
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1651

ISSN No. 0976-5697

Semantic model for Complex object in Object oriented database

Sonal Kanungo

Smt.Z.S.Patel College of
Computer Application, Surat

Rustom. D Morena
Department of Computer Science

Veer Narmad South Gujarat University
 Surat

Abstract: Object Oriented DataBase Management System is a collection of objects. The objects encapsulate the attributes and associated
methods or member functions. One of the most important feature of Object-oriented databases have the capability to reference objects of
complex structures, to make them perfect for complex data presentation. This capability is expected to build the semantic content of databases.
They ought to support basic structural modeling and interrelationship normally. The support of complex objects forces a few necessities. The
support of complex objects imposes several requirements.
Dynamic environment makeschanges in object and schema, that means change in classes, change in relationship between classes and even
change in class lattice. This will affect not only stored objects as well as creation of new objects in database too.
Previous research presented models for the extended semantics of composite objects with some shortcomings. To eliminate shortcoming, we are
presenting dynamic model for object oriented database applications to meet complex requirements.

Keywords:Relationship, Composite object, Association, Inheritance, Composition

1. INTRODUCTION

Object-oriented databases offer more adaptable presentation
than traditional database systems. The object-oriented
database will enable protection and security systems to be
based on the notion of object. There is a natural
correspondence between objects and real-world entities [1].
The data model incorporated into a database system
characterizes a structure of concepts that can be utilized to
express the real-world semantics of conventional (relational,
network, hierarchical) data models, which has rigid
framework therefore there will always be a semantic gap
between an application/real-world and its database
representation. Today, object-oriented databases based on
the object-oriented data model are an attempt to limit this
semantic gap [3]. The system designed using OODBMS are
much nearer to the real world as the real-world system, as
they are directly mapped into the system [7]. The evolution
of objects must have done in such a way that transaction can
reach out in time, provide the complex recovery and
consistent concurrency control systems [13].
The evolutionary nature of object oriented database, theway
of uses, expansion of domain and change in operations,
ought to be supported robust security systems without block
or shutdown system.These applications require support for
the demonstrating and representation of complex objects and
entities while conventional database and information
management technologies are fundamentally record-based
[2].
An object-oriented data model is a data model that enables
any real-world entity to be demonstrated exactly as an
object. A reference object is one whose presence relies on
upon the presence of another object and is possessed by
precisely one object. Previous studies lack the concepts such
as composite objects and aggregate objects for defining and
manipulating complex collections of related objects [3].
Therefore, new reliable model for composite object is
needed for expressing the fullspectrum of the possible
solutions of concurrencycontrol, recovery, which can also

reduce the excess resource utilization, provide reduction in
deadlocks and gives anefficient and concurrent output [14].
Our research focus on the semantics of composite objects
and show their integration into the object-oriented data
model.
2. RELATIONSHIPS BETWEEN CLASSES

A relationship is logical link between object of one class and
object of another class. A relationship is “an abstraction
stating that objects from certain classes are associated in
some way; the association is given a name so that it can be
manipulated. It is a natural concept used in ordinary
discourse” [4].
Relationships should be dynamic that means it is possible to
define new relationships or remove existing relationship
between classes. Modification in relationship is also
possible. Relationships can be bi-directional or
unidirectional. Relationships can have a cardinality, either
one-to-one, one-to-many, or many-to-many[7].
The object model specifically supports references. Object
instances "reference" each other utilizing OID the identity of
object. The relationships between classes helps us to know
how objects can identify with each other [2].
The object-oriented data model in its conventional frame is
adequate to speak to an accumulation of related objects. As
we have seen, it captures the IS-A relationship between a
class and its superclass, and it allows an object to reference
different objects through its instance variables. IS-PART-OF
relationship between an object and objects references, the
idea of composite objects expressly captures this
relationship [3].The semantics of the class relationships also
useful to examined to discover their lock modes, granule
sizes for characterizing concurrency control in Object
orientated database system [12].
Object oriented database supports inheritance, association,
composition and aggregation relationships.
1) Association
Association is a "has-a" sort relationship. Association
establish the relationship between two classes utilizing

Sonal Kanungo et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1651-1655

© 2015-19, IJARCS All Rights Reserved 1652

through their objects. Relationship in Association can be one
to one, one to many, many to one and many to many [7]. For
example, assume we have two classes then these two classes
are said to be "has-a" relationship if both of these elements
share each other's object for some work and at the same
time. They can exist without each other’s reliance or both
have their own particular life time. To quality as an
association, and object and another object must have the
accompanying relationship [15].

