ISSN No. 0976-5697

Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

Available Online at www.ijarcs.info

Dynamlc Software Metric Estimation (DSME): Tool using ArgoUML

P.L. Powar
Department of Mathematics and Computer Science
R. D. University, Jabalpur, India

M.P. Singh
Department of Computer Science
Dr. B. R. Ambedkar University, Agra, India

Bharat Solanki
Department of Mathematics and Computer Science
R. D. University, Jabalpur, India

Samar Upadhyay
Department of Computer Application
JEC, Jabalpur, India

Abstract: Software c ost e stimation h ad been a ch allenge for t he r esearchers. Due to v arious technologies an d f urther r esearches i n s oftware
development, the field of cost estimation gained an enormous scope for studies. Moreover, the growth of internet based technology and distribution
made this problem quite popular. Component based software development strategies have been found to be advantages for software development
companies. Cost estimation using static metric has been found to be helpful in pre decisions whereas dynamic metrics are helping for estimating cost
of m aintenance, s ystem | oads and suggests the improvement ifr equiredint he technology. The present paper proposes a nd pr ovides a n
implementation of the DSME tool for evaluating the software metrics using dynamic metrics. For estimation of dynamic metrics current focus is on

time sequence diagram processed using ArgoUML software tool.

Keywords: Software Metrics, Static and dynamic Metrics, Component-based software systems.

1. INTRODUCTION

Implementation methodology of software has been changing in
every decade or in few years. The revolutions in software and
hardware engineering and devices have imposed the need for
same.l nl astf ew years ComponentB ased S oftware
Engineering (CBSE) has been adapted in the industry. CBSE
is a process that emphasizes t he d esign an d co nstruction o
computer based systems using reusable software components.
It provides the way of developing very large software systems.
Component b ased s oftware en gineeringh asb een w idely
acceptedas an ewan dl atestap proacht os oftware
development. Today’s the software systems are very difficult,
bulky a nd unm anageable. This c auses in lesser productivity,
higher risk management and meagre software quality.

Software m etrics m easure d ifferent as pectso f software
complexity an d t herefore p lay a k ey role i n an alyzing an d
improving the quality of software. Metrics provide important
information on external quality aspects of software such as its
maintainability, reusability a nd r eliability. These m etrics a re
helpful in achieving the quality and in managing risk in the
component based s ystem b y ch ecking t he factors t hat af fect
risk and quality.

In CBSE, component is an independent and replaceable part of
a system that performs a clear function in the context of a well
defined architecture. It results in better productivity, improved
quality, reduction in time spent and cost to develop. M etrics
used in component based software engineering are helpful in
achieving the quality and managing risk in component b ased
system b y ch ecking t he f actors t hat af fect risk and quality.
Metrics help the developer in identifying the probable risks so
that proper corrective action can b et aken. Various m etrics
have been p roposed t o m easure t he d ifferent at tributes of a

© 2015-19, IJARCS All Rights Reserved

component like f unctionality, in teractivity, c omplexity,
reusability e tc. Figure 1.1 showst he CB SE M etrics for
Software Component.

| Componsnt Quahficztion |

/"“‘-___‘_\‘r

| System Level Metrics | | Compoenent Level Metrics

—— 7 —
Metrics Complexity Cck_lesicr_l md
Suitz Svstzm Matrics f:\crupl_l.ﬂu_g

Complexity LS
Mletrics
Mlstrics Set
Complexity for JAVA
Matrics Componsants

Customizztion || Reuszbility
Iistrics Ilatrics

Figure 1.1: Software Component Measurement Metrics

The paperis organized a s follows: S ection | describes t he
available t echnology an d m ethods i n p rocessing C BSE and
their u tilization. S ection 2 covers the d etails o f th e v arious
metrics used in software engineering especially in component
based s oftware. In or dert ou se m etrics for processing of
CBSE, we haver eferredt hew orko f Narasimhan,
Parthasarathy, D as [8] an d N arasimhan, H endradjaya [9].
Validation o f metrics using W eyuker Properties have b een
discussed in se ction 3 . Existing work by various r esearchers
have b een d iscussed in S ection 4 . R esearch p roblem oft he
present p aper has b een d iscussed i n S ection 5. Section 6
provides the pr oposed m ethodology. S ection 7 pr ovides
application of DSME tool. The discussions on the results are

591

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

given in section 8. Conclusion of the work has been discussed
in Section 9.

