
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 129

ISSN No. 0976-5697

A Study on the Current Trends in Software Testing Tools

Siddharth Bhargava, Sahil Guleria, Ajita and Gaurang
School of Computer Science and Engineering

VIT University, Vellore, India

Abstract: This paper describes the recent developments that have been seen in the software testing tools, in the past two decades. With
the current rapid growth observed in technology, hardware and software likewise, it has become imperative that software testing tools
become equally dynamic, scalable and portable in nature, just like the product it is meant to test. The study investigates the various new
and emerging trends which have been introduced in the field of testing and what is the general approach and choice of the developer or
the tester while selecting a tool for a particular application.

Keywords: Software testing, Testing tools, dynamic, scalable and portable, selection of tool.

1. INTRODUCTION

Software testing forms an integral part of any Software
Development Life Cycle. It focuses on verifying and
validating a software process, product or the project itself.
Based on a set of metrics, the tests can be used to determine
various attributes of the software while at the same time,
help pinpoint errors or bugs present in the software.
Software testing helps develop a robust, fully functional and
stable product.

1.1. Testing Strategies

Testing is a set of activities that can be preplanned and
executed in a systematic manner. Test strategies help design
a proper testing template, which consists of a set of steps
into which the user can place specific test case design
techniques and testing methods. Testing strategies have
some generic characteristics which are always followed,
conduct regular, effective technical reviews; begin at
component level and works outward toward integration of
entire system; different testing techniques suitable for
different software engineering approaches; conducted by
developers and an independent test group.

1.2. Selection of Testing Tools

With the wide variety in the testing strategies as well as
the testing methodology that can be adapted for a given
software, many different testing tools have been developed
to fulfil the purpose of performing the necessary tests. As
per Kaner, Falk, Nguyen, [15] a good testing tool is one
which has a high probability of finding an error, is not
redundant, should be independent of other tests and create
no side effects in the system.

Constance Heitmeyer [6] in his paper describes testing
tools as a medium to help validate a specification, provide
mechanized support for verifying properties, reduce the time
and e ort required to construct (and execute) a set of test
cases. Tools can help find errors that human inspection often
misses. A set of powerful tools can liberate people from
doing the hard intellectual work required to produce high
quality, high assurance software systems. In their paper,
Tanja, Beatriz et al. [19] have suggested a methodological
framework which can be used to evaluate the software
testing techniques and ensure that they follow the desired
guidelines and checklists. Thus, Testing the software not

only requires a planned approach but also appropriate tools.
The choice of the tools depends on the testing methods used
for the given product, application or service it may provide.
Khaled, Rafa et al. [14] have classified the tools as per the
software testing methods. This helps in characterizing the
tests which have limited automated tools. Thus, selection of
tools depends on multiple factors and requires a proper
analysis of the product and the software it uses.

2. CURRENT TRENDS

Technology dynamics show that modern technology is
developing at an unprecedented rate. Changes in software,
hardware and the interfacing have brought about evolution
in the testing tools as well. Many modern testing tools have
been integrated to become compatible with latest technology
as well as the present-day world. Innovations in the field of
code optimization, resource allocation and interfacing, has
resulted in growth of the current testing tools into more user
friendly, customizable and easy to use utilities. Variation
introduced in the tools have resulted in broader applicability
and more testing capability of the tool, itself.

2.1. Visualization

One major new development to the field of testing tools
is the use of visualization to depict the output of the tests. In
her paper, Sita Ramakrishnan [16] uses a visual tool,
LIGHTVIEWS, to describe Object Oriented testing case
studies using visual images, animation and interactive
outputs. While visualizing the results may be an excellent
method of displaying the test outputs, visualization or data
representation can also be used to influence the input fed
into the test and help increase the efficiency of the testing
tools, as seen by Yu Xia Sun et al. [17] where they used
XML representation of the source codes and tested them.
Another reference is made by Benjamin Kormann, Dmitry
Tikhonov, Birgit Vogel-Heuser [9] where they have used
UML Sequence diagrams for testing out the Programmable
Logic Controller (PLC). This has helped reduce the
complexity of the software components.
2.2. Cost Optimization and Resource Management

Optimization of the code and as well as efficient
resource allocation and management has resulted in making
low-cost testing tools which are more efficient and faster in
computation and testing capacity. Dimitris Gizopoulos [4]

Siddharth Bhargava et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,129-131

© 2015-19, IJARCS All Rights Reserved 130

investigated, in his paper, how software-based self-testing
can be used to produce low-cost testing of the embedded
processor cores. Using software architecture-based
regression testing, it is possible help reduce testing cost and
access both high-level and low-level testability, as studied
by Henry Muccini and others [13]. Another cost effective
technique is using virtualization for setting up software test
environments. In the paper by Youngjoo Woo, Seon Yeong
Park and Euiseong Seo [21], they proposed using a virtual
battery as a test subject and subjecting it to discharge of the
virtual machines, as per the consumption of their resources.
A new approach used in developing and testing Artificial
Intelligence and expert systems have been proposed by
Thair Mahmoud and Bestoun Ahmed [12], where they use
fuzzy logic-based adaptive swarm optimization for the
purpose of software testing.

2.3. Open Sourcing and Multi-Platform Integration

Open sourcing of testing tools has helped promote
development of customizable tools which may be highly
specific in nature or generalized in order to test multiple
formats, on various platforms. For instance, TestTalk
proposed in Chang Liu's paper [11], is capable of generating
test descriptions which are platform-independent and tool-
neutral. In the research conducted by Seyed Amir Emami et
al. [2], it has been studied that open source testing tools are
relatively cheaper and easily available for popular
programming platforms. It states that there is active
participation from the open source community in actively
updating and maintaining the tools. These tools serve as an
excellent alternative to their commercially licensed
counterparts. An open source tool, AUSTIN, has been
proposed as an alternative to ETF, the state-of-the-art test
used for software testing of C programs [10].

Another example of implementing open source tools in
an innovative way is through data-driven integration as
explained by Wenming, Xiangling and Jianmei [20], where
four open source testing tools were integrated and used to
create a single complete test solution which potentially
covers the entire test area. It also helps standardizes the
testing process.

2.4. Automated and Intelligent Testing

With better understanding of the working of the testing
tools, automated testing tools have become very popular
among industries who need very precise tests capable of
handling large volumes of data and functions. In the paper
by Eugenia Diaz et al. [3], they proposed a tool which can
automatically generate test cases in order to obtain branch
coverage from the source code. This effectively reduces
software testing time as compared to manual
instrumentation. According to Chorng-Shiuh Koong et al.
[8], automated testing functions can be developed to reduce
the burden and increase the efficiency of the engineer.

An implementation of automated testing includes an
automated black box testing tool for a parallel programming
library as mentioned by Roy Patrick Tan et al. [18]. The tool
enables to not only generate tests, but also perform the
performance, stress and security tests as well. This has
helped achieve high code coverage and gain a high
confidence in the quality of the code. The test's framework
can also be adapted for a number of other kind of tests.
Another dynamic testing technique involves automated

software testing using agents [1]. Xin Guo et al. [5] have
proposed an intelligent multilingual software testing tool
which can help software testers to test the product that is not
in the tester's native language. The tool also includes an
output verifier that helps to verify the applications output
generated (by the test case) and matches it with the expected
output.

Some other different techniques that have been
developed as a modification to the current testing tools
include Chin-Yu Huang's work [7] which suggests that
software fault probability depends on the skill of test teams,
program size, and software testability. Project managers
should buy new automated test tool, technology or
additional manpower which can provide a significant
improvement in software testing and productivity. Another
author, Shiyi Xu [22], has suggested use of fault dominance
as a method to reduce faults in software testing and enhance
effectiveness of the testing.

3. CONCLUSION

The study has shown some of the various techniques
and innovations that have been introduced in the field of
software testing tools, over the past two decades. New and
modernized tools have come up with the ability to be
scalable, portable and executable in various operating
environments. The current trends in the testing tools prove
that the need for the technology is of relevance and there
would be continuous development being made in the field.

REFERENCES

[1] P. Dhavachelvan, G.V. Uma, and V.S.K. Venkatachalapathy.

A new approach in development of distributed framework
for automated software testing using agents. Knowledge-
Based Systems Volume 19 Issue 4, Elsevier, 2006.

[2] Seyed Amir Emami, Jason Chin Lung Sim, and Kwan Yong
Sim. A survey on open source software testing tools: A
preliminary study in 2011. Fourth International Conference
on Machine Vision (ICMV 2011), 2011.

[3] Raquel Blanco Eugenia Daz, Javier Tuya. A modular tool for
automated coverage in software testing.

 Software Technology and Engineering Practice, Eleventh
Annual International Workshop, 2003.

[4] Dimitris Gizopoulos. Low-cost, on-line self-testing of
processor cores based on embedded software routines.
Microelectronics journal, 2004 - Elsevier, 2004.

[5] Xin Guo, William Tay, Tong Sun, and Rodrigo Andres Urra.
Intelligent multilingual software testing tool. Networking,
Sensing and Control, 2008. ICNSC 2008. IEEE International
Conference, 2008.

[6] Constance Heitmeyer. Managing complexity in software
development with formally based tools. Electronic Notes in
Theoretical Computer Science, Elsevier, 2004.

[7] Chin-Yu Huang. Performance analysis of software reliability
growth models with testing-e ort and change-point. Journal
of Systems and Software, 2005 - Elsevier, 2005.

[8] Chorng-Shiuh Koong, Chihhsiong Shih, Pao-Ann Hsiung,
Hung-Jui Lai, Chih-Hung Chang, William C. Chu, Nien-Lin
Hsueh, and Chao-Tung Yang. Automatic testing
environment for multi-core embedded softwareatemes.
Journal of Systems and Software, Volume 85 Issue 1,
Elsevier, pages Pages 43{60, 2012.

[9] Benjamin Kormann, Dmitry Tikhonov, and Birgit Vogel-
Heuser. Automated plc software testing using adapted UML
sequence diagrams. IFAC Proceedings Volume, Elsevier,
2012.

Siddharth Bhargava et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,129-131

© 2015-19, IJARCS All Rights Reserved 131

[10] Kiran Lakhotia, Mark Harman, and Hamilton Gross. Austin:
An open source tool for search based software testing of c
programs. Information and Software Technology, 2013 -
Elsevier, 2013.

[11] Chang Liu. Platform-independent and tool-neutral test
descriptions for automated software testing. ICSE '00
Proceedings of the 22nd international conference on
Software engineering, pages 713{715, 2000.

[12] Thair Mahmoud and Bestoun S. Ahmed. An efficient
strategy for covering array construction with fuzzy logic-
based adaptive swarm optimization for software testing.
Expert Systems with Applications, 2015 - Elsevier, 2015.

[13] Henry Muccini, Marcio Dias, and Debra J. Richardson.
Software architecture-based regression testing.

 Journal of Systems and Software, 2006 - Elsevier, 2006.
[14] Khaled M. Mustafa, Rafa E. Al-Qutaish, and Mohammad I.

Muhairat. Classification of Software Testing Tools Based on
the Software Testing Methods. Second International
Conference on Computer and Electrical Engineering, 2009.

[15] H. Q. Nguyen, Kaner C., and J. Falk. Testing Computer
Software (2d. ed). 1993.

[16] Sita Ramakrishnan. Lightviews - visual interactive internet
environment for learning oo software testing. ICSE, 2000.

[17] Yu Xia Sun and Huo Yan Chen T.H. Tse. Lean

implementations of software testing tools using xml
representations of source codes. International Conference on
Computer Science and Software Engineering, 2008.

[18] Roy Patrick Tan, Pooja Nagpal, and Shaun Miller. An
automated black box testing tool for a parallel programming
library. Software Testing Verification and Validation, 2009.
ICST '09. IEEE International Conference, 2009.

[19] Tanja E.J. Vos, Beatriz Marn, Maria Jose Escalona, and
Alessandro Marchetto. A Methodological Framework for
Evaluating Software Testing Techniques and Tools. 12th
International Conference on Quality Software, 2012.

[20] Guo Wenming, Fu Xiangling, and Feng Jianmei. A data-
driven software testing tools integration system.
Computational Intelligence and Software Engineering
(CiSE), International Conference, 2010.

[21] Youngjoo Woo, Seon Yeong Park, and Euiseong Seo.
Virtual battery: A testing tool for power-aware software.
Journal of Systems Architecture, 2013 - Elsevier, 2013.

[22] Shiyi Xu. Reduction of faults in software testing by fault
domination. Tsinghua Science & Technology, 2007 -
Elsevier, 2007.