2) Aggregation
Like composition, an aggregation is as yet a part-whole
relationship, where the parts are contained inside the entire,
and it is a unidirectional relationship [2].
In any case, not at all like a creation, parts can have a place
with more than one object at any given moment, and the
entire object is not in charge of the presence and lifespan of
the parts. At the point when an aggregation is created, the
aggregation is not in charge of creating the parts. At the
point when an aggregation is demolished, the aggregation is
not in charge of destroying the parts. We can say that
aggregation models "has-a" relationships. To quality as an
aggregation, an entire object and its parts must have the
accompanying relationship [7].
3) Composition
Composition is a "part-of" relationship. Basically,
composition means utilization of instance variables that are
references to different objects.This relationship enables
classes to be generic for their protection mechanisms, which
are specified when instances are created. Protection is based
on object ownership: every object has exactly one fixed
owner [11].
 In composition relationship both elements are related of
each other for example "motor is part of car", "heart is part
of body"[15]. Give us a chance to take an example of car
and motor. Motor is a part of each car and both are subject
to each other [16]. To qualify as a composition, an object
and a part should have the accompanying relationship.
4) Inheritance
Inheritance is where the one class inherits the attributes and
methodsfrom another class i.e. from parent class. The
advantage of inheritance is that the child relationship doesn't
have to redeclare and redefine all the entities which it
inherits from the parent relationship. It is thusly a way to
reusability [9].
 Inheritance where base relationship has generic code which
is shared by relationships in an inheritance hierarchy. The
inheritance can be classified as exclusive inheritance or
shared inheritance. The inheritance can be single
inheritance, multilevel inheritance, multiple inheritance
allows selective inheritance of a parent class to at least one
child classes. In any case, in hierarchical inheritance, several
sub classes are acquired from the same parent class or the
parent is shared by many siblings.
Inheritance is “IS-A” type of relationship. Inheritance is a
parent-child relationship where we create a new class by
using existing class code. Examples of inheritance can be
that “A is type of B”. For example, is “Apple is a fruit”,
“Ferrari is a car” [2].

3. COMPOSITE OBJECT

Two types of class hierarchies may be created. One is the
IS-A hierarchy where a class has subclasses associated with
it. The second-class hierarchy is the IS-PART-OF hierarchy.
Here an object of a class is considered to be the
aggregation/composition [8].
An object has a number of attributes; the value of an
attribute is itself can be anobject [1].A composite object has
a solitary root object, and the root references different
children objects, each through an example variable. Every
child object can thus reference its own particular children
objects, again through occurrence factors. A parent object
might only claim children objects, and all things considered
the presence of children objects is predicated on the
presence of their parent. Children objects of an object are
along these lines dependent/independent Objects. The object
contains the references to both dependent objects and
independent objects [10].
The nesting of objects in an object-oriented data model is
another intense idea. One essential organization which
should be superimposed on the nested object is the IS-
PART-OF relationship, that is, the thought that an object is a
part of another object. An arrangement of component
objects which shape a single logical entity has been called a
composite object or a complex object [6].
A Vehicle instance then is an object which contains a Body
object and a Drivetrain object, where a Body object has a set
of Door objects, and a Drivetrain object comprises of an
Engine and a Transmission, and a Door has a Position. [3].
We characterize a composite object as an object with a
hierarchy of selective segment objects, and allude to the
hierarchy of classes to which the objects have a place as a
composite object hierarchy [3].
If component object is only part of one composite object, in
which an object cannot be part of more than one object that
means they are independent and relate for some particular
time is also possible. Be that as it may, it doesn't capture the
IS-PART-OF relationship between objects; one object just
references, in any case, does not possess, different objects
[5].
The object-oriented data display, in its conventional frame,
is adequate to speak to a gathering of related objects. A
composite object hierarchy captures the IS-PART-OF
relationship between a parent class and its segment classes
[6].
The model strengths a top-down production of a composite
object; that is, before a component object might be made, its
parent object should as of now exist. This keeps a bottom-up
production of objects by amassing effectively existing
objects. The model requires that the existence of a
component object relies upon the existence of the parent
object; that is, if an object doesnot exist, all its component
objects are likewise deleted. Since it liberates the
applications from searching and erase all nested components
of a deleted object [3].

