
Volume 8, No. 5, May-June 2017 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

 

© 2015-19, IJARCS All Rights Reserved                    333 

ISSN No. 0976-5697 

Survey on Security Mechanisms In NoSQL Databases 
 

Vaishali J. Dindoliwala  
Assistant Professor 

C. B. Patel Computer College, Bharthana,       
Surat, Gujarat, India 

 
         

Dr. Rustom D. Morena 
Professor, Department of Computer Science, 

 Veer Narmad South Gujarat University, 
Surat, Gujarat, India 

 
Abstract: Database is widely used in most of the applications to store, retrieve and manage large amount of data. Relational database work best 
when to handle a limited set of data. In web scale systems, relational databases degrade the performance due to the joins, locks and impedance 
mismatch.  Thus, as a result various non-relational databases emerged known as NoSQL databases. With the development of the Internet market 
and new web technologies, NoSQL databases become a very popular for handling large amount of data. Object Oriented Database Management 
Systems come under the category of NoSQL databases as they are not queried using SQL. They store information as objects, offer advanced 
features such as a large number of data types and could also offer advanced features such as inheritance and polymorphism which are 
characteristics of object-oriented programming languages as well. With this emergence of new databases and their adoption by a large number of 
organizations, security becomes an important issue. In this paper, we have surveyed several NoSQL databases such as MongoDB, Cassandra 
GemStone, db4o and Objectivity/DB and presented security features available in these NoSQL databases and compare them. 
 
Keywords: Relational database, NoSQL database, Object Oriented Database, Security, Authentication, Authorization, Auditing, Encryption 
 
I. INTRODUCTION 

 
The term NoSQL stands for "Not Only SQL" and they 

are not meant to replace the traditional databases such as 
relational databases but they are suitable to adopt big data 
where the traditional databases do not appropriate. They are 
developed by the web companies to fit their specific 
requirements regarding scalability, performance, 
maintenance and feature-set. They do not have properties of 
traditional relational databases and are generally not queried 
with SQL. Companies dealing with big unstructured data 
sets may benefit by migrating from a traditional relational 
database to a NoSQL database in terms of accommodating 
and processing large amount of data.  

 
NoSQL data systems such as MongoDB, Cassandra 

provide schema-less modeling, 

In this paper, we focus on researches in security 
challenges in NoSQL databases. This paper describes the 
security mechanisms offered by various NoSQL databases 
like MongoDB, Cassandra, GemStone, db4o and 
Objectivity/DB. Section II describes various data storage 

models used in NoSQL databases. Section III is the literature 
review. Section IV describes security features offered by 
MongoDB, Cassandra, GemStone, db4o and Objectivity/DB. 
Section V is the discussion on security challenges in NoSQL 
databases and it also shows the comparison based on security 
features provided by MongoDB, Cassandra, GemStone, db4o 
and Objectivity/DB. Section VI is the conclusion.  

 

in which the semantics of the 
data are embedded within a flexible connection topology and 
a corresponding storage model. This provides greater 
flexibility for managing large data sets while simultaneously 
reducing the dependence on the more formal database 
structure imposed by the relational database systems. To 
support big data processing, the platforms incorporate scaling 
in two forms of scalability - horizontal scaling and vertical 
scaling. In horizontal scaling the workload distributes across 
many servers. In this type of scalability multiple systems are 
added together in order to increase the throughput while in 
vertical scaling more processors, more memory and faster 
hardware are installed within a single server [1]. Unlike 
relational databases, NoSQL databases are designed to easily 
scale out as and when they grow. 

 

II. 
 

NOSQL DATA STORAGE MODELS 

A. 
In this data model, data objects are associated with 

distinct character strings called

Key-Value Store 

 

B. 

keys which are similar to 
hash table in data structure [6]. The key can be synthetic or 
auto-generated while the value can be string. The key-value 
type basically uses a hash table in which there exists a unique 
key and a pointer to a particular data item. The weakness of 
this model is that it does not provide any kind of traditional 
database capabilities such as atomicity, consistency etc. 
Other weakness is as the volume of data increases, 
maintaining unique values as keys may become more 
difficult. It requires the introduction of some complexity in 
generating character strings that will remain unique among 
an extremely large set of keys [3]. Some examples of NoSQL 
databases that uses key-value mechanism are Redis, 
Aerospike, OrientDB and MUMPS. 