2. SOFTWARE METRICS

In general metrics ar e f unctions w hich ar e ev aluated t o
generate some measurement or degree by which any software
possesses some p roperty. A's oftware m etrich as g oali n
obtaining objective, reproduciblea ndq uantifiable
measurements, which may be used in quantifiable assessment
of v arious v aluable a pplications in s chedule and b udget
planning, ¢ oste stimation, s oftware debugging, software
performance o ptimization, q uality as surance t esting, and
optimal personnel task assignments. Recently, many researcher
have used different software metrics and the metrics have been
upgraded and extended inacco rdance w itht hen eedo f
software user. In software en gineering s oftware metrics have
been defined and clustered according to the process, product,
quality specification, s oftware d esign, s oftware ar chitectures,
software complexity, code metrics, testing metrics etc.

By s tatic m etric, 0 ne m eant ot he metrics which can be
evaluated b efore s oftware i mplementation an d execution,
whereas the metrics which are evaluated during the execution
of the software are dynamic metrics.

In CBSE various metrics have been proposed using the graph
connectivity as a medium to represent a system of integrated
components.

Metrics m ay p lay an i mportantr olei n quality assurance,
especially in th e a cquisition o f ¢ omponents and in deciding
whether they should be used or not. Metrics should provide a
basis for deciding whether reuse is sensible, whether it is cost
effective to adapt existing co mponent or build a co mponent
from s cratch. In s hort, metric which ad dress cost savings on
component b asis ar e n eeded. Metrics can see as partofthe
topics acquisition and usage.

In this s ection, w e d escribe s ome s oftware metric which are
quite popular from implementation point of view.

e Object Oriented Metrics: O bject-oriented m easurements
are being used to evaluate and predict the q uality o f
software. A growing body of empirical results supports the
theoretical validity of these metrics. The validation of these
metrics 1 equires ¢ onvincingly d emonstrating th at (1) the
metric measures what it purports to measure (for example,
a co upling m etric r eally m easures co upling) and (2) the

metric is associated with an important external metric, such
as reliability, maintainability a nd f ault-proneness. O ften
these metrics have been used as an early indicator of these
externally visible attributes, b ecause the e xternally visible
attributes could not be measures until too late in the
software development process.(See Table 2.1)

Reusability metrics: T he reusability assets are different in
different contexts. However, there are some characteristics
that generally c ontribute to th er eusability o fa ssets.
Although many of these ch aracteristics ap ply to assets in
general, we focus in this section on components as assets.
(see table 2.2)

Direct M etrics: We need as eto fd irect m etrics (i.e.,
metrics computed d irectly f romt he s ource co de)t o
describe a s ystem in s imple, ab solute t erms. The metrics
describing the size and co mplexity ar e p robably s ome of
the simplest and widely used metrics. They count the most
significant modularity units o f an o bject-oriented s ystem,
from the highest level (i.e., packages or namespaces), down
to th e there is o ne metric in th e o verview pyramid that
measures it. The metrics are placed one per line in a t op-
down manner. (see Table 2.3)

Static an d d ynamic m etrics : N arasimhan, P arthasarathy,
Das [8] and Narasimhan, Hendradjaya [9] has defined two
suites of metrics, which cover static and dynamic aspects of
componentas sembly. T hes tatic metrics measure
complexity and criticality of component assembly, wherein
complexity is measured using Component Packing Density
and Component I nteraction D ensity metrics. Further, four
criticality conditions namely, Link, Bridge, Inheritance and
Size criticalities have b een identified and quantified. The
complexity and criticality metrics are combined to form a
Triangular Metric, which can be used to classify the type
and nature o f applications. Dynamic metrics are collected
during th e r untime o fa complete application. Dynamic
metrics are useful to identify super-component and to
evaluate the degree of utilization of various components. In
this p aper b oth s tatic an d d ynamic metrics are evaluated
using Weyuker’s set of properties. (cf. Table 2.4)

Table 2.1 : Object Oriented Metrics

Metric Object Measurement Concept Interpretation
oriented Method
Feature
CC Cyclomatic Method Algorithmic test Complexity Low => decisions deferred through
complexity paths message passing Low not
necessarily less complex
SIZE Lines of code | Method Physical lines , Complexity Should be small
statements , and/or
comments
COM Comment Method Components Usability Reusability 20 to 30 %
percentage divided byt he