4. LITERATURE SURVEY

1. Won Kim, Jay Banerjee, Hong-Tai Chou,Jorge F.

Garza, Darrell Woelk: “Composite Object Support in
an Object-Oriented Database System”

Sonal Kanungo et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1651-1655

© 2015-19, IJARCS All Rights Reserved 1653

This paper presented the research into composite objects,
have been implemented in ORION. they described the basic
semantics of composite objects under an object-oriented
data model, two major extensions to the semantics of
composite objects which have turned out to be necessary
subsequently of our support of dynamic schema evolution
and versioning of objects. Also, presented systems we use
for taking advantage of the semantics of composite objects
in enhancing the performance of a database system, by using
the composite object as a unit of clustering on
disk, and as a unit of concurrency control in retrieving from
the database.
2. Won Kim, Elisa Bertino, Jorge F. Garza: “Composite

Objects Revised”
This paper presented another model of composite objects by
neatly isolating out various different semantics which the
model of composite objects developed overloaded on the
reference between a couple of new model distinguishes four
sorts of composite reference, that is, a reference on which
the IS-PART-OF relationship between a couple of objects is
superimposed. This include independent exclusive,
dependent exclusive, dependent shared, and dependent
shared composite references.
3. Xiaoyan Lu, J. WennyRahayu, David Taniar:

“ODMG Extension of Composite Objects in
OODBMS: A Proposal”

This paper proposes an augmentation of ODMG (Object
Data Administration Group) standard for the Object-
Oriented Database Administration Systems (OODBMS).
The augmentation concentrates on composite objects, which
gives another worldview, and furthermore enhances
customary OODBMS to address the issues emerging
fromthe aggregation hierarchy. As of now in ODMG, the
semantic of the aggregation relationship is investigated at
the displaying stage what's more, is portrayed in normal
dialect.
4. Alisdair Wren: “Relationships for object-oriented

programming languages”
In this thesis, demonstrates how relationships are all around
represented in models of object-oriented systems, and
therefore in programmer intuition, however not in object-
oriented languages themselves.

5. SIMULATION

We had created number of user defined dynamic classes and
objects. Domain is made up of classes and relationship is
established between classes.Different types of relationships
are presented, they can be dependent or independent.
Classes can have independent relationship like associations.
In associations, all classes and their objects are independent,
object and classes can create or destroy independently.
‘Uses’ relationship is established with associative classes.
Objects can have reference of each other. Reference can be
unidirectional and bidirectional. Cardinality between
reference objects can be one-one, one-many, many-many,
many-one.
Inheritance is created between classes; the use of inheritance
is reusability. IS-A relationship is created between classes.
Classes can be super classes and sub classes. A superclass
can be derived into more than one subclasses. A subclass
can be inherited from more than one super classes.

Superclass can be inherited into more than one levels of sub
classes.
Composition is having ‘ISA-Part of’ dependent type of
relationship between classes. First owner class will create
then other dependent classes can be created. Objects of
owner class is containing objects of dependent classes. No
object can create or destroyed without each other.
We can also create nested relationship, that means
relationship can be further established between existing
relationships. Any kind of domain with n number of
relationships can be created. The below example banking
system is created.
Classes their relationships and cardinality is established
according to it n number of objects and relationship between
objects are established. Our system can also change and add
relationship to already existing relationships. This is a
Dynamic system, classes and their relationships can be
change any time.