 

A document store is similar to a key-value store in that 
stored objects are associated and accessed via character-
string keys. The difference is that the values being stored, 
which are referred to as “documents,” provide some 
structure and encoding of the managed data [2] [3] [6]. That 
means these databases store records as “documents” where a 
document can generally be thought of as a grouping of key-
value pairs. Keys are always string and values can be stored 
as strings, numeric, booleans arrays and other nested key-

Document Store 



Vaishali J. Dindoliwala et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,333-338 

© 2015-19, IJARCS All Rights Reserved                    334 

value pairs. Values can be nested to arbitrary depths. In a 
document database, each document carries its own schema. 
Some examples of NoSQL database that uses document 
store mechanism are 

 

CouchDB, MongoDb, RavenDB, 
BaseX and eXist. 

C. Column Store 
In this type of data store, data are stored in cells grouped 

in columns of data rather than as rows of data. Relational 
databases store a single row as a continuous disk entry. 
Different rows are stored in different places on disk while 
columnar databases store all the cells corresponding to a 
column as a continuous disk entry which makes the search 
or access faster [2][7]. Some examples of NoSQL databases 
that use column store mechanism are Cassandra, Vertica and 
HBase. 

 
D. 

Object data stores are essentially a hybrid approach to 
data storage and management. Object data stores and object 
databases seem to bridge the worlds of schema-less data 
management and the traditional relational models. On the 
one hand, approaches to object databases can be similar to 
document stores except that while the document stores 
explicitly serialize the object so the data values are stored as 
strings, object databases maintain the object structures [3]. 
Object data store offers all the features of object oriented 
programming such as data encapsulation, polymorphism and 
inheritance. 

 

Object Store 

E. Graph Databases 

III. 

Graph databases consist of edges between nodes. Both 
nodes and their edges can store additional properties such as 
key-value pairs [14]. The strength of a graph database is in 
traversing the edges between the nodes. But they generally 
require all data to fit on one machine that limits its 
scalability. Examples of such type of NoSQL databases are 
OrientDB, Allegro and Stardog. 

 

 
In their survey, J. Ahmed and R. Gulmeher [2], 

described that because of its heterogeneous nature than in 
homogeneous environments, the protection of integrity in 
NoSQL database system is difficult. It is difficult to 
implement integrity constraints because of its schema-less 
nature and absence of central control. They have also 
discussed when there is no central management security 
point, protecting the name servers, nodes and those clients 
become difficult. As heterogeneous data is stored together in 
one database as opposed to relational models, it becomes 
difficult to handle Role Based Access Control (RBAC). 

 
L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes and J. 

Abramov [5] have discussed security issues in two of the 
most popular NoSQL databases Cassandra and MongoDB. 
They had outlined their security features and problems. 
According to them, the main problems with Cassandra and 
MongoDB are the lack of encryption support for data files, 
weak authentication between clients and servers, simple 
authentication, vulnerability to SQL injection and DOS 
attack. It is also mentioned that both of them do not support 
RBAC and fine-grained authorization. 

A. K. Zaki [7] also has discussed various security 
challenges on NoSQL databases such as transactional 
integrity, authentication methods and susceptibility to 
injection attacks, lack of consistency and insider attacks. 
According to him, NoSQL databases make use of many 
distributed commodity servers, it does not assure consistent 
results at all time, as all participating commodity servers may 
not entirely synchronized with other servers holding latest 
information. If a single commodity server gets fail, it results 
in load imbalance among other commodity servers. NoSQL 
databases incorporate the weak authentication mechanism 
and weak password storage techniques. Some NoSQL 
databases enforce authentication mechanism at local node 
level but fail to enforce authentication across all commodity 
servers. Complex integrity constraints cannot be added in 
NoSQL database architecture because it results in failure to 
meet the NoSQL’s main objective of attaining better 
performance and scalability. 

