t he r esearchers. Due t o v arious technologies an d f urther r esearches i n s oftware
development, the field of cost estimation gained an enormous scope for studies. Moreover, the growth of internet based technology and distribution
made this problem qui te popular. Component based software development s trategies have been found to be advantages for software development
companies. Cost estimation using static metric has been found to be helpful in pre decisions whereas dynamic metrics are helping for estimating cost
of m aintenance, s ystem l oads and suggests the improvement if r equired i n t he technology. The present paper proposes a nd pr ovides a n
implementation of the DSME tool for evaluating the software metrics using dynamic metrics. For estimation of dynamic metrics current focus is on
time sequence diagram processed using ArgoUML software tool.

Keywords: Software Metrics, Static and dynamic Metrics, Component-based software systems.

1. INTRODUCTION

Implementation methodology of software has been changing in
every decade or in few years. The revolutions in software and
hardware engineering and devices have imposed the need for
same. I n l ast f ew years Component B ased S oftware
Engineering (CBSE) has been adapted in the industry. CBSE
is a process that emphasizes t he d esign an d co nstruction o f
computer based systems using reusable software components.
It provides the way of developing very large software systems.
Component b ased s oftware en gineering h as b een w idely
accepted as a n ew an d l atest ap proach t o s oftware
development. Today’s the software systems are very d ifficult,
bulky a nd unm anageable. This c auses i n l esser productivity,
higher risk management and meagre software quality.
Software m etrics m easure d ifferent as pects o f software
complexity an d t herefore p lay a k ey role i n an alyzing an d
improving the q uality of software. Metrics provide important
information on external quality aspects of software such as its
maintainability, reusability a nd r eliability. These m etrics a re
helpful in achieving the quality a nd i n m anaging r isk i n t he
component based s ystem b y ch ecking t he f actors t hat af fect
risk and quality.
In CBSE, component is an independent and replaceable part of
a system that performs a clear function in the context of a well
defined architecture. It results in better productivity, improved
quality, reduction in tim e spent a nd c ost to d evelop. M etrics
used in component based software engineering are helpful in
achieving the quality and managing risk in component b ased
system b y ch ecking t he f actors t hat af fect risk and quality.
Metrics help the developer in identifying the probable risks so
that proper corrective action can b e t aken. Various m etrics
have been p roposed t o m easure t he d ifferent at tributes of a

component like f unctionality, in teractivity, c omplexity,
reusability e tc. Figure 1.1 shows t he CB SE M etrics for
Software Component.

Figure 1.1: Software Component Measurement Metrics

The paper i s organized a s f ollows: S ection 1 describes t he
available t echnology an d m ethods i n p rocessing C BSE and
their u tilization. S ection 2 covers the d etails o f th e v arious
metrics used in software engineering especially in component
based s oftware. In or der t o u se m etrics for processing of
CBSE, we have r eferred t he w ork o f Narasimhan,
Parthasarathy, D as [8] an d N arasimhan, H endradjaya [9].
Validation o f metrics using W eyuker Properties have b een
discussed i n se ction 3 . Existing w ork b y va rious r esearchers
have b een d iscussed in S ection 4 . R esearch p roblem of t he
present p aper has b een d iscussed i n S ection 5. Section 6
provides the pr oposed m ethodology. S ection 7 pr ovides
application of DSME tool. The d iscussions on the r esults are

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 592

given in section 8. Conclusion of the work has been discussed
in Section 9.