6. FIGURE AND DIAGRAM

Figure 6.1 Class Relationship

Sonal Kanungo et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1651-1655

© 2015-19, IJARCS All Rights Reserved 1654

Figure 6.2 Object relationship Composition

Figure 6.3 Object relationship Association

Figure 6.1 represents relationship between classes. These
classes are having relationships like Association,
Composition and Inheritance. Figure 6.2 Composite object
shows outer object includes objects of another class.
Figure 6.3 Binary Association between objects of two
classes.

7. SCHEMA EVALUATION

Previous methods only describe complex object of only one
type of relationship. Our model represents complex model
from relationship of relationship. That means object can
create not only from single class, it be can create from
multiple relationships.
We can say that an object A has a reference to (or
references) another object B, if B contains the object
identifier (OID) of A.
 We will recognize two sorts of reference from one object to
another: Associative and Composite. A composite reference
is a feeble reference expanded with the IS-PART-OF
relationship; a composite reference from B to an implies that
A will be a part of B.
We additionally refine the semantics of a composite
reference, on the premise of whether the existence of an
object relies on upon the existence of its parent object; that
is, a composite reference might be dependent or
independent. A dependent composite reference from B to an
implies that the existence of A relies on upon the existence
of B; while an independent composite reference does not
convey this extra semantics. The cancellation of an object
will trigger recursive cancellation of all objects referenced
by the object through dependent composite references.
Associative objects are independent, they are not dependent
on each other not with objects of its associative class. They
have independent existence so they can survive without each
other. Objects can create and destroy independently.
Our system is establishing relationships. when we want to
access these related classes, or objects this system give
faster results, as we are saving relationships in form of
objects, which are persist and easy to access.
Schema can be change during Adding a new instance
variable to a class, drop an existing instance variable from a
class, Change the Default value of an instance variable,
adding or dropping of class.

8. DISCUSSION

Complex objects are used in applications like computer-
aided design, computer-aided software engineering,
multimedia and image databases, and document/hypertext
database.
The object, which encapsulates both state and behavior, is a
more normal and realistic portrayal of real-world objects.
OODBMS is more qualified to taking care of complex,
interrelated data than a RDBMS implies that an OODBMS
can beat a RDBMS relying upon the complexity of the data
being dealt with. The object-oriented data model permits the
'real world' to be modeled all the more nearly.
 An object can store all relationships it has with different
objects, including many-to-many relationships, and objects
can be framed into complex objects that the conventional
data models can't adapt to effortlessly. A complex object can
be controlled all in all, yet parts of it (related objects) too,
Addition and deletion operations may have a related object
as an operand. It might likewise happen that a related object
is moved inside a complex object.Composite objects are
easy to access with OID;therefore, they can give better
concurrency control and recovery also.
Conclusion
In this paper, first we displayed another model of composite
objects by neatly isolating out various distinctive semantics
which the model of composite objects developed of
composite reference, that is, a reference on which the IS-
PART-OF relationship between a couple of objects is
superimposed.
Next, we investigated the results of the new model of
composite Objects on the semantics of schema evolution,
authorization, on composite objects. In this paper, we
encourage the utility of composite objects by demonstrating
their utilization as a unit of authorization. We can further
use these objects for concurrency controland
recoverypurposes.

REFERENCE

[1] JAY BANERJEE, HONG-TAI CHOU, JORGE F. GARZA,

WON KIM, DARRELL WOELK, and NAT BALLOU: “Data
Model Issues for Object-Oriented Applications”, ACM
Transactions on Office Information Systems, Vol. 5, No. 1,
January 1987, Pages 3-26.

[2] BANERJEE. J., W. KIM, H.J. KIM, AND H.F. KORTH:
“Semantics and Implementation of Schema Evolution in
Object-Oriented Databases,” in Proc.ACM SIGMOD
Conference, 1987.