 

LITERATURE REVIEW 

IV. SECURITY FEATURES OF NOSQL DATABASES 
 

NoSQL databases increasingly being used to handle big 
data challenges, are still very new in the field with respect to 
their feature set, especially with respect to security, so fine-
grained permissions or access control in these systems are 
yet to be provided. 

 
In this section, we have presented various security 

features like authentication, authorization, data encryption 
and auditing capabilities provided by NoSQL databases such 
as MondoDB, Cassandra, GemStone, db4o and 
Objectivity/DB. 

 
A. MongoDB 

MongoDB is a schema-free document database. A 
MongoDB database contains one or more collections of 
documents. A collection is equivalent term for a table but it 
has no pre-defined schema. Document is the unit of storing 
data in a MongoDB database. They are analogous to the 
records of relational databases. It is a set of fields. A 
document can contain complex structures such as lists or 
even other documents. Once the first document is inserted 
into a database, a collection is created automatically and the 
inserted document is added to this collection. Every 
document has an id [5]. Insert, update, and delete operations 
can be performed on a collection [11]. Each document can 
match the data fields of the represented entity, even if the 
data has substantial variation. In practice, however, the 
documents in a collection share a similar structure. [12] 

 
MongoDB has its own ad-hoc query language named 

Mongo Query Language. To retrieve certain documents 
from a database collection, a query document is created 
containing the field conditions to match and then returns a 
cursor. The cursor is iterated to access the resulting 
document. [11][12] 

 
As MongoDB databases do not have strictly defined 

database schemas, using JavaScript for query syntax allows 
developers to write arbitrarily complex queries against 
irrelevant document structures. NoSQL database engines 
that process JavaScript containing user-specified parameters 
can be vulnerable to injection attacks. MongoDB, for 



Vaishali J. Dindoliwala et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,333-338 

© 2015-19, IJARCS All Rights Reserved                    335 

example, supports the use of JavaScript functions for query 
specifications and map/reduce operations. Most of the 
internal commands are actually short JavaScript routines 
[12]. JavaScript functions, stored in db.system.js collection 
are also available to the database users. 

  
MongoDB provides various security features such as 

authentication, access control and authorization, encryption 
and auditing. 

 
1) Authentication: In MongoDB, authentication of users 

can be managed from within the database itself or via 
integration with an external mechanism i.e. LDAP, x.509 
PKI certificates or a Kerberos service. [13] 

 
MongoDB authenticates entities on a per-database level 

using the SCRAM-SHA-1 IETF standard. Users are 
authenticated via the authentication command while 
database nodes can be authenticated to the MongoDB 
cluster via keyfiles. SCRAM-SHA-1 is the default 
authentication mechanism for MongoDB. It is an IETF 
standard, RFC 5802 that defines best practice methods for 
implementation of challenge-response mechanisms for 
authenticating users with passwords. SCRAM-SHA-
1 verifies the supplied user credentials against the 
user’s name, password and authentication database. The 
authentication database is the database where the user was 
created and together with the user’s name, serves to identify 
the user [4]. 

 
With LDAP integration, MongoDB can authenticate and 

authorize users directly against corporate LDAP 
infrastructure to enforce centralized access policies. [4] 

 
With MongoDB Enterprise Advanced, authentication 

using a Kerberos service is supported. Kerberos is an 
industry standard authentication protocol for large 
client/server systems, allowing both the client and server to 
verify each other’s identity. Before users can authenticate to 
MongoDB using Kerberos, they must first be created and 
granted privileges within MongoDB [4]. 

 
2) Authorization: In MongoDB, administrators can 

define the specific permissions for an application or user has 
and they can decide what data an application or user can see 
when querying the database. The authorization mechanism 
in MongoDB includes roles, LDAP authorization and Field-
Level Security with Read-Only Views. 