2. SOFTWARE METRICS

In general metrics ar e f unctions w hich ar e ev aluated t o
generate some measurement or degree by which any software
possesses some p roperty. A s oftware m etric h as g oal i n
obtaining objective, reproducible a nd q uantifiable
measurements, which may be used in quantifiable assessment
of v arious v aluable a pplications in s chedule and b udget
planning, c ost e stimation, s oftware debugging, software
performance o ptimization, q uality as surance t esting, and
optimal personnel task assignments. Recently, many researcher
have used different software metrics and the metrics have been
upgraded and extended in acco rdance w ith t he n eed o f
software u ser. In s oftware en gineering s oftware metrics have
been defined and clustered according to the process, product,
quality specification, s oftware d esign, s oftware ar chitectures,
software complexity, code metrics, testing metrics etc.
By s tatic m etric, o ne m ean t o t he metrics which can be
evaluated b efore s oftware i mplementation an d execution,
whereas the metrics which are evaluated during the execution
of the software are dynamic metrics.
In CBSE various metrics have been proposed using the graph
connectivity as a medium to represent a system of integrated
components.
Metrics m ay p lay an i mportant r ole i n quality assurance,
especially in th e a cquisition o f c omponents and in deciding
whether they should be used or not. Metrics should provide a
basis for deciding whether reuse is sensible, whether it is cost
effective to adapt existing co mponent o r b uild a co mponent
from s cratch. I n s hort, m etric w hich ad dress cost savings on
component b asis ar e n eeded. Metrics can s ee as p art o f t he
topics acquisition and usage.
In t his s ection, w e d escribe s ome s oftware metric which are
quite popular from implementation point of view.
• Object Oriented Metrics: O bject-oriented m easurements

are being used to evaluate and predict the q uality o f
software. A growing body of empirical results supports the
theoretical validity of these metrics. The validation of these
metrics r equires c onvincingly d emonstrating th at (1) the
metric measures what it purports to measure (for example,
a co upling m etric r eally m easures co upling) and (2) the

metric is associated with an important external metric, such
as reliability, maintainability a nd f ault-proneness. O ften
these metrics have been used as an early indicator of these
externally visible a ttributes, b ecause th e e xternally visible
attributes could not be measures until too late in the
software development process.(See Table 2.1)

• Reusability metrics: T he reusability assets are different in
different contexts. However, there are some characteristics
that generally c ontribute to th e r eusability o f a ssets.
Although many of these ch aracteristics ap ply t o as sets i n
general, we focus in this section on components as assets.
(see table 2.2)

• Direct M etrics: We need a s et o f d irect m etrics (i.e.,
metrics computed d irectly f rom t he s ource co de) t o
describe a s ystem i n s imple, ab solute t erms. The metrics
describing t he s ize an d co mplexity ar e p robably s ome of
the simplest and widely used metrics. They count the most
significant modularity u nits o f a n o bject-oriented s ystem,
from the highest level (i.e., packages or namespaces), down
to th e th ere is o ne m etric in th e o verview pyramid that
measures it. The metrics are placed one per l ine in a t op-
down manner. (see Table 2.3)

• Static an d d ynamic m etrics : N arasimhan, P arthasarathy,
Das [8] and Narasimhan, Hendradjaya [9] has defined two
suites of metrics, which cover static and dynamic aspects of
component as sembly. T he s tatic metrics measure
complexity and criticality of component assembly, wherein
complexity is measured using Component Packing Density
and Component I nteraction D ensity m etrics. Further, f our
criticality conditions namely, Link, Bridge, Inheritance and
Size cr iticalities h ave b een i dentified an d q uantified. The
complexity a nd criticality metrics are combined to form a
Triangular Met ric, which can b e used to cl assify the type
and nature o f applications. Dynamic metrics are collected
during th e r untime o f a complete application. Dynamic
metrics are useful to identify super-component and to
evaluate the degree of utilization of various components. In
this p aper b oth s tatic an d d ynamic metrics are evaluated
using Weyuker’s set of properties. (cf. Table 2.4)

Table 2.1 : Object Oriented Metrics
Metric Object

oriented
Feature

Measurement
Method

Concept Interpretation

CC Cyclomatic
complexity

Method Algorithmic test
paths

Complexity Low => decisions deferred through
message passing Low not
necessarily less complex

SIZE Lines of code Method Physical lines ,
statements , and/or
comments

Complexity Should be small

COM Comment
percentage

Method Components
divided by t he

Usability Reusability 20 to 30 %

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 593

total line countless
blank lines

WMC Weighted
methods pe r
class

Class/ method 1)Methods
implemented
within a class
2)Sum of
complexity o f
methods