© 2015-19, IJARCS All Rights Reserved

592

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

total line countless
blank lines
WMC Weighted Class/ method | 1)Methods Complexity U sability | Larger => g reater co mplexity an d
methods pe r implemented Reusability decreased understandability ; testing
class within a class and debugging more complicated
2)Sum of
complexity o f
methods
LCOM | Lacko f | Class/ Similarity of | Design Reusability High=>go odc lass subdivision
cohesion of Cohesion methods w ithin a Low=> Increased co mplexity -
methods class by attributes subdivide
CBO Coupling Coupling Distinct n on | Design Reusability High=>p oor d esign, d ifficult to
between inherited related understand , decreasedr euse,
Objects classes inherited increased maintenance
DIT Depth of | Inheritance Maximum 1 ength | Reusability Higher=> more complex, m ore
Inheritance from class node to | Understandability reuse
tree root Testability
NOC Number of Inheritance Immediate Design Higher=> more reuse ; poor design
children Subclass increasing testing
Table 2.2 : Reusability Metrics possible program paths summed from all the
Metric Definition operations in th e s ystem. [tis the sum of
Reuse 1 evel | Ratio of the number o freused lines o f McCabe‘s Cyclomaticn umber for all
(RP) code to the total number of lines of code operations.
Reuse Level (RL) R atio o fthe number CALLS Number of Operation Calls, i. e., this metric
of reused ite ms to the to tal number of counts the total number of distinct operation
items. calls (invocations) in the project, by summing
Reuse Ratio of the references to reused items the number o f o perations cal led by al I t he
Frequency(RF) | to the total number of references user-defined operations. If an operation fo ()
Reuse size & | Similarto R euse F requency, but also is called three times by a method f1() it will
Frequency(RSF | considersth es izeo fite msin th e be counted onlyo nce. Ifit iscal led by
) number of lines of code methods f1(), 2() and f3(), three calls will be
Reuse Similar to R eusep ercent, b utal so counted for this metric.
Ratio(RR) considers p artially ch anged i tems as FANOUT | Number o f Called Classes, this is computed
reused . as a sum of the FANOUT metric (i.e., classes
Reuse Density | Ratio of the number of reused parts to from w hich o perations call methods) for all
the total number of lines of code user defined operations. This metric provides
raw i nformation about how dispersed
Table2.3 : Direct Metrics operation calls are in classes.
Metric Definition System computed proportions. Again, t he n umbers
NOP Number of Packages, i.e.,t he number of coupling above describe the total coupling amount of a
highlevel p ackagingm echanisms, e.g., system, but it is difficult to use those numbers
packages in Java, namespaces in C++, etc. to ch aracterizeas ystem w ith respect to
NOC Number of Classes, i.e.,t hen umbero f coupling. We can compute, using the number
classes defined int he s ystem, no t ¢ ounting of ope rations (NOM), t wo pr oportions t hat
library classes. better characterize the coupling of a system.
NOM Number o fO perations, 1 1i. e., th e total Coupling | This pr oportion denotes thel evelo f
number of user defined operations within the intensity collaboration (coupling) b etweenth e
system, i ncluding b oth m ethods and global (CALLS/ | operations, i.e., h ow many other operations
functions (in p rogramming | anguages that Operation) | are cal led o n av erage from each operation.
allow such constructs). Very hi ghva luess uggestt hat there is
LOoC Lines of C ode, i. e.,thelineso fallu ser- excessive coupling among o perations, i.e., a
defined operations. In the Overview Pyramid sign that the calling operation does not.
only t he c ode 1 ines containing functionality
(i.e., lines of code belonging to methods) are
counted.
CYCLO Cyclomatic Number, i.e., the total number of

© 2015-19, IJARCS All Rights Reserved

593

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

Table 2.4 : Dynamic metrics

NAME FORMULAE DESCRIPTION
Number of NC =# cycles Where, #cycles is the
Cycle (NC) number ofcy cles

within the graph
Average ACp o LCOVECOMPORENT | 4 ctivecomponents i s
Number of T. the number o f act ive
Active component and T . is
Components time to ex ecutet he
application (in
seconds)
Active AfD = M #activecomponent i s
Component Feomponants the n umber o f act ive
Density components a nd
(ACD) #componenti st he
number ofav ailable
components.
Average 2,ACD; is the sum of
Active AACD = I, ACD, ACD and T, istime
Component Te to execute t he
Density application (in
seconds). E xecution
time can be any of
executiono fa
function, b etween
functions o r
executiono ft he
entire program.
Peak AC,; = max { #AC, is the num ber
Number of AC,,..,AC,} of active co mponent
Active at time n and At is the
Components time interval in
seconds.

3. VALIDATING THE METRICS USING WEYUKER
PROPERTIES

Weyuker has proposed an axiomatic framework for evaluating
complexity m easures [14]. The p roperties a re n ot w ithout
critique a nd these have b een d iscussed in[3]and[4] by
Fenton, P fleeger an d H enderson-sellers. T he properties,
however, h ave b eenu sed t o v alidate the C-K m etricsb y
Chidamber and Kemerer [2] and, as a co nsequence, we will
employ t he s ame f ramework f or compatibility’s sake. T he
properties are:

Property 1: There are programs P and Q for which M (P) # M
Q)

Property 2: If ¢ is non-negative number, then there are only
finitely many programs P for which M (P) =c