[3] WON KIM, JAY BANERJEE, HONG-TAI CHOU, JORGE F.
GARZA, DARRELL WOELK:“Composite Object Support in
an Object-Oriented Database System”, OOPSIA, 87
Proceedings, October 4-8, 1987, page 118-125.

[4] RUMBAUGH, J.: “Relations as Semantic Constructs in an
Object-Oriented Language”, SIGPLAN Notices, Vol.22,
No.12, 1987, pp.466-481

[5] GARZA, J. E, AND W. KIM: “Transaction Management in an
Object-Oriented Database System,” In Proc. ACM-SIGMOD
Intl. Conf. on Management of Data, Chicago, May 1988.

[6] WON KIM, ELISA BERTINO, JORGE F. GARZA:
“Composite Objects Revisited”, 1989 ACM, Page no 337-
347.

[7] JAMES RUMBAUGH MICHAEL BLAHA WILLIAM
PREMERLANI FREDERICK EDDY WILLIAM
LORENSEN: “Object-Oriented Modeling and Design”,
Prentice Hall, 1991.

Sonal Kanungo et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,1651-1655

© 2015-19, IJARCS All Rights Reserved 1655

[8] M.B. THURAISINGHAM: “Mandatory Security In Object-
Oriented Database Systems”, ACM OOPSLA ‘89
Proceedings, October 1-6 1989, page 203-210.

[9] JUHN YOUNG LEE AND SANG H. SON,MYUNG-JOON
LEE: “Issues in Developing Object-Oriented Database
Systems for Real-Time Applications”, 1994 IEEE.

[10] XIAOYAN LU, J. WENNY RAHAYU, DAVID TANIAR:
“ODMG Extension of Composite Objects in OODBMS: A
Proposal”,40th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS Pacific
2002), Sydney, Australia.

[11] ABDELSALAM SHANNEB JOHN POTTER: “Flexible
Exclusion Control for Composite Objects”,the Australasian
Computer ScienceConference(ACSC 2005), The University
of Newcastle, Australia,2005

[12] VENKATASUBRAMANIAN GEETHA AND NILADURI
SREENATH: “Semantic Multi-Granular Lock Model in

Object Oriented Database Systems”, International Journal of
Database Theory and Application Vol. 6, No. 1, February,
2013.

[13] SONAL KANUNGO, R.D. MORENA: “Analysis and
Comparison of Concurrency Control Techniques”,
International Journal of Advanced Research in Computer and
Communication Engineering, Vol. 4, Issue 3, March 2015.

[14] SONAL KANUNGO, R.D. MORENA: “Comparison of
Concurrency Control and Deadlock Handing in Different
OODBMS”, International Journal of Engineering Research &
Technology, Vol. 5 Issue 05, May-2016.

[15] A UNIFORM APPROACH AWAIS RASHID, PETER
SAWYER:” Dynamic Relationships in Object Oriented
Databases”

[16] http://www.infoworld.com

	ABDELSALAM SHANNEB JOHN POTTER: “Flexible Exclusion Control for Composite Objects”,the Australasian Computer ScienceConference(ACSC 2005), The University of Newcastle, Australia,2005
	VENKATASUBRAMANIAN GEETHA AND NILADURI SREENATH: “Semantic Multi-Granular Lock Model in Object Oriented Database Systems”, International Journal of Database Theory and Application Vol. 6, No. 1, February, 2013.
	SONAL KANUNGO, R.D. MORENA: “Analysis and Comparison of Concurrency Control Techniques”, International Journal of Advanced Research in Computer and Communication Engineering, Vol. 4, Issue 3, March 2015.
	SONAL KANUNGO, R.D. MORENA: “Comparison of Concurrency Control and Deadlock Handing in Different OODBMS”, International Journal of Engineering Research & Technology, Vol. 5 Issue 05, May-2016.
	A UNIFORM APPROACH AWAIS RASHID, PETER SAWYER:” Dynamic Relationships in Object Oriented Databases”
	http://www.infoworld.com