Complexity U sability
Reusability

Larger => g reater co mplexity an d
decreased understandability ; testing
and debugging more complicated

LCOM Lack o f
cohesion of
methods

Class/
Cohesion

Similarity of
methods w ithin a
class by attributes

Design Reusability High=> go od c lass subdivision
Low=> Increased co mplexity –
subdivide

CBO Coupling
between
Objects

Coupling Distinct n on
inherited related
classes inherited

Design Reusability High=> p oor d esign , d ifficult to
understand , decreased r euse ,
increased maintenance

DIT Depth of
Inheritance
tree

Inheritance Maximum l ength
from class node to
root

Reusability
Understandability
Testability

Higher=> more complex , m ore
reuse

NOC Number of
children

Inheritance Immediate
Subclass

Design Higher=> more reuse ; poor design
increasing testing

Table 2.2 : Reusability Metrics

Metric Definition
Reuse l evel
(RP)

Ratio of t he n umber o f r eused l ines o f
code to the total number of lines of code
Reuse Level (RL) R atio o f t he n umber
of reused ite ms to th e to tal n umber of
items.

Reuse
Frequency(RF)

Ratio of the references to r eused i tems
to the total number of references

Reuse size &
Frequency(RSF
)

Similar t o R euse F requency , but also
considers th e s ize o f ite ms in th e
number of lines of code

Reuse
Ratio(RR)

Similar to R euse p ercent, b ut al so
considers p artially ch anged i tems as
reused .

Reuse Density Ratio of t he n umber of r eused pa rts to
the total number of lines of code

Table2.3 : Direct Metrics

Metric Definition
NOP Number of Packages, i.e., t he number of

highlevel p ackaging m echanisms, e.g.,
packages in Java, namespaces in C++, etc.

NOC Number of Classes, i.e., t he n umber o f
classes defined in t he s ystem, no t c ounting
library classes.

NOM Number o f O perations, 1 i. e., th e total
number of user defined operations within the
system, i ncluding b oth m ethods and global
functions (in p rogramming l anguages that
allow such constructs).

LOC Lines of C ode, i. e., th e lin es o f a ll u ser-
defined operations. In the Overview Pyramid
only t he c ode l ines containing functionality
(i.e., lines of code belonging to methods) are
counted.

CYCLO Cyclomatic Number, i.e., the total number of

possible program paths summed from all the
operations in th e s ystem. I t is the sum of
McCabe‘s Cyclomatic n umber for all
operations.

CALLS Number of Operation C alls, i. e., th is m etric
counts the total number of distinct operation
calls (invocations) in the project, by summing
the number o f o perations cal led b y al l t he
user-defined operations. If an operation fo ()
is called three times by a method f1() it w ill
be counted only o nce. If i t is cal led by
methods f1(), f2() and f3(), three calls will be
counted for this metric.

FANOUT Number o f Ca lled Cl asses, t his is computed
as a sum of the FANOUT metric (i.e., classes
from w hich o perations ca ll methods) f or a ll
user defined operations. This metric provides
raw i nformation about how dispersed
operation calls are in classes.

System
coupling

computed proportions. Again, t he n umbers
above describe the total coupling amount of a
system, but it is difficult to use those numbers
to ch aracterize a s ystem w ith respect to
coupling. We can compute, using the number
of ope rations (NOM), t wo pr oportions t hat
better characterize the coupling of a system.

Coupling
intensity
(CALLS/
Operation)

This pr oportion denotes the l evel o f
collaboration (coupling) b etween th e
operations, i .e., h ow m any other operations
are cal led o n av erage f rom each operation.
Very hi gh va lues s uggest t hat there is
excessive co upling am ong o perations, i .e., a
sign that the calling operation does not.

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 594

Table 2.4 : Dynamic metrics
NAME FORMULAE DESCRIPTION

Number of
Cycle (NC)

NC = # cycles Where, #cycles is the
number of cy cles
within the graph

Average
Number of
Active
Components

#activecomponents i s
the n umber o f act ive
component and T e is
time to ex ecute t he
application (in
seconds)

Active
Component
Density
(ACD)

#activecomponent i s
the n umber o f act ive
components a nd
#component i s t he
number of av ailable
components.