Property 3: There are distinct programs P and Q for which M
P)=M (Q)

Property 4: There are functionally equivalent programs P and
Q for which M (P) #M (Q)

Property 5: For any program bodies P and Q, we have M (P)
<M (P;Q)and M (Q) <M (P; Q)

Property 6: There exist program bodies P, Q and R such that
M (P) =M (Q) and M (P; R) # M (Q; R)

© 2015-19, IJARCS All Rights Reserved

Property 7: There are program bodies P and Q such that Q is
formed by permuting the order of statements of P and M (P)#
M (Q)

Property 8: If P is a renaming of Q, then M (P) =M (Q)
Property 9: There exist program bodies P and Q such that M

(P)+M(Q) <M (P; Q)
4. EXISTING WORK

Recently Pandey and Shareef [10] proposes a UML based tool,
which can derive static metrics for Component-based software
systems. This tool has the ability to extract static metrics for
component assembly and it can be used generally for assessing
the d etails o faco mponentas sembly diagram. S oftware
developers m ay u se C AME t o ex tract v arious metrics f or
components as which are displayed through snapshots
presented in [10].

Pandey and Shareef [11] proposes an upgraded U ML-based
“CAME” tool, which can derive structural complexity metrics
from ¢ omponent-based s ystem s pecifications r epresented in
UML. T hisu pgraded “ CAME”t oolen abless oftware
developers and system analysts to extract metrics related to the
interfaces of components at an ear ly s tage o ft he S DLC,
helping th em in id entifying complex c omponents r equiring
more attention. The complexity numbers calculated guide them
as to where they should concentrate their testing efforts,
resulting in a more reliable component-based system. This tool
can b e m odified t o ex tract m etrics f or o ther a rtifacts lik e
composite and use case diagrams.

Ali, et al. [1] describes software behavioral models that derive
from ear lyr equirements specifications s uch as u se-ease
scenarios and properties have proven useful in early analysis
and checkingo f thed esignc orrectnesso f individual
components or whole system.

Sun [12] present a coal gebraic m odel f orb ehavioral
adaptation inc omponent-based sy stems.D issimulation
equivalence and refinement relationship are used to ensure that
a component can replace another one. When the behavior o f
two co mponents can notb e m atched p erfectly, b ehavioral
adaptationm ightb en eededto a llow substitution of
components.

Khalilzad, et al . [5] describes ¢ omplexity in th e r eal-time
embedded software domain has been growing rapidly.

In [5] authors designed an adaptive framework for scheduling
component-based distributed real-time systems.

Khalilzad, e ta 1. [6] proposed ¢ omponent-based s oftware
development provides a modular approach to develop complex
software sy stems. I nt his p aper authors focus on pe riodic
interface models.

Mahajan, etal. [7] developed and pr oved the n ecessity o f
Component-Based Software te sting p rioritization f ramework
which plans to uncover more ex treme bugs at an early stage
and to enhance s oftware product d eliverable quality u tilizing
Genetic Algorithm (GA) w ith j ava d ecoding t echnique. F or
this, authors propose a s et o f p rioritization k eys to p lan the
proposed Component-Based Software java framework.

594

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

5. RESEARCH PROBLEM

Component B ased S oftware E ngineering is t he w idely us ed
concept in th e s oftware in dustry. M etrics p lay an important
role in determining the various characteristics of a component
to find out which components are reusable and what particular
function they will perform. Metrics help in providing the data
to the system and improve the quality of system. Metrics are
also helpful in managing risk in the component based system.
To find out the solutions of the problems in existing system in
various areas of software is quite popular field of research for
the co mputer ex perts. CBSE is one ofthe areas of software
development w hich h ad b een i ntroduced q uite ear lier and it
becomes the essential requirement for the software industry in
view of en ormous co mputerization i n ev ery s ector. Today,
when no field is untouched f rom s oftware us es, C BSE i s
creating revolution in the software industry. Use of CBSE has
explicit advantages along with some challenges. Software
requires to be evaluated before the development to avoid the
wastage o fr esourcesi f's oftware f ailsan d also requires
evaluationd uringth eirlif eto manage the software
maintenance cost and match the technology available.
Different software evaluation strategies h ave b een ev aluated
with software metric m easurement an d ef fort es timation
models have been introduced [8][9].

In this paper, a s tudy has been made on how dynamic metrics
are used in component based development that concentrates on
the factors lik e c omplexity, s ize, r eliability, r eusability,
understandability, maintainability etc. The software metrics in
use have been categorized in static and dynamic as described
in section 2. Evaluation of the software has been done by using
dynamic m etrics and it can be v isualized b efore s oftware
development using sequence diagram in UML. Such mapping
and testing of the metric values is a major challenge which has
been taken into consideration in this work.