 
Authorization privileges can be based on the specific 

functionality a user needs in their role. Privileges are 
assigned to roles and roles are in turn assigned to users. 
MongoDB provides a number of built-in roles that 
administrators can use to control access to a MongoDB 
system. MongoDB uses the combination of the database 
name and the role name to uniquely define a role. Roles are 
granted to the users. Each user is identified by unique 
id. Outside of role assignments, the user has no access to the 
system. A privilege consists of a specified resource and the 
actions permitted on the resource. A resource is a database, 
collection, set of collections or the cluster. Privileges are set 
for each resource according to the requirement. 
The 

3) Auditing:  

MongoDB supports a simple role-based authentication 

system that allows you to control who has access to each 
database and the level of access they are granted. For normal 
users to have access on to two databases, their credentials 
and rights must be added to both databases. [8] 

 
MongoDB also support authorization via LDAP. This 

enables existing user privileges stored in the LDAP server to 
be mapped to MongoDB roles without users having to be 
recreated in MongoDB itself. [4] 

 
DBAs can define non-materialized views that expose 

only a subset of data from an underlying MongoDB 
collection. As a result, risks of data exposure are 
dramatically reduced [4]. DBAs can define a view of a 
collection that is generated from an aggregation over 
another collections or view. Permissions granted against the 
view are specified separately from permissions granted to 
the underlying collections. As views are non-materialized, 
the view data is generated dynamically by reading from the 
underlying collections when a user queries the view. This 
reduces data duplication in the database and eliminates 
inconsistencies between the base data and view. Views are 
defined using the standard MongoDB Query Language and 
aggregation pipeline. 

 

The auditing framework captures administrative actions 
such as schema operations as well as authentication and 
authorization activities along with read and writes 
operations to the database [4]. Administrators can construct 
and filter audit trails for any operation against MongoDB. 
For example, it is possible to log and audit the identities of 
users who accessed specific documents and any changes 
they made to the database during their session. 
Administrators can configure MongoDB to log all actions or 
apply filters to capture only specific events, users or roles. 
MongoDB Enterprise Advanced also supports role-based 
auditing. It is possible to log and report activities by specific 
role. 

 
4) Data Encryption: Data can be encrypted over the 

network and at rest in permanent storage and backups. 
MongoDB Enterprise Advanced supports FIPS 140-2 
encryption if run in FIPS Mode with a FIPS validated 
Cryptographic module. There are multiple ways to encrypt 
data at rest with MongoDB. Encryption can be implemented 
at the application level or via external file system and disk 
encryption solutions. The storage engine encrypts each 
database with a separate key. The key-wrapping scheme in 
MongoDB wraps all of the individual internal database keys 
with one external master key for each server [4]. 

 
B. Cassandra 

Cassandra is a distributed storage system for managing 
very large amounts of structured data spread out across 
many commodity servers, while providing highly available 
service with no single point of failure. The basic 
components in Cassandra are – nodes, data centers and 
clusters. Logically, the data in a cluster is organized into 
keyspaces (databases), which contain tables. Tables contain 
rows, and rows have columns. Cassandra does not force 
individual rows to have all the columns. Keyspace is the 
container for data. A column family is a container for 

https://tools.ietf.org/html/rfc5802�
https://docs.mongodb.com/manual/reference/system-users-collection/#admin.system.users.user�
https://docs.mongodb.com/manual/reference/system-users-collection/#admin.system.users.credentials�
https://docs.mongodb.com/manual/reference/system-users-collection/#admin.system.users.db�
https://docs.mongodb.com/manual/reference/built-in-roles/�
https://docs.mongodb.com/manual/reference/resource-document/�


Vaishali J. Dindoliwala et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,333-338 

© 2015-19, IJARCS All Rights Reserved                    336 

collection of rows and each row contains columns.           
Fig. 1 shows the view of a keyspace while Fig. 2 shows the 
basic structure of a column family. [14] 
 

 
 

Figure 1. Schematic view of a keyspace 
 

        
Figure 2. Structure of column family 

 
Physically, the content of a table row is always stored on 

the hard drive of at least one node in the cluster and 
depending on how the keyspace has been defined upon 
creation, this row content is replicated to 0 or more other 
nodes in the cluster. Cassandra uses a query language called 
Cassandra Query Language (CQL) which is something like 
SQL. Following are the security features offered by 
Cassandra: 