Average
Active
Component
Density

ΣnACDn is the sum of
ACD and T e is tim e
to execute t he
application (in
seconds). E xecution
time can be any of
execution o f a
function, b etween
functions o r
execution o f t he
entire program.

Peak
Number of
Active
Components

AC∆t = max {
AC1,..,ACn}

#ACn is the num ber
of active co mponent
at time n and Δt is the
time interval in
seconds.

3. VALIDATING THE METRICS USING WEYUKER
PROPERTIES

Weyuker has proposed an axiomatic framework for evaluating
complexity m easures [14]. The p roperties a re n ot w ithout
critique a nd these have b een d iscussed in [3] a nd [4] by
Fenton, P fleeger an d H enderson-sellers. T he properties,
however, h ave b een u sed t o v alidate the C-K m etrics b y
Chidamber and Kemerer [2] and, as a co nsequence, w e w ill
employ t he s ame f ramework f or compatibility’s sake. T he
properties are:
Property 1: There are programs P and Q for which M (P) ≠ M
(Q)
Property 2: If c is non-negative number, then there are only
finitely many programs P for which M (P) =c
Property 3: There are distinct programs P and Q for which M
(P) =M (Q)
Property 4: There are functionally equivalent programs P and
Q for which M (P) ≠ M (Q)
Property 5: For any program bodies P and Q, we have M (P)
≤ M (P; Q) and M (Q) ≤ M (P; Q)
Property 6: There exist program bodies P, Q and R such that
M (P) =M (Q) and M (P; R) ≠ M (Q; R)

Property 7: There are program bodies P and Q such that Q is
formed by permuting the order of statements of P and M (P) ≠
M (Q)
Property 8: If P is a renaming of Q, then M (P) = M (Q)
Property 9: There exist program bodies P and Q such that M
(P) +M (Q) < M (P; Q)

4. EXISTING WORK

Recently Pandey and Shareef [10] proposes a UML based tool,
which can derive static metrics for Component-based software
systems. This tool has the ability to extract static metrics for
component assembly and it can be used generally for assessing
the d etails o f a co mponent as sembly diagram. S oftware
developers m ay u se C AME t o ex tract v arious metrics f or
components as which are displayed through snapshots
presented in [10].
Pandey and Shareef [11] proposes an u pgraded U ML-based
“CAME” tool, which can derive structural complexity metrics
from c omponent-based s ystem s pecifications r epresented in
UML. T his u pgraded “ CAME” t ool en ables s oftware
developers and system analysts to extract metrics related to the
interfaces of components at an ear ly s tage o f t he S DLC,
helping th em in id entifying complex c omponents r equiring
more attention. The complexity numbers calculated guide them
as to where they should concentrate their testing efforts,
resulting in a more reliable component-based system. This tool
can b e m odified t o ex tract m etrics f or o ther a rtifacts lik e
composite and use case diagrams.
Ali, et al. [1] describes software behavioral models that derive
from ear ly r equirements specifications s uch as u se-ease
scenarios an d p roperties have p roven u seful i n early analysis
and checking o f the d esign c orrectness o f individual
components or whole system.
Sun [12] present a co al gebraic m odel f or b ehavioral
adaptation in c omponent-based sy stems. D issimulation
equivalence and refinement relationship are used to ensure that
a co mponent can r eplace another one. When t he behavior o f
two co mponents can not b e m atched p erfectly, b ehavioral
adaptation m ight b e n eeded to a llow substitution of
components.
Khalilzad, et al . [5] describes c omplexity in th e r eal-time
embedded software domain has been growing rapidly.
In [5] authors designed an adaptive framework for scheduling
component-based distributed real-time systems.
Khalilzad, e t a l. [6] proposed c omponent-based s oftware
development provides a modular approach to develop complex
software sy stems. I n t his p aper authors focus on pe riodic
interface models.
Mahajan, et a l. [7] developed and pr oved the n ecessity o f
Component-Based Software te sting p rioritization f ramework
which plans t o u ncover m ore ex treme b ugs at an early stage
and t o en hance s oftware p roduct d eliverable q uality u tilizing
Genetic Algorithm (GA) w ith j ava d ecoding t echnique. F or
this, authors propose a s et o f p rioritization k eys to p lan the
proposed Component-Based Software java framework.

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 595

5. RESEARCH PROBLEM

Component B ased S oftware E ngineering is t he w idely us ed
concept in th e s oftware in dustry. M etrics p lay an important
role in determining the various characteristics of a component
to find out which components are reusable and what particular
function they will perform. Metrics help in providing the data
to the system and improve the quality of system. Metrics are
also helpful in managing risk in the component based system.
To find out the solutions of the problems in existing system in
various areas of software is quite popular field of research for
the co mputer ex perts. CBSE i s o ne o f t he ar eas of software
development w hich h ad b een i ntroduced q uite ear lier and it
becomes the essential requirement for the software industry in
view of en ormous co mputerization i n ev ery s ector. Today,
when no field is untouched f rom s oftware us es, C BSE i s
creating revolution in the software industry. Use of CBSE has
explicit advantages along with some challenges. Software
requires to be evaluated before the development to avoid the
wastage o f r esources i f s oftware f ails an d also requires
evaluation d uring th eir lif e to manage the software
maintenance cost and match the technology available.
Different software evaluation strategies h ave b een ev aluated
with software metric m easurement an d ef fort es timation
models have been introduced [8][9].
In this paper, a s tudy has been made on how dynamic metrics
are used in component based development that concentrates on
the factors lik e c omplexity, s ize, r eliability, r eusability,
understandability, maintainability e tc. The software metrics in
use have been categorized in static and dynamic as described
in section 2. Evaluation of the software has been done by using
dynamic m etrics and it can be v isualized b efore s oftware
development using sequence diagram in UML. Such mapping
and testing of the metric values is a major challenge which has
been taken into consideration in this work.
DSME tool developed in this paper has been implemented on
the E-learning system.

6. PROPOSED METHODOLOGY

The proposed methodology is given as following:

• Step1: Design the time sequence diagram of any proposed

software using Argo UML tool according to requirements
of clients.

• Step 2: Create XMI file of g iven t ime sequence d iagram
with the help of option Export XMI given in Argo UML.
This XMI f ile c ontains all th e in formation o f tim e
sequence diagram like unique xmi.id, call action, return
action, association role etc.

• Step 3: Using Java based software and Netbeans tool the
XMI files is then parsed for extracting information related
to various dynamic metrics such a s Number o f cy cles
(NC) and utilization of components in CBSE.

For Calculating N C a nd u tilization o f c omponents in CBSE,
the following algorithms have been used:

Algorithm EvaluateCycles()
Begin

Implement Time Sequence Diagram for the case study
Use ArgoUML Tool to Generate the XMI file
Use J ava t o P rocess t he X MI f ile and create a list of
Components and their associations
CL:=Blank List of Cycles

For Each Component in List

C:=Component;
B:=Search C in CL

If B=False Then

Temp:=C;
Flag:=False;
TempCycle:= BlankList of Cyle
TempCycle:=Temp;

 For Each Component+1 in List
C1:= NextComponent;
If Temp != C1 Then

Temp:=C1;
TempCycle:=TempCycle+Temp;

End if;
 If C == Temp Then
 Flag:=True;

 Break;
End if;

End

If Flag=True then

Add TempCycle in CL
End If;

End;

Return CL

End;

Algorithm EvaluateUtilization()
Begin

CL:= EvaluateCycles();
For Each Component in List
Begin

C:= Component Name
CC:=0;
For Each Component in Cycles
Begin

If C = Component then
CC:=CC+1;

End if
End;
Add C & CC in List UL

End;
Return UL

End;