DSME tool developed in this paper has been implemented on
the E-learning system.

6. PROPOSED METHODOLOGY
The proposed methodology is given as following:

e Stepl: Design the time sequence diagram of any proposed
software using Argo UML tool according to requirements
of clients.

e Step 2: Create XMI file of given time sequence diagram
with the help of option Export XMI given in Argo UML.
This XMI f ile ¢ ontains all th e in formation o ftim e
sequence diagram like unique xmi.id, call action, return
action, association role etc.

e Step 3: Using Java based software and Netbeans tool the
XMI files is then parsed for extracting information related
to various dynamic metrics such a s Number o fcy cles
(NC) and utilization of components in CBSE.

For Calculating N C and utilization o f c omponents in CBSE,
the following algorithms have been used:

© 2015-19, IJARCS All Rights Reserved

Algorithm EvaluateCycles()
Begin
Implement Time Sequence Diagram for the case study
Use ArgoUML Tool to Generate the XMI file
UseJ avat o P rocesst he X MIfile and create a list of
Components and their associations
CL:=Blank List of Cycles

For Each Component in List
C:=Component;
B:=Search C in CL

If B=False Then
Temp:=C;
Flag:=False;
TempCycle:= BlankList of Cyle
TempCycle:=Temp;

For Each Component+1 in List
C1:= NextComponent;
If Temp !=C1 Then

Temp:=Cl;
TempCycle:=TempCycle+Temp;
End if;
If C== Temp Then
Flag:=True;
Break;
End if;

End

If Flag=True then
Add TempCycle in CL
End If;
End;

Return CL
End;

Algorithm EvaluateUtilization()
Begin
CL:= EvaluateCycles();
For Each Component in List
Begin
C:= Component Name
CC:=0;
For Each Component in Cycles
Begin
If C = Component then
CC:=CC+1;
End if
End;
Add C & CCin List UL
End;
Return UL
End;

595

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

7. APPLICATION OF DSME TOOL

In this section, w e c onsider th e m odel o f E -learning s ystem
which has been designed with the help of Argo UML tool.

Our aim is to implement the DSME tool on the time sequence
diagram of the five modules of E-learning system. (cf. Fig 7.1
to 7.5).

To facilitate the use of the e xisting s uite o fc omponent
assembly metrics a parser based tool, DSME (Dynamic
software m etric e stimation to ol), d eveloped in J AVA using
Netbeans 7.1.2, is used to analyze UML component assembly
diagrams represented in XMI. This tool extracts existing
dynamic metrics. This tool works o nly with X MI files th at
contain information lik € x mi.id, ¢ all a ction, r eturn action,
association role etc. UML component diagrams with only the
elements provided by the ArgoUML tool has been drawn. For
parsing the XMI file, SAX [13] — a Java API for XML to parse
the X MI file is used. The version implemented in the DSME
tool is SAX 2.0.1 as the SAX parser is an easy-to-use forward

parser. The flow of process of how the DSME tool works is
depicted in Figure-7.6.

The component-based metrics implemented in the DSME tool
are: NC, utilization of component, all defined by Narasimhan,
etal. [8] (see also [9]). Table-2.4 shows some of the dynamic
metrics ¢ urrently obtained by u sing DSME t ool, de rived
through X MI file. The coding o f X MI p arser for ev aluating
NC and Utilization of components is shown in Figure-7.7, and
Figure 7.8. The XMI representation of UML component
diagrams is illustrated in Figure 7.9.

Figure-7.1 shows a s imple co mponent as sembly diagram i.e.
Time sequence d iagram cr eated w ith the he Ip o f ArgoUML
0.34 (UML M odellingt ool). Thed iagramco nsistso f
components and a D ependency i ndicator. X MI as signs each
model element a unique xmi.id. This also defines a namespace
for each element in the model. These unique IDs allow
elements t or eference as sociated el ements, as (xmi.idref)
values and al so p rovides an acces sm ethodt ot he d ata
structure.

User COURSE KEY AUTHORIZATION
® MANAGEMENT AUTHENTICATION SYSTEM
i
| i H)
! s . ! ' |
i vig our! i []]
| L : :
[ol vy : !
[L] I
:. i) i Perform - i
Addmew course Authentication ' Chack !
" i
Course =ddsd :

successhully

k4

_J‘"‘ Authorizztion

L Usar Validatad

Pertorm suthentication

| Course adited

:D Check Authorization

i
i
'
i
i
i
i
B T T T T T e A T T Ty
i
'
i
i
i
i
'
i
i
i

¥

Velidated User

Figure -7.1 Time sequence diagram for course management

© 2015-19, IJARCS All Rights Reserved

596

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

CLIENT SERVER KEY AUTHOERIZATION
COMPUTER COMPUTER AUTHENTICATION SYSTEM

Figure -7.2 Time sequence diagram for login register

Usar MESSAGING KEY AUTHORIZATIUON ENCRYPTION
‘ AUTHENTICATION AND

' DECRYPTION

. hlzszags - : i i i

r Parform Authentication —— Check Authorization ! !