 
1) Authentication: Cassandra supports only internal 

authentication mechanism. External authentication 
mechanism such as through 3rd party 
authentication/authorization tool e.g. LDAP is not supported 
yet. Cassandra 3.0 authentication is roles-based and stored 
internally in Cassandra system tables. Administrators can 
create, alter, drop or list roles using CQL commands with an 
associated password. The internal authentication is used to 
access Cassandra keyspaces and tables and 
by cqlsh and DevCenter  to authenticate connections to 
Cassandra clusters and sstableloader 

 
to load SSTables. [16] 

2) Authorization: Cassandra uses the 
GRANT/REVOKE security paradigm to manage object 
permissions as a part of authorization. In 
Cassandra, permissions on database resources are granted 
to roles. Roles-based access control is available in 
Cassandra 2.2 and later. Roles enable authorization 
management on a larger scale than security per user can 
provide. A role is created and may be granted to other roles. 
Hierarchical sets of permissions 

a) Create - keyspace, table, function, role, index 

can be created [17]. There 
is various permission/resource combinations currently set. 
The various resources are keyspace, roles, tables, index and 
functions. And the permissions that can be applied on these 
resources are : [18] 

b) Alter - keyspace, table, function, role 
c) Drop - keyspace, table, function, role, index 
d) Select - keyspace, table 
e) Modify (Insert, Update, Delete, Truncate) -  

keyspace, table 
f) Authorize (Grant and Revoke Permissions) -      

keyspace, table, function, role, MBean (in Cassandra 3.6 and 
later) 

g) Describe – list roles 
h) Execute  – functions 

 
3) Data Encryption: There is a support for at-rest data 

encryption through Transparent Data Encryption (TDE) 
from version 3.2. [16] 

 
4) Auditing: Auditing is available in Enterprise 

Cassandra as a log4j-based integration and a per node basis. 
To get the maximum audit information, turning on auditing 
on every node is recommended. Filters are available for 
logging using a combination of the following categories – 
ADMIN, ALL, AUTH, DML, DCL and QUERY. [16] 

 
C. GemStone 

GemStone is an Object-Oriented Database Management 
System. It supports multiuser environment. Multiple user 
sessions can be active at the same time and each user may 
have multiple sessions open. In GemStone, security is 
provided at several levels, from login authorization to object 
access privileges. Following are the security features offered 
by GemStone: 

 
1) Authentication : In GemStone, each user is identified 

by unique userID and password. It supports its own 
authentication protocol as well as the Kerberos scheme. A 
user is represented by an instance of class UserProfile. A 
UserProfile contains userID, password, default authorization 
information, privileges and group membership about a user. 
Only users who have a UserProfile can log on to the system. 
[15] 

 
2) Authorization : Authorization exists within 

GemStone and controls individual object access. It is 
implemented at the lowest level of basic object access to 
prevent users from circumventing the authorization 
checking. Objects can’t be accessed from any language 
without proper authorization.   

 
When objects are created, they are assigned to a default 

segment if not specified. Segment is used to control 
ownership of and access to objects. With segment, one can 
abstractly group objects, specify who owns the objects, who 
can read them and who can write them. Each repository in 
GemStone is composed of segments. All objects assigned to 
a segment also have exactly the same protection that is, if 
you can read or write one object assigned to a certain 
segment; you can read or write them all. Each segment is 
owned by a single user and all objects assigned to the same 
segment have the same owner. Groups of users can have 
read, write or no access to a segment. Likewise, any 
authorized GemStone user can have read, write or no access 
to a segment. Whenever an application tries to access an 
object, GemStone compares the object’s authorization 

https://docs.datastax.com/en/cql/3.3/cql/cql_reference/cqlshCommandsTOC.html�
https://docs.datastax.com/en/developer/devcenter/doc�
https://docs.datastax.com/en/cassandra/3.0/cassandra/tools/toolsBulkloader.html�
https://docs.datastax.com/en/cql/3.3/cql/cql_using/useSecurePermission.html�


Vaishali J. Dindoliwala et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,333-338 

© 2015-19, IJARCS All Rights Reserved                    337 

attributes in the segment associated with the object with 
those of the user whose application is attempting access. If 
the user is appropriately authorized, the operation proceeds. 
If not, GemStone returns an error notification. The user that 
owns the segment controls what access other users has to it. 
By default, the owner has write access to the objects in a 
segment. [15] 

 
3) Auditing: Administrator can also configure a 

GemStone system to monitor failures to log in and he can 
also configure system to disable a user account after a 
certain number of failed attempts to log into the system 
through that account. [15] 

 
D. db4o 

db4o is only an object database and not an object 
database management system. It is not standalone that 
means everything can be done through an application. 
Therefore the application can fully control authentication 
and authorization as and when required. On the level of 
db4o – in embedded mode – there are no integrated security 
mechanisms. There is no user management. Access to the 
data files should be controlled by using the mechanisms of 
the underlying platform. In client-server mode of db4o, user 
has to specify userID and password credentials to connect 
and access to the server. [10] 

 
There exists very limited authorization capability. One 

can switch files where objects can be stored in different files 
and credentials can be granted based on a file level which 
seems to be a very limited approach and is therefore not 
considered. It provides the eXtended Tiny Encryption 
Algorithm (XTEA). [9] 

 
E. Objectivity/DB 

Objectivity/DB is another object database. Since the 
Objectivity/DB schema is created from internal class 
definitions from the programming language, it is easier to 
maintain changes to the schema.  

 
Objectivity/DB provides access control to prevent 

certain applications from updating or changing the schema. 
Objectivity/DB also provides a feature for supporting 
changes to the schema. Ideally changes should be phased in 
and not adjusted at runtime to ensure consistency across the 
application and other applications using different 
programming languages. However this feature in addition to 
object conversion allows the schema to be changed quite 
easily and automatically update the previously stored objects 
to be compatible with the new schema. [9] 

 
Access to database can be controlled by implementing 

security based on a user name, a password or both. 
Objectivity/DB relies completely on the operating system 

and file systems for access control. There is no role-based or 
discretionary access control in place. It also does not appear 
to provide any inbuilt encryption so it is another feature that 
would need to be built into a middle layer. [9] 

 
V. DISCUSSION ON SECURITY CHALLENGES IN NOSQL 
DATABASES 

 
The main focus of NoSQL databases is handling the 

new data sets with less priority on security. Each NoSQL 
database has different API and different query systems, 
requiring a full learning curve for developers every time a 
new NoSQL database is introduced. For example Cassandra 
uses CQL, MongoDB uses mongo query language etc. 
Therefore it becomes difficult for the user to switch from 
one NoSQL database provider to another. The lack of 
common query language, consistency support and 
transaction system puts limitations towards the adoption of 
NoSQL databases in certain business applications like 
banking systems. Also schema-free structure does not allow 
fine grained access control. NoSQL databases do not 
provide any feature of embedding security in the database 
itself. Developers need to impose security in the 
middleware. 

 
Role-based access control is also difficult to enforce 

because of schema-free structure of some of the NoSQL 
databases. Different data are stored in one huge database in 
this type of database. As heterogeneous data is stored 
together in one database as opposed to relational models this 
becomes a challenge. NoSQL databases like MongoDB and 
Cassandra are failed to ensure ACID properties. They are 
generally resides on the concept of BASE (Basically 
available, Soft state, Eventual consistency). The focus of 
BASE is the permanent availability rather than consistency. 

 
In GemStone database, object level privileges are given 

by authorizing the Segment. So Administrator has to plan 
the segment according to the privileges given on various 
objects to the users. So, in GemStone security is easier to 
implement if it is built into the application design at the 
beginning, not added later. Apart from this, the other 
limitation of GemStone includes the maintenance of 
segment. Many objects can refer to any segment. If the 
segment has to be removed then we must first decide 
whether we wish to remove all the objects assigned to it or 
whether we wish to reassign some or all of them to another 
segment. As long as an object that you or another user can 
refer to within your application is assigned to the segment, 
GemStone cannot reclaim the storage used by the segment. 
[15] 

 
The Table 1 summarizes and compares various security 

features provided by NoSQL databases. 
 

Table 1: Comparison among MongoDB, Cassandra, GemStone, db4o and Objectivity/DB 
Sr. No. Features MongoDB Cassandra GemStone db4o Objectivity/DB 

1 Data Store 
Category 

Document store Column store Object store Object store Object store 

2 Authentication Provides 
internal as well 
as external 
authentication 

Provides only 
internal 
authentication 
mechanism. 

Provides its 
own 
authentication 
protocol as well 

Provides only 
internal 
authentication 
mechanism. 

Provides 
Kerberos 
authentication 
mechanism by 



Vaishali J. Dindoliwala et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,333-338 

© 2015-19, IJARCS All Rights Reserved                    338 

mechanism. as Kerberos default. Also 
uses Advanced 
Multithreaded 
Server (AMS) 
protocol. 

3 Authorization Provided by  
roles, LDAP 
authorization 
and Field-Level  
Security with 
Read-Only 
Views 

permission/resource  
combinations are 
set according to the 
roles for the user 

Provides Object 
level 
authorization 

Offers file level 
authorization. 

Relies on the 
operating 
system and file 
systems for 
access control 

4 RBAC Supported Supported Not Supported Not Supported Not Supported 
5 Encryption Supported Supported Not provided Provides the 

eXtended Tiny 
Encryption 
Algorithm 

Doesn’t provide 
any inbuilt 
encryption 

6 Auditing Supported Supported with 
limited capability 

Supported with 
limited 
capability 

No auditing 
capabilities 

No auditing 
capabilities 

 
VI. CONCLUSION 

 
NoSQL databases are designed to provide real-time 

performance while managing large amount of data. They

VII. REFERENCES 

 do 
not use SQL as the primary query language, also they do not 
typically require fixed table schemas. Each NoSQL databases 
are built to handle different challenges and hence security is 
never part of the model of its design stage. Developers have to 
embed security in the middleware to overcome the security 
issues in NoSQL databases. However, clustering aspect of 
NoSQL databases poses additional challenges to the 
robustness of such security practices. As opposed to relational 
databases, they trade consistency and security for performance 
and scalability.  

 

 
[1] E. Sahafizadeh and M. A. Nematbakhsh, “A survey on security 

issues in Big Data and NoSQL”, Advances in Computer 
Science: an International Journal, vol. 4, issue 4, no.16 , July 
2015, pp. 68-72, ISSN : 2322-5157. 

[2] J.  Ahmed and R. Gulmeher, “NoSQL databases: New trend of 
databases, emerging reasons, classification and security issues”, 
International Journal of Engineering Sciences and Research 
Technology, vol. 4(6),   June, 2015, pp. 176-184, ISSN: 2277-
9655. 

[3] P. Badlani.,”NoSQL in action - A new pathway to database”, 
International Journal of Science and Research, vol. 5, issue 6, 
June 2016, pp. 872-877. 

[4] A MongoDB White Paper, “MongoDB Security Architecture”, 
Dec. 2016. 

[5] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes and J. 
Abramov.,”Security issues in NoSQL databases”, International 

Joint Conference of IEEE TrustCom, 2011, pp. 541-
547,  ISBN: 

[6] Dadapeer and N. M. Indravasan., G. Adarsh,” A survey on 
security of NoSQL databases”, International Journal of 
Innovative Research in Computer and Communication 
Engineering, vol. 4, issue 4, Apr. 2016, pp. 5249 – 5254, ISSN : 
2320-9798. 

978-1-4577-2135-9. 

[7] A. K. Zaki, “NoSQL databases: new millennium database for 
big data, big users, cloud computing and its security challenges”, 
International Journal of Research in Engineering and 
Technology, vol. 03, issue 03, May 2014, pp. 403 – 409, ISSN: 
2321-7308. 

[8] E. Plugge, D. Hows, P. Membrey and T. Hawkins,”The 
Definitive Guide to MongoDB: A complete guide to dealing 
with Big Data using MongoDB”, Third Edition, Apress. 

[9] T. Muirhead,”Object databases and object persistence for  
openEHR”, Thesis of Bachelor of Information Technology, 
Computer and Information Science, UniSA, 2009. 

[10] P. Hauser, “Review of db4o from db4objects”, University of 
Applied Sciences Rapperswil, Switzerland. 

[11] MongoDB Documentation Release 2.6.9, MongoDB 
Documentation Project, March 27, 2015. 

[12] K. Chodorow, “MongoDB: The Definitive Guide”, second 
edition, O’Reilly, May 2013. 

[13] A MongoDB White Paper, MongoDB Architecture Guide, 
MongoDB 3.2. 

[14] E. Hewitt, “Cassandra : The Definitive Guide”, O’Reilly, 2010, 
ISBN: 978-1-449-39041-9. 

[15] GemStone Programming Guide, GemStone Systems Inc., 
GemStone Version 5.0, July 1996. 

[16] Fidels Cybersecurity, “Current data security issues of NoSQL 
databases”, January 2014. 

[17] https://docs.datastax.com/en/cql/3.3/cql/cql_using/useSecureRol
es.html 

[18] https://docs.datastax.com/en/cql/3.3/cql/cql_using/useSecurePer
mission.html 

 


	Introduction
	5TNoSQL Data Storage Models
	5TKey-Value Store
	5TDocument Store
	Column Store
	5TObject Store
	5TGraph Databases

	0TLiterature Review
	security features of NoSQL Databases
	MongoDB
	Authentication: In MongoDB, authentication of users can be managed from within the database itself or via integration with an external mechanism i.e. LDAP, x.509 PKI certificates or a Kerberos service. [13]
	Authorization: In MongoDB, administrators can define the specific permissions for an application or user has and they can decide what data an application or user can see when querying the database. The authorization mechanism in MongoDB includes roles...
	Auditing:
	Data Encryption: Data can be encrypted over the network and at rest in permanent storage and backups. MongoDB Enterprise Advanced supports FIPS 140-2 encryption if run in FIPS Mode with a FIPS validated Cryptographic module. There are multiple ways to...

	Cassandra
	Authentication: Cassandra supports only internal authentication mechanism. External authentication mechanism such as through 3rd party authentication/authorization tool e.g. LDAP is not supported yet. Cassandra 3.0 authentication is roles-based and st...
	Authorization: Cassandra uses the GRANT/REVOKE security paradigm to manage object permissions as a part of authorization. In Cassandra,0T 0T5Tpermissions0T5T 0Ton database0T 0T5Tresources0T5T 0Tare granted to0T 0T5Troles5T. Roles-based access control ...
	Create - keyspace, table, function, role, index
	Alter - keyspace, table, function, role
	Drop - keyspace, table, function, role, index
	Select - keyspace, table
	Modify (Insert, Update, Delete, Truncate) -  keyspace, table
	Authorize (Grant and Revoke Permissions) -      keyspace, table, function, role, MBean (in Cassandra 3.6 and later)
	Describe – list roles
	Execute  – functions

	Data Encryption: There is a support for at-rest data encryption through Transparent Data Encryption (TDE) from version 3.2. [16]
	Auditing: Auditing is available in Enterprise Cassandra as a log4j-based integration and a per node basis. To get the maximum audit information, turning on auditing on every node is recommended. Filters are available for logging using a combination of...

	GemStone
	Authentication : In GemStone, each user is identified by unique userID and password. It supports its own authentication protocol as well as the Kerberos scheme. A user is represented by an instance of class UserProfile. A UserProfile contains userID, ...
	Authorization : Authorization exists within GemStone and controls individual object access. It is implemented at the lowest level of basic object access to prevent users from circumventing the authorization checking. Objects can’t be accessed from any...
	Auditing: Administrator can also configure a GemStone system to monitor failures to log in and he can also configure system to disable a user account after a certain number of failed attempts to log into the system through that account. [15]

	db4o
	Objectivity/DB

	Discussion on Security Challenges in NoSQL Databases
	conclusion
	References

