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Abstract: In recent years Through-silicon-via (TSV) based 3D integrated circuit (3D IC) has emerged as an important research area. But due to 
some manufacturing defects there may have some defected TSVs. To solve this problem it is needed to replace faulty TSVs by redundant TSVs. 
Allocation of redundant TSVs to a group of functional TSVs is an attracting solution to recover TSVs faults. In this paper we have addressed an 
approach to allocate redundant TSVs to a group of functional TSVs and to replace defected functional TSVs by the  redundant TSV 
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1. INTRODUCTION 
 
Three dimension integrated circuit (3D IC) is gaining 
significance   attention in semiconductor industry. A 3D IC 
is formed by different active device layers stacked one 
above another and these different layers are connected 
through a vertical connector known as through silicon via 
(TSV). TSVs are used as vertical inter connector so that they 
can act as a single device to achieve improved performance 
like reducing power consumption, smaller footprint, shorter 
wire length and heterogeneous integration than two 
dimensional integrated circuit (2D IC) [1]. During 
manufacturing of 3D IC different types of errors can occur 
in TSVs [2]. TSVs defect may reduce the yield because a 
single TSV defect may paralyze the whole chip, so a 
recovery mechanism is very much essential to overcome 
TSV faults and to make the chip functional. 
    To increase the yield of 3D IC, use of redundant TSV is 
considered as an attractive solution. A redundant TSV is 
used to replace a faulty functional TSV so that signal can be 
rerouted through redundant TSV from lower die to upper 
die. One of the methods to implement the redundant TSV is 
to form a group of functional and redundant TSVs. The idea 
of grouping of functional and redundant TSVs is presented 
in [3, 4]. In [5], it has been shown that the best group ratio 
of functional and redundant TSV is created depending on 
available numbers of multiplexers (MUXs). But in [5] the 
wire length required to reroute the signal has not been 
considered. Hence, we focus on providing higher repair 
capability. The work is also based on utilizing redundant 
TSVs. Regular and redundant TSVs are partitioned into 
groups using a specified group ratio (regular-to-redundant), 
where each group can have multiple spare TSVs and 
multiplexers are used to reroute the signals through a 
redundant TSV in case defective TSVs exist in that group. 
Due to the allocation of multiple TSVs in a group, the repair 
capability is significantly increased. Also in our work, a 

group may have more than one redundant TSV;  so we use 
inner spiral search algorithm to find out the nearest 
redundant TSV for replacing faulty functional TSV. In this 
manner we can reduce the required wire length.    
   The rest of the paper is organized as follows. Section 2 
describes the previous work related to use of redundant 
TSV. Section 3 describes problem we have considered. 
Section 4 describes proposed method and an illustrative 
example is presented in section 5. Section 6 describes 
experimental results and comparison with others’ works and 
finally section 7 concludes this paper. 
 
2. PRIOR WORK 
 
 As of now there is no public data of TSV failure rate. This 
failure rate varies due to various parameters like different 
foundries, maturity of TSV technology, height/width, pitch 
size etc. But TSV process technology has advanced 
significantly in recent years.  
   To improve 3D memory product, Samsung presented [6] a 
TSV redundancy strategy. In [6] two redundant TSVs and 
four functional TSVs are clubbed together to form a group. 
In this method only two faulty TSVs can be replaced as 
there are only two redundant TSV present in this group. 
  Hsieh et al. [7] proposed an architecture of TSVs that 
contains one spare TSV to form a TSV-chain. If there is ‘n’ 
number of functional TSVs and one spare TSV, then the 
redundancy ratio would be 1: n and it can tolerate only one 
TSV fault. In [8], it is shown that an architecture for 
uniformly distributed TSV architecture where a grid of all 
TSVs is formed and if any fault occurs then the signal will 
be rerouted through nearest TSV of that TSV grid. In [9] 
NoC link is used for n n TSVs grid. Here, to overcome the 
fault row or column is added. Suppose a redundant column 
is added, so each spare TSV is added to its corresponding 
row so that it can repair any one of faulty TSVs of that row. 
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If there are M numbers of rows or columns added and the 
number of functional TSVs is N then ratio will be M: N i.e. 
it can repair M number of TSVs failures in each row or 
column grid.   
 In this paper we proposed a uniformly distributed TSV 
architecture and an algorithm to find out nearest redundant 
TSV to recover faults. 
 
3. PROBLEM DEFINITION 

 
 Consider the TSV grid as a 2D matrix, where each element 
represents a TSV. Our problem is to find an architecture and 
corresponding algorithm to find out the faulty TSV and 
replace it with a redundant unused TSV.                                                                                                     
 Our proposed algorithm does a linear search through the 
matrix to find those elements which are faulty TSVs. Then 
the algorithm does a reverse spiral search with respect to 
each element found to be faulty. Then the reverse spiral 
search finds a redundant unused TSV nearest to the faulty 
one and replaces the faulty one with redundant one. 
 
4. PROPOSED TSV REDUNDANCY 

ARCHITECTURE  
 
  In order to handle independent TSV fault, our solution is to 
offer more repair options for each defective TSV. In other 
words we try to increase repair flexibility so that a defective 
TSV can be replaced by a nearest spare TSV. 
 
4.1. Overall Structure 
 The proposed architecture is depicted in Fig1.This 
architecture is linked with TSV pads by switches and wires 
to construct the TSV grid and redundant TSVs are also 
linked with functional TSVs. We have taken an example 
where there is total 192 numbers of regular TSVs and 64 
numbers of redundant TSVs. So total 16 groups have been 
formed and each group contains 12 functional TSVs and 4 
redundant TSVs. In this architecture each of functional 
TSVs is linked with all redundant TSVs. If any fault 
occurred due to TSV fault, then the signal reroutes through a 
nearest redundant TSV. To reroute the signal through a 
redundant TSV, the switch links two pads of faulty TSV to a 
nearest redundant TSV. This process repeats until all 
redundant TSVs are used. Like many 3D-SIC designs [13, 
14] TSVs are fabricated in a regular manner and grouped as 
bundles. These uniformly placed TSVs are linked together 
to construct the proposed TSV redundancy architecture.  
 
4.2. Repair Path Routing 
  The design of switch depends on the placement of 
redundant TSVs. Consider Fig. 2 as an example; here 
redundant TSVs are placed on the middle of the TSV grid. 
As a result, signals can route to any direction (North, South, 
East and West). We use Fig. 2 as an example to introduce 
the concept of repair path and to show its routing capability. 
If there is any faulty TSV (see the crossed circle) detected, 
the signal reroutes through a redundant TSV. The 
connection from a faulty TSV to a redundant TSV is called 
repair path. (see the dotted arrow). 

 
Fig1: Proposed TSV redundancy architecture. 

 

 
Fig 2: Repairing faulty TSV.  

  
4.3. Formation of Groups  
   In our proposed algorithm each group will be having 
maximum 12 functional TSVs and maximum redundant 
TSVs will be distributed depending upon the total number of 
redundant TSV available. Suppose there are 35 functional 
TSVs. So there will be 2 groups having 12 functional TSVs 
each and another group having 11 TSVs. 
  
4.4. Distribution of Redundant TSV  
 Distribution of redundant TSV to each group as follows: 
there are groups containing X, Y and Z numbers of 
functional TSVs, and M is the total number of redundant 
TSVs. So these M number of redundant TSVs will be 
divided into these 3 groups. Total numbers of functional 
TSVs = X + Y + Z. So Group 1 will get x numbers of 
redundant TSVs, where x = (X/S)  S. Where ‘S’ is total 
number of functional TSV. Similarly group 2 will get y 
numbers of redundant TSVs where y = (Y/S) M. Similarly 
group 3 will get z numbers redundant TSVs where z = (Z/S) 

M. 
   Suppose there are 30 functional TSVs and 8 numbers of 
redundant TSVs. So groups will contain 12, 12, and 6 
numbers of functional TSVs. Group 1 and group 2 have 3 
TSVs each and group 3 will get 2 redundant TSVs.                                    

 
4.5 Algorithm 1: SearchRedundent(x, y) 
 
Input: T = Top row, L= Left column, R = Right column, B 
= Bottom row, N= Total number of functional TSVs .x=row 
number, y=column number, i=0, j=0;  
Output: Will find out nearest redundant TSV to replace 
faulty TSV. 
Begin 
Initialize variable 
 T ← x, L ← y, R ← y+1, B ← x+1 
 Search from west to north-west 
i ← x 
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 if (L >= 0 && L < N) 
    for (i=x, i>=T && i >=0;i--) 
        if  TSV[i][L] == 1 
            replacement found at position TSV[i][L] 
                TSV[i][L] will be marked as 0 
END 
Search for North-West to North-East 
j ← L+1 
   if (T >= 0 && T < N && L > 0) 
      for ( j<=R && j<N) 
           if (TSV[T][j] == 1) 
                  replacement found at position TSV[T][j] 
                      TSV [T][j] will be marked as 0 
END 
Search for North-east to South-east 
if(R < N) 
       for (i=T+1; i<=B && i<N; i++) 
             if  (TSV [i][R] == 1) 
                  replacement found at position TSV [i][R] 
                       TSV[i][R] will be marked as 0 
END 
Search for South-east to South-west 
if (B < N) 
     for (j=R-1; j>=L &&  j>=0; j--) 
           if (TSV[B][j] == 1) 
                 replacement found at TSV[B][j] 
                     TSV[B][j] will be marked as 0 
END     
Search for South-west to West 
 if (L >= 0 && L < N)  
       for (i=B -1;i>=x+1 && i<N; i--) 
             if (TSV[i][L] == 1) 
                  replacement found at position TSV[i][L] 
                      TSV[i][L] will be marked as 0 
END 
 T ← T+ 1, L ← L +1, R ← R + 1, B ← B + 1 // Increasing 
search area by 1 both side  Until ( flag=1). 
 
4.6 Calculation of Multiplexer and dependency 
 Let there are ‘X’ numbers of redundant TSVs and ‘Y’ 
numbers of functional TSVs. So Y-to-1 MUXs are needed 
for each redundant TSV. Hence X numbers of Y-to-1 MUXs 
are needed to connect all redundant TSVs to functional 
redundant TSVs. Each Y-to-1 MUXs can be implemented 
by (Y-1) numbers of 2-to-1 MUXs. So the total numbers of 
2-to-1 MUXs needed at input side is X (Y-1). 
At the output end, for each functional TSV each MUX has 
X+1 input line .For Y number of functional TSVs ,Y 
numbers of (X+1)-to-1 MUXs are required. Now the 
number of equivalent 2-to-1 MUXs is Y ((X+1)-1) = XY. 
 So the total Number MUX needed = X (Y-1) + XY = X 
(2Y-1) 
 

Table 1: MUX and dependency calculation 
Functi
onal 
TSV 
(Y) 

Redundant 
TSV (X) 

Total 
MUX 
need 
X(2Y

-1) 

Group 
ratio 
Y:X 

Dependency 

12 4 92 One 12:4 48 
20 8 152 One 

12:4,one 
80 

8:4 
24 8 184 Two 12:4 96 
48 16 368 Four 12:4 192 
54 18 384 Four 

12:4,one 
6:2 

204 

56 20 444 Four 
12:4,one 

8:4 

224 

60 20 460 Five 12:4 240 
100 34 570 Six 

12:4,One 
4:2 

296 

120 40 920 Ten 12:4 480 
130 44 996 Ten 

12:4,one 
10:4 

520 

150 50 1126 Twelve 
12:4,One 

6:2 

588 
 

200 68 1532 Sixteen 
12:4,One 

8:4 

800 

 
5. ILLUSTRATIVE EXAMPLE 
 
Our proposed algorithm is illustrated with an example 
presented in Fig. 4. Here  a 2D matrix representing the TSV 
structure. For each iteration one faulty TSV is detected and 
SearchRedundant(x,y) function is called. x and y are  the 
row number and column number of the faulty TSVs 
respectively . The function does a reverse spiral search 
corresponding to the faulty TSV, finds a redundant TSV 
which is nearest and makes a connection through switches, 
we first assigned some elements with a value 0 (which 
represents functional TSVs), some elements with a value 
1(which represents TSVs those are redundant) and some 
elements with a value 2(that represents faulty TSVs). Fig 4 
shows the initial step. 

 
Fig 4:Initial step. 

In first iteration faulty TSV (mark as 2) will be replaced by 
a redundant TSV. As first faulty TSV (mark as 2) present at 
top row then it will search its right side where it will find a 
functional TSV and then it will search south side where it 
will find a  redundant TSV and then this redundant TSV will 
be marked as 0 as showing in Fig 5. The signal of faulty 
TSV will be rerouted through this redundant TSV. Fig 6 
shows a faulty TSV present at left column of TSV grid to 
find nearest redundant TSV it will search it’s right side and 
it will find a redundant TSV and this redundant will be 
marked as 0 i.e. replacement found.    Fig 7 describes the 
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replacement of right column’s faulty TSVs, to find out 
redundant TSV it will first search its right which is outside 
of TSV grid, so it will stop searching to its right side and it 
will start searching again. It will search its south side and 
then left sight of its present position and it will find a 
redundant TSV which will be marked as 0. 

 
Fig 5: First Iteration 

 
Fig 6: Second Iteration 

 
Fig 7: Third Iteration. 

 
6. RESULTS 

 
 We have done the experiment by considering a constant 
grouping ratio (regular to spare TSV ratio) of 12:4 as 
suggested by our architecture. It is clearly seen from the 
experiment that with the increase of the number of regular 
TSVs, the yield percentage reduces gradually. We fix the 
TSV failure rate in this experiment and it varies 0.001% to 
0.005%. The yield can be obtained based on probabilistic 
model to show yield comparison under Poisson distribution.  
Table 2: Yield analysis with varying number of TSV and 
varying TSV fault. 
 
Regu
lar 
TSV 

1000 100000 1000000 10000000 

TSV  
Failu
re 
 rate 

.00
1 

.0
05 

.
0
1 

.
0
0
1 

.0
0
5 

.
0
1 

.
0
0
1 

.
0
0
5 

.
0
1 

.0
0
1 

.0
0
5 

.0
1 

Yiel
d 
(%) 

99.
99 

99
.9
9 

9
9
.
9
9 

9
9
.
9
9 

9
9.
9
8 

9
8
.
6
6 

9
9
.
9
9 

9
9
.
8
9 

9
6
.
7
3 

9
9.
9
9 

9
8.
9
1 

7
1.
7
4 

Spar
e  
TSV 

333 33333 333333 33333333 

  

 
Fig 8  shows that if we increase the number of TSVs then 
TSV failuar rate decreases. 
 
We have compared our proposed work [5]. In [5] groups are 
created dynamically on the basis of functional TSVs, 
redundant TSVs and available MUXs. But in our work we 
first made the group and then distributed the Redundant 
TSV according to our proposed architecture. Table 3 shows 
the required MUXs as per the proposed architecture for 
different functional and redundant TSVs, 
     If there are more than two redundant TSVs in a group, in 
[10] it is not discussed how to replace faulty TSV by a 
redundant TSV. But in our work we used inner spiral search 
algorithm to replace faulty TSV by a redundant TSV and 
this algorithm always replaces the nearest redundant TSV so 
that the wire length is minimum. 
 
Table 3: Comparison  of required MUXs with previous 
work. 
Functional TSV Redundant TSV Total MUX 

need 
 

[5] Proposed 
work 

[5] Our [5] Propo
sed 

work 
20 20 4 4 148 98 

100 100 50 50 1450 1118 
 

 

Wire length calculation: 

Fig 8: Grid view of TSVs. 
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This is the grid view of our proposed architecture. The 
maximum wire length is between F1 to R4 or F4 to R3. If 
we assume that distance between each block is 50 µm (as 
taken in the work [10]), then maximum wire length is 
141.42 µm i.e. wire length required to connect F1 and R4 
is141.42 µm  . 
 
Table 4: Comparison  of  wire length  with previous 
work 

Number 
of 

Function
al TSV 

Number of 
redundant 
TSV 

Total wire 
length of  
[10] ( µm) 

Our method 
 ( µm) 

10 3 6323 5687 

30 10 13970 9712 

 
Table 4 shows total wire length and it is seen that required 
wire length is less in our work compared to [10,11,12].  
 
7. CONCLUSION  

 
In this paper we have proposed a TSV repair mechanism by 
using redundant TSVs. Also we have proposed a searching 
algorithm to find out nearest redundant TSV. In this 
architecture the number of MUXs has been decreased from 
existing architecture and hence  the cost will be reduce  as 
the number of MUXs is less. As we are replacing the nearest 
redundant TSV to reroute the signal of faulty functional 
TSV, so wire-length will be minimum. Also we have 
increased total dependency of a group. Though we have 
considered only uniformly distributed TSVs, it will be our 
future work to implement for non-uniformly distribution of  
TSVs. 
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