: g] i

: User Authorized i

: A It BRI :

E EncryptDecrypt hisszage

:... - S T

Figure -7.3 Time sequence diagram for messaging

User MESSAGING KEY AUTHORIZATION | [ENCRYPTION || STUDY
. AUTHENTICATION AND MATERI
DECRYFPTION AL
Massaging . i i
1 !

Parform Authentication

Check Authorization
=t Authorizad

Figure -7.4 Time sequence diagram for report generation

© 2015-19, IJARCS All Rights Reserved 597

C

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

User STUDY MATERIAL KEY Authorization Conts
Y MANAGEMENT AUTHENTICATION Lo
himnzgement
: : : : '
' 1 ' H '
| Stady material _E_ i \ i
i : l !
1 Perform Authentication 4 i !
] . 3
i Check Authorization i ':
i User Authorized |
| P B |
i Select Course
]
]
]
i Downlezd Study
Ih. s e -
i
]
]
]

Figure -7.5 Time sequence diagram for study material management

Decision of Secured System of

Decizion of Compensnts m the

Communicztion betwesn
Teacherz & Students

E-Leaming System

h
Creztion of Time Sequence
Dizgram from the components of
E-Lzzming 3vstzm

Meppmg of Tme Sequence Dizgram usmg

ARGOUML Software & Creation of XMI File for the

Fame

HMWI Parser Usmgz TAVA & RMI Parser TAR Fil=

:

Evzluztion of Number of Cycles &
Utilization

Figure 7.6: Working of DSME Tool for Project E-Learning System

2015-19, IJARCS All Rights Reserved

598

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

public void showNC() {
String loopStart ="";
String from ="";
String loop ="";
for (int i = 0; i < GlobalLists.IstMessages.size(); i++) {
GlobalLists.IstMessages.get(i).setIsUsed(false);
}
for (int i = 0; 1 < GlobalLists.IstMessages.size(); i++) {
Message msg = GlobalLists.IstMessages.get(i);
if (msg = null && msg.getSenderld() != null && !msg.getSenderld().equals("")) {
from = getClassifierRole(msg.getSenderld());
String to = getClassifierRole(msg.getReceiverld());
if (loopStart.equals("")) {
loopStart = from;
loop = msg.getName() + "::" + from + "=>"+to +",";
H
else {
if (to.equals(loopStart)) {
loop += from + "=>" +to +",";
GlobalLists.IstLoopDetails.add(loop);
loop="";
from="";
to=""
loopStart ="";
H
else {
loop += from + "=>" +to +",";
}

Figure 7.7 : Java implementation function for calculating show NC

void showUtilization() {
for(int i=0;i<GlobalLists.IstClassifierRoles.size();i++) {
ClassifierRole cr = GlobalLists.IstClassifierRoles.get(i);
if(cr!=null && !cr.getName().equals("")) {
int uc = 0;
for(int j=0;j<GlobalLists.IstLoopDetails.size();j++) {
String loop = GlobalLists.IstLoopDetails.get(j);
if(loop.indexOf(cr.getName())>=0) { uc++; }
}

ImUtilization.addElement(cr.getName()+" :: "+ uc);

}

Figure 7.8 : Java implementation function for calculating show utilization of component

© 2015-19, DARCS All Rights Reserved 599

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

<UML:Model

isAbstract = 'false™

<UML:Namespace.ownedElement>
<UML.:Collaboration

isAbstract = 'false™
<UML:Namespace.ownedElement>
<UML.:ClassifierRole

<UML.:ClassifierRole.multiplicity>
<UML:Multiplicity
<UML:Multiplicity.range>
<UML:MultiplicityRange

='-64--88--23-1--641815cc:155b4aebd88:-8000:0000000000000865'
name = 'SDForLogin' isSpecification = 'false' isRoot = 'false' isLeaf = 'false’'

='-64--88--23-1--641815cc:155b4aebd88:-8000:000000000000087C"
name = 'LoginRegistration' isSpecification = 'false' isRoot = 'false' isLeaf = 'false’

='-64--88--23-1--64f815cc: 155b4aecbd88:-8000:0000000000000880"
isSpecification = 'false' isRoot = 'false' isLeaf = 'false' isAbstract = 'false™
="-64--88--23-1--64f815cc:155b4aebd88:-8000:0000000000000882">

='-64--88--23-1--641815cc:155b4aebd88:-000:0000000000000881"

Figure-7.9: XMl representation of a component dependency diagram

8. RESULT AND DISCUSSION

Results o btained for NC and u tilization o f ¢ omponents h as
been d epicted i n s creen s hots Figure 8.1 to Figure 8.4 for
module co urse m anagement displayed in F igure 7 .1. Their
significance in evaluating the software is as follows:
Number of Cycle: The NC is num ber o fc ycles within an
integrated component in a graph representation

NC = #cycles

Where # cycles i s t he number o fcy cles or 1 oops within the
graph.