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 596

7. APPLICATION OF DSME TOOL

In this section, w e c onsider th e m odel o f E -learning s ystem
which has been designed with the help of Argo UML tool.
Our aim is to implement the DSME tool on the time sequence
diagram of the five modules of E-learning system. (cf. Fig 7.1
to 7.5).
To facilitate the use of the e xisting s uite o f c omponent
assembly metrics a parser based tool, DSME (Dynamic
software m etric e stimation to ol), d eveloped in J AVA using
Netbeans 7.1.2, is used to analyze UML component assembly
diagrams represented in XMI. This tool extracts existing
dynamic metrics. This tool works o nly w ith X MI f iles th at
contain information lik e x mi.id, c all a ction, r eturn action,
association role etc. UML component d iagrams with only the
elements provided by the ArgoUML tool has been drawn. For
parsing the XMI file, SAX [13] – a Java API for XML to parse
the XMI f ile is used. T he version implemented in the DSME
tool is SAX 2.0.1 as the SAX parser is an easy-to-use forward

parser. The flow o f process of how the DSME tool works is
depicted in Figure-7.6.
The component-based metrics implemented in the DSME tool
are: NC, utilization of component, all defined by Narasimhan,
et al. [8] (see also [9]). Table-2.4 shows some of the dynamic
metrics c urrently obtained by u sing DSME t ool, de rived
through X MI f ile. The co ding o f X MI p arser f or ev aluating
NC and Utilization of components is shown in Figure-7.7, and
Figure 7.8. The XMI representation of UML component
diagrams is illustrated in Figure 7.9.
Figure-7.1 shows a s imple co mponent as sembly diagram i.e.
Time sequence d iagram cr eated w ith the he lp o f ArgoUML
0.34 (UML M odelling t ool). The d iagram co nsists o f
components and a D ependency i ndicator. X MI as signs each
model element a unique xmi.id. This also defines a namespace
for each element in the model. These unique IDs allow
elements t o r eference as sociated el ements, as (xmi.idref)
values and al so p rovides an acces s m ethod t o t he d ata
structure.

Figure -7.1 Time sequence diagram for course management

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 597

Figure -7.2 Time sequence diagram for login register

Figure -7.3 Time sequence diagram for messaging

Figure -7.4 Time sequence diagram for report generation

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 598

Figure -7.5 Time sequence diagram for study material management

Figure 7.6: Working of DSME Tool for Project E-Learning System

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 599

Figure 7.7 : Java implementation function for calculating show NC

Figure 7.8 : Java implementation function for calculating show utilization of component

public void showNC() {

String loopStart = "";
String from = "";
String loop = "";
for (int i = 0; i < GlobalLists.lstMessages.size(); i++) {

GlobalLists.lstMessages.get(i).setIsUsed(false);
}
for (int i = 0; i < GlobalLists.lstMessages.size(); i++) {

Message msg = GlobalLists.lstMessages.get(i);
if (msg != null && msg.getSenderId() != null && !msg.getSenderId().equals("")) {

from = getClassifierRole(msg.getSenderId());
String to = getClassifierRole(msg.getReceiverId());
if (loopStart.equals("")) {

loopStart = from;
loop = msg.getName() + "::" + from + "=>" + to + ",";

}
else {

if (to.equals(loopStart)) {
loop += from + "=>" + to + ",";
GlobalLists.lstLoopDetails.add(loop);
loop = "";
from = "";
to = "";
loopStart = "";

}
else {

loop += from + "=>" + to + ",";
}

void showUtilization() {
for(int i=0;i<GlobalLists.lstClassifierRoles.size();i++) {

ClassifierRole cr = GlobalLists.lstClassifierRoles.get(i);
if(cr!=null && !cr.getName().equals("")) {

int uc = 0;
for(int j=0;j<GlobalLists.lstLoopDetails.size();j++) {

String loop = GlobalLists.lstLoopDetails.get(j);
if(loop.indexOf(cr.getName())>=0) { uc++; }

}
lmUtilization.addElement(cr.getName()+" :: "+ uc);

}
}

}

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 600

<UML:Model xmi.id = '-64--88--23-1--64f815cc:155b4aebd88:-8000:0000000000000865'
 name = 'SDForLogin' isSpecification = 'false' isRoot = 'false' isLeaf = 'false'
 isAbstract = 'false'>
 <UML:Namespace.ownedElement>
 <UML:Collaboration xmi.id = '-64--88--23-1--64f815cc:155b4aebd88:-8000:000000000000087C'
 name = 'LoginRegistration' isSpecification = 'false' isRoot = 'false' isLeaf = 'false'
 isAbstract = 'false'>
 <UML:Namespace.ownedElement>
 <UML:ClassifierRole xmi.id = '-64--88--23-1--64f815cc:155b4aebd88:-8000:0000000000000880'
 isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false'>
 <UML:ClassifierRole.multiplicity>
 <UML:Multiplicity xmi.id = '-64--88--23-1--64f815cc:155b4aebd88:-8000:0000000000000882'>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange xmi.id = '-64--88--23-1--64f815cc:155b4aebd88:-000:0000000000000881'

Figure-7.9: XMI representation of a component dependency diagram

8. RESULT AND DISCUSSION

Results o btained f or NC and u tilization o f c omponents h as
been d epicted i n s creen s hots Figure 8.1 t o F igure 8.4 for
module co urse m anagement displayed in F igure 7 .1. Their
significance in evaluating the software is as follows:
Number of Cycle: The NC is num ber o f c ycles within an
integrated component in a graph representation
 NC = #cycles

Where # cycles i s t he n umber o f cy cles or l oops within th e
graph.
When an ap plication i s ex ecuted, co mponents cal l o ther
components through the provided interfaces. Components with
similar purposes create a cycle within the component’s graph
representation. M ore cy cles t ypically i ndicate m ore special
purposes within a component assembly.
Identifying cy cles cr eates cl ustering i n t he w hole component
assembly. Each cluster might indicate a super component, i.e.,
a component that consists of other components.

Figure 8.1: GUI for displaying information of component assembly using DSME tool

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 601

Figure 8.2: GUI for displaying information of course management

Figure 8.3: GUI for displaying information calculate NC for course management

Figure 8.4: GUI for displaying information show utilization for course management

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

© 2015-19, IJARCS All Rights Reserved 602

Component Utilization: It is the count of components used in
a module in different cycles. This shows the importance of the
component in any module. Utilization of the component in all
modules must also be considered for more accuracy.
The f ollowing ta ble s hows th e N C a nd utilization of
components of for all module course management of E-
learning system:

Module NC (No. of

cycles)
utilization of component

course
management

3 user : 3
course management : 3
key authentication : 2
authorization system : 2

 Login
Register

2 user : 2
client computer : 2
server computer : 2
 key authentication : 2
authorization system : 2

Messaging 1 user : 1
messaging : 1
key authentication : 1
authorization : 1
Encryption & Decryption : 1

Report
generation

1 user : 1
messaging : 2
key authentication : 1
authorization : 1
Encryption & Decryption : 1
Study material management :1

Study
material

management

1 User :1
Study material mgmt : 1
key authentication : 1
authorization : 1
course mgmt : 1

9. CONCLUSION AND FUTURE WORK

The evaluation of number of component cycles in DSME tool
helps in deciding the super components, which in turn can be
used in decision of ef fort r equired, r educing t he o verall co st
and reducing the co mplexity o f t he s oftware s ystem in e arly
stage i .e. a t d esigning s tage. S imilarly u tilization of
components i n a m odule helps in deciding m ost u sable
components in the system and h ence i mportance o f t he
components d uring th e im plementation o f s oftware s ystem.
Overall, both of t he ev aluated co mponent m etrics i n ear ly
stage o f s oftware d evelopment can b e u sed i n r educing t he
software cost, reduces t he g lue co de co st, i ntegration
complexity a nd d istinguishing t he c omponents a s per their
importance.
Finally, it may be co ncluded that the N umber o f cycles and
degree of utilization is one of the key component for the cost
estimation of CBSE. Hence, by computing NC and degree of
utilization, basically we would be in a position to p redict the
approximate cost of CBSE.

This to ol may also be m odified t o ex tract o ther d ynamic
metrics f or co mponent-based systems, w hich w ill b e
implemented in a future version.

10. REFERENCES

[1] Ali A., J awawi D. N. A ., Ibrahim A. O . Isa M .A, Deriving

behavioural models of component-based software systems from
requirements s pecifications, Computing, C ontrol, N etworking,
Electronics and Embedded S ystems E ngineering (ICCNEEE),
2015 I nternational C onference on, K hartoum, 2015, pp. 260 -
265. doi: 10.1109/ICCNEEE.2015.7381373

[2] Chidamber S .R., K emerer C .F., A m etrics suite for object-
oriented design, IEEE Transaction on S oftware Engineering 20
(6) (1994), 476–493.

[3] Fenton N .E., P fleeger S .L., S oftware M etrics: A igorous &
Practical Approach, second e d., P WS P ublishing C ompany,
Boston, 1997.

[4] Henderson-Sellers B ., O bject-Oriented M etrics: M easures o f
Complexity, Prentice-Hall PTR, Upper Saddle River, NJ, 1996.

 [5] Khalilzad N., Ashjaei M., Almeida L., Behnam M ., Nolte T.,
Adaptive multi-resource end-to-end reservations for component-
based di stributed r eal-time systems, Embedded S ystems F or
Real-time Multimedia (ESTIMedia), 2 015 1 3th I EEE
Symposium on , Amsterdam, 2015, pp. 1 -10. doi :
10.1109/ESTIMedia.2015.7351772.

[6] Khalilzad N., Behnam M ., Nolte T., O n C omponent-Based
Software D evelopment f or M ultiprocessor R eal-Time
Systems, Embedded and R eal-Time C omputing S ystems a nd
Applications (RTCSA), 2015 I EEE 21s t I nternational
Conference o n, H ong K ong, 2015, pp. 132-140. doi :
10.1109/RTCSA.2015.27.

[7] Mahajan S., Joshi S. D., Khanaa V., Component-Based Software
System Test C ase P rioritization w ith Genetic Algorithm
Decoding Technique Using J ava P latform, Computing
Communication C ontrol a nd Automation (ICCUBEA), 2015
International C onference on , Pune, 2015, pp. 847 -851. doi :
10.1109/ICCUBEA.2015.169.

[8] Narasimhan L .V., P arthasarathy P .T., D as M , Evaluation of a
Suite o f M etrics for Component B ased S oftware E ngineering
(CBSE), issues in I nforming S cience a nd I nformation
Technology Volume 6, 2009.

[9] Narasimhan L .V., Hendradjaya B., Some t heoretical
consideration for a s uite of m etrics f or t he i ntegration of
software c omponents, issues of i nformation S cience a nd
Information Technology, 177 (2007) 844-864.

 [10] Pandey R. K., Shareef J.W., CAME: Component Assembly
Metrics Ex traction u sing U ML, ACM SI GSOFT So ftware
Engineering Notes, July 2013, Volume 38 Number 4, pg. 1-12.

[11] Pandey R . K ., S hareef J .W., Design of a C omponent I nterface
Complexity M easurement Tool for Component-Based Systems,
ACM S IGSOFT S oftware E ngineering N otes, July 2015,
Volume 40 Number 1, pg. 1-12.

[12] Sun M., Towards a C oalgebraic S emantics o f B ehavioral
Adaptation i n C omponent-Based S oftware S ystems, Computer
Science and M echanical Automation (CSMA), 2015
International C onference on, H angzhou, 2015, pp. 41 -44. doi :
10.1109/CSMA.2015.15.

[13] SAX, Retrieved on March 5, 2011 http://sax.sourceforge.net.
[14] Weyuker E .J., E valuating s oftware complexity, IEEE

Transaction on Software Engineering 14 (9) (1988) 1357–1365.

http://sax.sourceforge.net/�

