
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 149

ISSN No. 0976-5697

Recovery of TSV Based 3D IC

Sudeep Ghosh
Department of Information Technology

Gurunanak Institute of Technology
Kolkata, India

Mandira Banik
Department Of Computer Science & Engineering

Gurunanak Institute of Technology
Kolkata, India

Tridib Chakraborty

Department of Information Technology
Gurunanak Institute of Technology

Kolkata,India

Abstract: In recent years Through-silicon-via (TSV) based 3D integrated circuit (3D IC) has emerged as an important research area. But due to
some manufacturing defects there may have some defected TSVs. To solve this problem it is needed to replace faulty TSVs by redundant TSVs.
Allocation of redundant TSVs to a group of functional TSVs is an attracting solution to recover TSVs faults. In this paper we have addressed an
approach to allocate redundant TSVs to a group of functional TSVs and to replace defected functional TSVs by the redundant TSV

Key words: Recovery, Redundant TSVs, Multiple dependencies.

1. INTRODUCTION

Three dimension integrated circuit (3D IC) is gaining
significance attention in semiconductor industry. A 3D IC
is formed by different active device layers stacked one
above another and these different layers are connected
through a vertical connector known as through silicon via
(TSV). TSVs are used as vertical inter connector so that they
can act as a single device to achieve improved performance
like reducing power consumption, smaller footprint, shorter
wire length and heterogeneous integration than two
dimensional integrated circuit (2D IC) [1]. During
manufacturing of 3D IC different types of errors can occur
in TSVs [2]. TSVs defect may reduce the yield because a
single TSV defect may paralyze the whole chip, so a
recovery mechanism is very much essential to overcome
TSV faults and to make the chip functional.
 To increase the yield of 3D IC, use of redundant TSV is
considered as an attractive solution. A redundant TSV is
used to replace a faulty functional TSV so that signal can be
rerouted through redundant TSV from lower die to upper
die. One of the methods to implement the redundant TSV is
to form a group of functional and redundant TSVs. The idea
of grouping of functional and redundant TSVs is presented
in [3, 4]. In [5], it has been shown that the best group ratio
of functional and redundant TSV is created depending on
available numbers of multiplexers (MUXs). But in [5] the
wire length required to reroute the signal has not been
considered. Hence, we focus on providing higher repair
capability. The work is also based on utilizing redundant
TSVs. Regular and redundant TSVs are partitioned into
groups using a specified group ratio (regular-to-redundant),
where each group can have multiple spare TSVs and
multiplexers are used to reroute the signals through a
redundant TSV in case defective TSVs exist in that group.
Due to the allocation of multiple TSVs in a group, the repair
capability is significantly increased. Also in our work, a

group may have more than one redundant TSV; so we use
inner spiral search algorithm to find out the nearest
redundant TSV for replacing faulty functional TSV. In this
manner we can reduce the required wire length.
 The rest of the paper is organized as follows. Section 2
describes the previous work related to use of redundant
TSV. Section 3 describes problem we have considered.
Section 4 describes proposed method and an illustrative
example is presented in section 5. Section 6 describes
experimental results and comparison with others’ works and
finally section 7 concludes this paper.

2. PRIOR WORK

 As of now there is no public data of TSV failure rate. This
failure rate varies due to various parameters like different
foundries, maturity of TSV technology, height/width, pitch
size etc. But TSV process technology has advanced
significantly in recent years.
 To improve 3D memory product, Samsung presented [6] a
TSV redundancy strategy. In [6] two redundant TSVs and
four functional TSVs are clubbed together to form a group.
In this method only two faulty TSVs can be replaced as
there are only two redundant TSV present in this group.
 Hsieh et al. [7] proposed an architecture of TSVs that
contains one spare TSV to form a TSV-chain. If there is ‘n’
number of functional TSVs and one spare TSV, then the
redundancy ratio would be 1: n and it can tolerate only one
TSV fault. In [8], it is shown that an architecture for
uniformly distributed TSV architecture where a grid of all
TSVs is formed and if any fault occurs then the signal will
be rerouted through nearest TSV of that TSV grid. In [9]
NoC link is used for n n TSVs grid. Here, to overcome the
fault row or column is added. Suppose a redundant column
is added, so each spare TSV is added to its corresponding
row so that it can repair any one of faulty TSVs of that row.

Sudeep Ghosh et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,149-153

© 2015-19, IJARCS All Rights Reserved 150

If there are M numbers of rows or columns added and the
number of functional TSVs is N then ratio will be M: N i.e.
it can repair M number of TSVs failures in each row or
column grid.
 In this paper we proposed a uniformly distributed TSV
architecture and an algorithm to find out nearest redundant
TSV to recover faults.

3. PROBLEM DEFINITION

 Consider the TSV grid as a 2D matrix, where each element
represents a TSV. Our problem is to find an architecture and
corresponding algorithm to find out the faulty TSV and
replace it with a redundant unused TSV.
 Our proposed algorithm does a linear search through the
matrix to find those elements which are faulty TSVs. Then
the algorithm does a reverse spiral search with respect to
each element found to be faulty. Then the reverse spiral
search finds a redundant unused TSV nearest to the faulty
one and replaces the faulty one with redundant one.

4. PROPOSED TSV REDUNDANCY

ARCHITECTURE

 In order to handle independent TSV fault, our solution is to
offer more repair options for each defective TSV. In other
words we try to increase repair flexibility so that a defective
TSV can be replaced by a nearest spare TSV.

4.1. Overall Structure
 The proposed architecture is depicted in Fig1.This
architecture is linked with TSV pads by switches and wires
to construct the TSV grid and redundant TSVs are also
linked with functional TSVs. We have taken an example
where there is total 192 numbers of regular TSVs and 64
numbers of redundant TSVs. So total 16 groups have been
formed and each group contains 12 functional TSVs and 4
redundant TSVs. In this architecture each of functional
TSVs is linked with all redundant TSVs. If any fault
occurred due to TSV fault, then the signal reroutes through a
nearest redundant TSV. To reroute the signal through a
redundant TSV, the switch links two pads of faulty TSV to a
nearest redundant TSV. This process repeats until all
redundant TSVs are used. Like many 3D-SIC designs [13,
14] TSVs are fabricated in a regular manner and grouped as
bundles. These uniformly placed TSVs are linked together
to construct the proposed TSV redundancy architecture.

4.2. Repair Path Routing
 The design of switch depends on the placement of
redundant TSVs. Consider Fig. 2 as an example; here
redundant TSVs are placed on the middle of the TSV grid.
As a result, signals can route to any direction (North, South,
East and West). We use Fig. 2 as an example to introduce
the concept of repair path and to show its routing capability.
If there is any faulty TSV (see the crossed circle) detected,
the signal reroutes through a redundant TSV. The
connection from a faulty TSV to a redundant TSV is called
repair path. (see the dotted arrow).

Fig1: Proposed TSV redundancy architecture.

Fig 2: Repairing faulty TSV.

4.3. Formation of Groups
 In our proposed algorithm each group will be having
maximum 12 functional TSVs and maximum redundant
TSVs will be distributed depending upon the total number of
redundant TSV available. Suppose there are 35 functional
TSVs. So there will be 2 groups having 12 functional TSVs
each and another group having 11 TSVs.

4.4. Distribution of Redundant TSV
 Distribution of redundant TSV to each group as follows:
there are groups containing X, Y and Z numbers of
functional TSVs, and M is the total number of redundant
TSVs. So these M number of redundant TSVs will be
divided into these 3 groups. Total numbers of functional
TSVs = X + Y + Z. So Group 1 will get x numbers of
redundant TSVs, where x = (X/S) S. Where ‘S’ is total
number of functional TSV. Similarly group 2 will get y
numbers of redundant TSVs where y = (Y/S) M. Similarly
group 3 will get z numbers redundant TSVs where z = (Z/S)

M.
 Suppose there are 30 functional TSVs and 8 numbers of
redundant TSVs. So groups will contain 12, 12, and 6
numbers of functional TSVs. Group 1 and group 2 have 3
TSVs each and group 3 will get 2 redundant TSVs.

4.5 Algorithm 1: SearchRedundent(x, y)

Input: T = Top row, L= Left column, R = Right column, B
= Bottom row, N= Total number of functional TSVs .x=row
number, y=column number, i=0, j=0;
Output: Will find out nearest redundant TSV to replace
faulty TSV.
Begin
Initialize variable
 T ← x, L ← y, R ← y+1, B ← x+1
 Search from west to north-west
i ← x

Sudeep Ghosh et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,149-153

© 2015-19, IJARCS All Rights Reserved 151

 if (L >= 0 && L < N)
 for (i=x, i>=T && i >=0;i--)
 if TSV[i][L] == 1
 replacement found at position TSV[i][L]
 TSV[i][L] will be marked as 0
END
Search for North-West to North-East
j ← L+1
 if (T >= 0 && T < N && L > 0)
 for (j<=R && j<N)
 if (TSV[T][j] == 1)
 replacement found at position TSV[T][j]
 TSV [T][j] will be marked as 0
END
Search for North-east to South-east
if(R < N)
 for (i=T+1; i<=B && i<N; i++)
 if (TSV [i][R] == 1)
 replacement found at position TSV [i][R]
 TSV[i][R] will be marked as 0
END
Search for South-east to South-west
if (B < N)
 for (j=R-1; j>=L && j>=0; j--)
 if (TSV[B][j] == 1)
 replacement found at TSV[B][j]
 TSV[B][j] will be marked as 0
END
Search for South-west to West
 if (L >= 0 && L < N)
 for (i=B -1;i>=x+1 && i<N; i--)
 if (TSV[i][L] == 1)
 replacement found at position TSV[i][L]
 TSV[i][L] will be marked as 0
END
 T ← T+ 1, L ← L +1, R ← R + 1, B ← B + 1 // Increasing
search area by 1 both side Until (flag=1).

4.6 Calculation of Multiplexer and dependency
 Let there are ‘X’ numbers of redundant TSVs and ‘Y’
numbers of functional TSVs. So Y-to-1 MUXs are needed
for each redundant TSV. Hence X numbers of Y-to-1 MUXs
are needed to connect all redundant TSVs to functional
redundant TSVs. Each Y-to-1 MUXs can be implemented
by (Y-1) numbers of 2-to-1 MUXs. So the total numbers of
2-to-1 MUXs needed at input side is X (Y-1).
At the output end, for each functional TSV each MUX has
X+1 input line .For Y number of functional TSVs ,Y
numbers of (X+1)-to-1 MUXs are required. Now the
number of equivalent 2-to-1 MUXs is Y ((X+1)-1) = XY.
 So the total Number MUX needed = X (Y-1) + XY = X
(2Y-1)

Table 1: MUX and dependency calculation
Functi
onal
TSV
(Y)

Redundant
TSV (X)

Total
MUX
need
X(2Y

-1)

Group
ratio
Y:X

Dependency

12 4 92 One 12:4 48
20 8 152 One

12:4,one
80

8:4
24 8 184 Two 12:4 96
48 16 368 Four 12:4 192
54 18 384 Four

12:4,one
6:2

204

56 20 444 Four
12:4,one

8:4

224

60 20 460 Five 12:4 240
100 34 570 Six

12:4,One
4:2

296

120 40 920 Ten 12:4 480
130 44 996 Ten

12:4,one
10:4

520

150 50 1126 Twelve
12:4,One

6:2

588

200 68 1532 Sixteen
12:4,One

8:4

800

5. ILLUSTRATIVE EXAMPLE

Our proposed algorithm is illustrated with an example
presented in Fig. 4. Here a 2D matrix representing the TSV
structure. For each iteration one faulty TSV is detected and
SearchRedundant(x,y) function is called. x and y are the
row number and column number of the faulty TSVs
respectively . The function does a reverse spiral search
corresponding to the faulty TSV, finds a redundant TSV
which is nearest and makes a connection through switches,
we first assigned some elements with a value 0 (which
represents functional TSVs), some elements with a value
1(which represents TSVs those are redundant) and some
elements with a value 2(that represents faulty TSVs). Fig 4
shows the initial step.

Fig 4:Initial step.

In first iteration faulty TSV (mark as 2) will be replaced by
a redundant TSV. As first faulty TSV (mark as 2) present at
top row then it will search its right side where it will find a
functional TSV and then it will search south side where it
will find a redundant TSV and then this redundant TSV will
be marked as 0 as showing in Fig 5. The signal of faulty
TSV will be rerouted through this redundant TSV. Fig 6
shows a faulty TSV present at left column of TSV grid to
find nearest redundant TSV it will search it’s right side and
it will find a redundant TSV and this redundant will be
marked as 0 i.e. replacement found. Fig 7 describes the

Sudeep Ghosh et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,149-153

© 2015-19, IJARCS All Rights Reserved 152

replacement of right column’s faulty TSVs, to find out
redundant TSV it will first search its right which is outside
of TSV grid, so it will stop searching to its right side and it
will start searching again. It will search its south side and
then left sight of its present position and it will find a
redundant TSV which will be marked as 0.

Fig 5: First Iteration

Fig 6: Second Iteration

Fig 7: Third Iteration.

6. RESULTS

 We have done the experiment by considering a constant
grouping ratio (regular to spare TSV ratio) of 12:4 as
suggested by our architecture. It is clearly seen from the
experiment that with the increase of the number of regular
TSVs, the yield percentage reduces gradually. We fix the
TSV failure rate in this experiment and it varies 0.001% to
0.005%. The yield can be obtained based on probabilistic
model to show yield comparison under Poisson distribution.
Table 2: Yield analysis with varying number of TSV and
varying TSV fault.

Regu
lar
TSV

1000 100000 1000000 10000000

TSV
Failu
re
 rate

.00
1

.0
05

.
0
1

.
0
0
1

.0
0
5

.
0
1

.
0
0
1

.
0
0
5

.
0
1

.0
0
1

.0
0
5

.0
1

Yiel
d
(%)

99.
99

99
.9
9

9
9
.
9
9

9
9
.
9
9

9
9.
9
8

9
8
.
6
6

9
9
.
9
9

9
9
.
8
9

9
6
.
7
3

9
9.
9
9

9
8.
9
1

7
1.
7
4

Spar
e
TSV

333 33333 333333 33333333

Fig 8 shows that if we increase the number of TSVs then
TSV failuar rate decreases.

We have compared our proposed work [5]. In [5] groups are
created dynamically on the basis of functional TSVs,
redundant TSVs and available MUXs. But in our work we
first made the group and then distributed the Redundant
TSV according to our proposed architecture. Table 3 shows
the required MUXs as per the proposed architecture for
different functional and redundant TSVs,
 If there are more than two redundant TSVs in a group, in
[10] it is not discussed how to replace faulty TSV by a
redundant TSV. But in our work we used inner spiral search
algorithm to replace faulty TSV by a redundant TSV and
this algorithm always replaces the nearest redundant TSV so
that the wire length is minimum.

Table 3: Comparison of required MUXs with previous
work.
Functional TSV Redundant TSV Total MUX

need

[5] Proposed
work

[5] Our [5] Propo
sed

work
20 20 4 4 148 98

100 100 50 50 1450 1118

Wire length calculation:

Fig 8: Grid view of TSVs.

Sudeep Ghosh et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,149-153

© 2015-19, IJARCS All Rights Reserved 153

This is the grid view of our proposed architecture. The
maximum wire length is between F1 to R4 or F4 to R3. If
we assume that distance between each block is 50 µm (as
taken in the work [10]), then maximum wire length is
141.42 µm i.e. wire length required to connect F1 and R4
is141.42 µm .

Table 4: Comparison of wire length with previous
work

Number
of

Function
al TSV

Number of
redundant
TSV

Total wire
length of
[10] (µm)

Our method
 (µm)

10 3 6323 5687

30 10 13970 9712

Table 4 shows total wire length and it is seen that required
wire length is less in our work compared to [10,11,12].

7. CONCLUSION

In this paper we have proposed a TSV repair mechanism by
using redundant TSVs. Also we have proposed a searching
algorithm to find out nearest redundant TSV. In this
architecture the number of MUXs has been decreased from
existing architecture and hence the cost will be reduce as
the number of MUXs is less. As we are replacing the nearest
redundant TSV to reroute the signal of faulty functional
TSV, so wire-length will be minimum. Also we have
increased total dependency of a group. Though we have
considered only uniformly distributed TSVs, it will be our
future work to implement for non-uniformly distribution of
TSVs.

REFERENCES

[1]. R. Weerasekera et al, “Extending Systems-on chip to the

Third Dimension: Performance,Cost and Technological

Tradeoffs,” in Int. Conference on Computer-Aided design,
pp.212-219, 2007.

[2]. H. Chen, J.-Y. Shih, S.-W. Li, H.-C. Lin, M.-J. Wang, and C.-
N.Peng., “Electrical tests for three-dimensional ics (3dics)
with tsvs,” in Proc. of 3D Test Workshop Informal Digest,
2010.

[3]. Yi Zhao, Saqib Khursheed, Bashir M. Al-Hashimi, “Cost-
Effective TSV Grouping for Yield mprovement of 3D-ICs”, in
Proc. Asian Test Symposium, pp: 201-206, 2011.

[4]. Ang-Chih Hsieh, TingTing Hwang, Ming-Tung Chang, Chih-
Mou Tseng and Hung-Chun Li, “TSV Redundancy:
Architecture and Design Issues in 3D IC”, in Proc. DATE, pp:
166-171, 2010.

[5]. Surajit Kumar Roy, Sobitri Chatterjee, Chandan Giri and
Hafizur Rahaman,“Repairing of Faulty TSVs using Available
Number of Multiplexers in 3D ICs”, in Proc. Of ASQED, pp
155-160, 2013.

[6]. U. Kang, et al. 8 Gb 3-D DDR3 DRAM using through-
silicon-via technology. IEEE Journal of Solid-State Circuits,
45(1):111–119, Jan.2010.A.C.

[7]. Hsieh, et al. TSV redundancy: Architecture and design issues
in 3D IC. In Proc. Design, Automation, and Test in Europe
Conf. Exhibition,pp. 166–171, 2010.

[8]. Li Jiang, Qiang Xu, and Bill Eklow : On Effective TSV
Repair for 3D-Stacked ICs. Design and Automated test in
Europe ,2012.

[9]. I. Loi, et al. A low-overhead fault tolerance scheme for TSV-
based 3D network on chip links. In Proc. Int’l Conf. on
Computer-Aided Design,pp. 598–602, 2008.

[10]. Surajit Kumar Roy, Kaustav Roy, Chandan Giri and Hafizur
Rahaman : Recovery of Faulty TSVs in 3D ICs, 16th Int'l
Symposium on Quality Electronic Design, pp 533-
536,2015.F.

[11]. Ye and Krishnendu Chakrabarty “TSV Open Defects in 3D
Integrated Circuits: Characterization, Test and OptimalSpare
Allcation”, in Proc. DAC, pp: 1024-1030,2012.

[12]. Jing Xie, Yu Wang and Yuan Xie, “Yield-Aware Time-
Efficient Testing and Self-fixing Design For TSV-Based 3D
ICs” in Proc.Asia and South Pacific Design Automation
Conference (ASPDAC),pp: 738 - 743, 2012.

[13]. M. Kawano, et al. A 3D packaging technology for 4 Gbit
stacked DRAM with 3 Gbps data transfer. In IEEE Int’l
Electron Devices Meeting, pp.1–4, 2006.

[14]. T. Zhang, et al. A customized design of DRAM controller for
on-chip 3D DRAM stacking. In Proc. IEEE Conf. on Custom
Integrated Circuits, pp. 1–4.

	INTRODUCTION
	PRIOR WORK
	PROBLEM DEFINITION
	PROPOSED TSV REDUNDANCY ARCHITECTURE
	ILLUSTRATIVE EXAMPLE
	RESULTS
	CONCLUSION