When an ap plicationi s ex ecuted, co mponents cal 1o ther
components through the provided interfaces. Components with
similar purposes create a cycle within the component’s graph
representation. M ore cy cles t ypically i ndicate m ore special
purposes within a component assembly.

Identifying cy cles cr eates clustering in the whole component
assembly. Each cluster might indicate a super component, i.e.,
a component that consists of other components.

=]

urse_mgmt.xmi

loginregister.xmi
messaging.omi
report_generation.xmi
study_material_magmt.xmi

Continue

Figure 8.1: GUI for displaying information of component assembly using DSME tool

© 2015-19, IJARCS All Rights Reserved

600

9
Key Authentication
suthorization System
Wser

Association Roles
|ViewCourselist

Parform Authentication

Check Authorization
User Validated

Gat Coursa List
Add New Course
Parform

raes
| Add New Course

| = Perform Authentication
Check

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

|User Validated
[Course Added Successfully

Check Authorication

Perform Authentication

User Validated t Course
Course Addod {= Check
Al i M|

| calculatenc || show utization

{ usar
(Course Cdited

1 P—p— 1 |

Figure 8.2: GUI for displaying information of course management

(2]

Classifier Roles

A iation Roles

— x

Figure 8.3: GUI for displaying information calculate NC for course management

Call Actions Return Actions
:Course Management \ViewCourselList View Courses | = |View Courses GetCourselist
:Key Authentication Perform Authentication Get Course List \Add New Course User Validated
:Authorization System \Check Authorization ‘Add New Course =||Perform Authentication Course Added Successfully
User User Validated Perform Authentication | |(Check Authorization Validated User
'Check Authorization Perform Authentication Course Edited
User Validated Edit Course
Course Added Successfi . ||Check Authorization
[l Il] <] i [[»
| Calculate NC | | Show Utlization ‘
Courses::User=>:Course Management,:(L OOP FOR View Courses
\Add New Cour: :Course :Course
Edit Cour: :Course :Col:Course
N T [»
Number of Loops :3
Back Exit

&) - X
Classifier Roles A iation Roles Call Actions Return Actions
:Course Management ViewCourseList View Courses |~ [view Courses (GetCourseList
:Key Authentication Perform Authentication \Get Course List \Add New Course User Validated
:Authorization System ICheck Authorization \Add New Course =|Perform Authentication ICourse Added Successfully
:User User Validated Perform Authentication (Check Authorization Validated User

(Check Authorization | |Perform Authentication (Course Edited

User Validated Edit Course

ICourse Added Successfi|[Check Authorization

1 T [»] 4] I I

‘ Calculate NC | | Show Utlization |

Add New Cour:

Lourse

View Courses::User=>:Course Management,:(LOOP FOR View Courses

ourse M;

Edit Cour:

‘Course :Colf:Course

« T

User

Userz:3

:Course Management :: 3
:Key Authentication :: 2
:Authorization System :: 2

Figure 8.4: GUI for displaying information show utilization for course management

©2015-19, IJARCS All Rights Reserved

Number of Loops :3

Back Exit

601

P.L. Powar et al, International Journal of Advanced Research in Computer Science, 8 (4), May-June 2017,591-602

Component Utilization: It is the count of components used in
a module in different cycles. This shows the importance of the
component in any module. Utilization of the component in all
modules must also be considered for more accuracy.

The f ollowingta bles howsth e N Ca nd utilization of
components of for all module course management of E-
learning system:

Module NC (No. off utilization of component
cycles)
course 3 user 3
management course management 23

key authentication : 2
authorization system : 2

Login 2 user
Register client computer
server computer
key authentication
authorization system : 2

12

12
12
02

Messaging 1 user 01
messaging 01
key authentication 01
authorization 1

Encryption & Decryption : 1

Report 1 user 01
generation messaging 22
key authentication o1
authorization 01
Encryption & Decryption : 1
Study material management :1
Study 1 User :1
material Study material mgmt 01
management key authentication 01
authorization 1
course mgmt 1

9. CONCLUSION AND FUTURE WORK

The evaluation of number of component cycles in DSME tool
helps in deciding the super components, which in turn can be
used in decision of effort required, reducing the o verall co st
and reducing the co mplexity o f the s oftware system in e arly
stagei .e.a td esignings tage.S imilarlyu tilization of
componentsi na m odule helps in deciding m ostu sable
components in the system and h encei mportance o ft he
components d uring th e im plementation o f's oftware s ystem.
Overall, both of't he ev aluated co mponent m etrics i n ear ly
stage o f's oftware d evelopment can b e used inreducing t he
software cost, reducest heg lueco deco st,i ntegration
complexity a nd d istinguishing t he c omponents a s per their
importance.

Finally, it may be concluded that the Number of cycles and
degree of utilization is one of the key component for the cost
estimation of CBSE. Hence, by computing NC and degree of
utilization, basically we would be in a position to predict the
approximate cost of CBSE.

© 2015-19, IJARCS All Rights Reserved

This to ol may also be m odified t o ex tract o ther d ynamic
metrics f or co mponent-based systems, w hichw illb e
implemented in a future version.

10. REFERENCES

[1] Ali A.,Jawawi D. N. A ., Ibrahim A. O . IsaM .A, Deriving
behavioural models of component-based software systems from
requirements s pecifications, Computing, C ontrol, N etworking,
Electronics and Embedded S ystems E ngineering (ICCNEEE),
2015 I nternational C onference on, K hartoum, 2015, pp. 260 -
265. doi: 10.1109/ICCNEEE.2015.7381373

[2] Chidamber S .R., K emerer C .F., A m etrics suite for object-
oriented design, IEEE Transaction on S oftware Engineering 20
(6) (1994), 476-493.

[3] Fenton N .E., P fleeger S .L., S oftware M etrics: A igorous &
Practical Approach, second e d., P WS P ublishing C ompany,
Boston, 1997.

[4] Henderson-Sellers B ., O bject-Oriented M etrics: M easures o
Complexity, Prentice-Hall PTR, Upper Saddle River, NJ, 1996.

[5] Khalilzad N., Ashjaei M., Almeida L., Behnam M ., Nolte T.,
Adaptive multi-resource end-to-end reservations for component-
based di stributed r eal-time systems, Embedded S ystems F or
Real-time Multimedia (ESTIMedia),2 0151 3thI EEE
Symposiumon , Amsterdam, 2015, pp. 1 -10.doi
10.1109/ESTIMedia.2015.7351772.

[6] Khalilzad N., Behnam M ., Nolte T., O n C omponent-Based
Software D evelopmentf orM ultiprocessor R eal-Time
Systems, Embedded and R eal-Time C omputing S ystems a nd
Applications (RTCSA), 20151 EEE 21s tI nternational
Conference o n, H ong K ong, 2015, pp. 132-140.doi :
10.1109/RTCSA.2015.27.

[7] Mabhajan S., Joshi S. D., Khanaa V., Component-Based Software
System Test C ase P rioritization w ith Genetic Algorithm
Decoding Technique UsingJ avaP latform, Computing
Communication C ontrol a nd Automation (ICCUBEA), 2015
International C onference on , Pune, 2015, pp. 847 -851. doi :
10.1109/ICCUBEA.2015.169.

[8] Narasimhan L .V., P arthasarathy P.T., D as M, Evaluation of a
Suite o f M etrics for Component B ased S oftware E ngineering
(CBSE), issues inl nformingS ciencea ndIl nformation
Technology Volume 6, 2009.

[9] NarasimhanL .V., Hendradjaya B., Somet heoretical
consideration for as uite of m etrics f or t he i ntegration of
software ¢ omponents, issues ofi nformation S cience a nd
Information Technology, 177 (2007) 844-864.

[10] Pandey R. K., Shareef J.W., CAME: Component Assembly
Metrics Ex traction u sing U ML, ACM SI GSOFT So ftware
Engineering Notes, July 2013, Volume 38 Number 4, pg. 1-12.

[11] Pandey R. K., Shareef J.W., Design of a Component Interface
Complexity M easurement T ool for Component-Based S ystems,
ACM S IGSOFT S oftware E ngineering N otes, July 2015,
Volume 40 Number 1, pg. 1-12.

[12] Sun M., Towardsa C oalgebraic S emantics o fB ehavioral
Adaptation i n C omponent-Based S oftware S ystems, Computer
Science and M echanical Automation (CSMA), 2015
International C onference on, Hangzhou, 2015, pp. 41-44. doi:
10.1109/CSMA.2015.15.

[13] SAX, Retrieved on March 5, 2011 http://sax.sourceforge.net.

[14] Weyuker E .J., E valuatings oftware complexity, IEEE
Transaction on Software Engineering 14 (9) (1988) 1357—-1365.

602

http://sax.sourceforge.net/�

