
Volume 8, No. 5, May-June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 90

ISSN No. 0976-5697

Impact of Clones Refactoring on External Quality Attributes of Open Source Softwares

Prabhjot Kaur
Research Scholar

Computer Science and Engg. Department
Punjab Technical University

Jalandhar,India

Puneet Mittal
Assistant Professor

Computer Science and Engg. Department
Baba Banda Singh Bahadur Engineering College

Fatehgarh Sahib, India

Abstract: Code Refactoring [1] is the process of clarifying and simplifying the design of existing code. It changes its internal structure without
altering its external behaviour. Due to code reuse, there is presence of duplicate code in software. Clones are potentially destructive to the
evolution and maintainability of the software. In this paper, we detect clones by clone detector tool and refactor these clones by Jdeodrant tool.
After refactoring of clones, we analyze the impact on external quality attributes of softwares.

Keywords: Refactoring, Metrics, Quality of Software

I. I. INTRODUCTION

Refactoring is basically the behavior preserving
process. Code duplication is a serious problem with software.
Due to code reuse, it leads to duplicate code in software. Roy
et al. [2] discussed various clone detection tools and
techniques.
A. Code Clone

Code clones implies duplicate code in software.
Dictionary meaning of cloning is Duplicacy. In software,
identical code fragment is called code clones. According to
Roy et al. [2] software consists of about 7% to 23% of clone
code. Clone is a code segment in source file that is identical to
another [3]. Similar portion of code in program is called as
code clones. In software, activity of repetition of code is called
as code cloning.
Type 1
If a code segment is copied with some minor amendments in
white spaces, layout and comments then it comes under type-1
or exact clones [4].
Type 2 clones
If a code segment is copied with some modification in
variables name, types, functions and identifiers, then it comes
under Type-2 or renamed clones [4].
Type-3 Clones
If a code segment is copied with some changes like addition or
deletion of statements and alters its variables name, functions
and type, then it comes under type-3 or near miss clones [4].

B. Refactoring
 Software refactoring is the super-set of software
restructuring. Fowler et al. [1] book “Improving the Design of
Existing Code” describes different 22 bad smells in code and
techniques to remove these bad smells. Refactoring is the
method of altering the software system in such a way that its
external behavior does not change but its internal structure is
enhanced. Refactoring only modifies the internal structure of
software so that it will be easy to maintain the software in the
future. Refactoring reduces the complexity of software and
make it easy to understand for user.

C. Refactoring Techniques
The technique that is used to remove clones is called

as Refactoring Techniques. These are set of measures and
steps to keep software clean. There are some basic techniques
for clone proposed by Fowler et al. [1]:

• Extract Method- is applied when the clone segment
are to be found in methods that belong to the same
class. In this condition, extract unified code in a new
private method within the same class [5].

• Extract and Pull up Method- is applied when the
clone segments are to be found in methods that belong
to different sub classes of the same super class. In this
situation, unified code is placed in a new protected
method in the super class [5].

• Introduce Template Method- is a unique case of the
refactoring techniques. If clones do not belong to
previously clone types but have same return type and
identical signature. Then we create an abstract method
with same signature in super class where unified code is
pulled up [5].

• Introduce Utility Method- is applied when the clone
segment is to be found in methods of dissimilar classes
and the segments do not access any instance method or
variables. In this situation, we extract a unified code
into a static method placed within a utility class [5].

D. Quality Attributes
Software Quality Attributes are the characteristics of software
by which quality is described and evaluated. It is divided into
two groups- Internal Quality Attributes and External Quality
Attributes. Metrics calculation tool will calculate internal
quality attributes. External quality attributes are measured with
the help of internal quality attributes.
Internal Quality Attributes are [6] -

• Lack of Cohesion
• Coupling
• Number of Classes
• Abstractness
• Depth of Inheritance
• Lines of Codes
• Weighted Method per Class
• Complexity

Prabhjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,90-95

© 2015-19, IJARCS All Rights Reserved 91

• Hierarchies
• Design Size
• Polymorphism
• Encapsulation

External Quality Attributes are [6] -

• Functionality
• Effectiveness
• Flexibility
• Understandability
• Reusability
• Extendibility

II. LITERATURE SURVEY

 Kamiya et al. [3] proposed a clone detection tool
CCFinder (Code Clone Finder). This tool incorporates the
use of a lexical analyzer which removes the white spaces,
comments from source code and generate token sequence of
code, Then after, token sequence is transformed using certain
rules. This transformation regularizes the identifiers by
partially removing the context information. A special token
replaces the identifiers so that code portions with different
variable names could be returned as clone pairs by the
matching algorithm.
 Garg and Tekchandani [4] introduce an approach to
refactor the clones on the basis of their essentiality. The
approach measures the maintenance overhead in terms of
repetitiveness, size of clones and complexity. They find clones
using CCFinder clone detection tool. After detection of clones,
calculate efforts required in maintaining clones. They arrange
clones according to their value of maintenance overhead. The
clones which having high value should be refactor first.
 Tstanalis et al. [5] propose an approach to check the
refactorability of clones. They defined pre-condition which are
checked during refactorability. If these pre-condition are
satisfied, then we can remove clones easily. If these are
violated, then refactorability of that clone is not possible. They
used four clone detector tools- CCFinder, Deckard, CloneDR,
Nicad.They found that clone with a close distance tends to be
more refactorable than more distant. Type 1 clones are more
refactorable than other types of clones.

Fontana et al. [7] investigates the impact of clone
refactoring on quality attributes internal quality attributes like
complexity, coupling and cohesion. They used three clone
detection tools PMD, Bahumas and CodePro on two open
source software– Ant and GhanttProject. Intellij IDEA tool is
used for refactoring. They analyze that, after refactoring there
is improvement in cohesion, decrement in coupling,
complexity and lines of code.

Alshayed et al. [8] investigates the effect of
refactoring on software quality attributes. He focused on
quality attributes like adaptability, maintainability, reusability,
understandability and testability. They apply refactoring on
three open source software- terpPaint, UML tool and Rabtpad.
But after refactoring, he concludes that it does not necessary
that after refactoring there is increase in quality of software.

III. PROBLEM FORMULATION

 Poorly designed software is difficult to understand
and maintain. Software maintenance can take 50% of the cost

incur in developing a software. So it becomes difficult for
software developer to maintain high quality and low cost of
software. Fowler [1] stated that, the duplicate code smell is the
most critical one and hence the first one to be refactor. Main
objective is, to detect clones in open source java software.

Objectives of the study are:-

1. To study various types of clones and refactoring
techniques to remove these clones from software.

2. To find the clones in an open source softwares.
3. To remove clones from softwares by applying the

appropriate refactoring technique.
4. To calculate the external quality attributes of

software.
5. To compare external quality attributes of software

before refactoring and after refactoring.

IV. RESEARCH METHOLOGY

A. Methology
 CCFinder [3] is used as clone detection tool.

Jdeodrant[9] is a refactoring plug-in which is used to
refactor the clones according to their respective
techniques. Eclipse metrics plugin used to calculate the
internal quality attributes of source code. Object
oriented open source software are JChart 2D (3.2.1)
[10], apache-ant (1.7.0) [11], JMeter (2.3.2) [12] and
JEdit (4.2) [13].

1. Before applying any single refactoring, calculate the
internal quality metrics of software.

2. Detect Clones in software using Clone detection tool
CCFinder.

3. Then import result file of clone detection in Jdeodrant
plugin.

a. Identify where the software should be refactor.
b. Make a small change i.e. a single refactoring

without changing the outer behavior of the
software.

c. Test Refactor code, if it refactor safely then
 move to the next refactoring.

d. If test fails, then rollback the previous change
in code and then refactor clone by using
another refactoring technique.

e. After applying refactoring the clones,
calculate the internal quality metrics of
software (Object Oriented Metrics) to
determine the impact of refactoring.

4. Compare the internal quality metrics (Object Oriented
Metrics) of software before and after apply
refactoring techniques.

5. After applying all the refactoring techniques,
calculate the internal quality metrics of software
(Object Oriented Metrics) to determine the impact of
refactoring.

6. Compare the internal quality metrics (Object Oriented
Metrics) of software before and after applying
refactoring techniques.

7. Calculate the external quality attributes by using
internal quality metrics.

8. Compare external quality attributes of software to
predict the impact on software quality

Prabhjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,90-95

© 2015-19, IJARCS All Rights Reserved 92

B. External Quality Attributes
The external quality attributes are dependent on the internal
quality attributes. Therefore, attributes can be calculated by
using these formulas given by Bansiya and Davis [6].

Table I. EXTERNAL QUALITY ATTRIBUTES FORMULAS

External QA Formula Used for Calculation

Reusability -0.25*Coupling+0.25*Cohesion+0.5* Messaging+
0.5*Design Size.

Flexibility 0.25*Encapsulation - 0.25*Coupling +
0.5*Composition + 0.5* Polymorphism.

Understandability -0.33*Abstraction+0.33*Encapsulation-
0.33*Coupling+0.33* Cohesion-
0.33*Polymorphism-0.33*Complexity-0.33*Design
Size.

Functionality 0.12*Cohesion + 0.22*Polymorphism +
0.22*Messaging + 0.22*Design Size
+0.22*Hierarchies.

Extendibility 0.5*Abstraction - 0.5*Coupling + 0.5*Inheritance
+0.5* Polymorphism.

Effectiveness 0.2*Abstraction + 0.2*Encapsulation +
0.2*Composition+ 0.2* Inheritance+
0.2*Polymorphism.

C. Internal Quality attributes
Internal Quality attributes are calculated by Eclipse Metrics
[14] plugin .We interpret these values to calculate metrics used
by Bansiya [6].

Table II. INTERNAL QUALITY ATTRIBUTES FORMULA USED FOR
CALCULATION

Design
Property

Metrics we
Used

Formulas

Design Size[6] Number of
Classes 𝐷𝐷𝐷𝐷 = �𝑁𝑁𝑁𝑁𝑁𝑁

𝑝𝑝

𝑖𝑖=1

where, NOC = Total number of
classes in a package,
p = number of packages.

Hierarchies [6] Depth of
Inheritance
Tree

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐷𝐷𝐷𝐷𝐷𝐷
 DIT = Depth of inheritance tree.

Abstraction [6] Abstractness
𝐴𝐴𝐴𝐴𝐴𝐴 =

∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛
𝑖𝑖=1

𝑛𝑛

 Where NoI = total number of interfaces
 in a package

 n=total number of classes in a
package.

Encapsulation
[6]

(Total no. of
attributes –
static
Attributes) /
(Total no. of
attributes +
static
Attributes)

𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑎𝑎(𝑃𝑃)
𝑎𝑎

Where, a(P) = number of private

attributes in a class,
 a = total number of attributes in a

class.

Cohesion [6] 1/Lack of
Cohesion of
Methods

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
�1
𝑎𝑎∑ 𝑚𝑚(𝐴𝐴)𝑛𝑛

𝑖𝑖=1 � − 𝑚𝑚
1−𝑚𝑚

 here, m(A)= number of methods

accessing an attribute A, then
Calculate the average of m(A) for all
attributes,

 m = total numbers of methods for all
classes,

 a = total number of attributes in a
class

 n= number of classes.
Composition

[6]
Number of
Overridden
Methods

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑁𝑁𝑁𝑁𝑁𝑁
𝑛𝑛

𝑖𝑖=1

where, NOA = Total number of
Attributes in a class,

 n = number of classes.
Inheritance [6] No. of

Overridden
Methods
/Number of
Methods

𝐼𝐼𝐼𝐼ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ��
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁

𝑛𝑛

𝑖𝑖=1

�

× 100
where, NORM= number of overridden

method in a class,
Polymorphism

[6]
Number of
Overridden
Methods

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑛𝑛

𝑖𝑖=1

where, NORM = number of overridden
methods in a class,

 n = number of classes.
Messaging [6] Number of

Methods 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑁𝑁𝑁𝑁𝑁𝑁
𝑛𝑛

𝑖𝑖=1

where, NOM = the total number of
public methods in a class,

 n = number of classes.

Complexity
[6]

Weighted
Methods per
Class

𝑊𝑊𝑊𝑊𝑊𝑊 = �𝐶𝐶𝐶𝐶
𝑚𝑚

𝑖𝑖=1

 Ci= complexity of method i in a class,
 m= number of methods.

Coupling [6] Instability
𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶

Where Ce= efferent coupling
 .

V. RESULTS

 In this section, impact of clones refactoring on quality
of softwares is analyzed by comparing various quality
attributes.

A. Number of clones Detected in Software
 In research work, three types of clones have been
detected on four different open source softwares JChart 2D
(3.2.1), apache-ant (1.7.0), JMeter (2.3.2), JEdit (4.2) using
CCFinder. Table III provides information about the number of
clones detected in the open source softwares using CCFinder
tool.

Table III. NUMBER OF CLONES SMELL DETECTED IN SOFTWARE

Softwares JChart2D Apache-
ant

JMeter JEdit

TLOC 6693 115744 81307 81004

Clones 248 2798 2018 969

B. Refactoring Impact on Internal Quality Attributes of

Software
To find the impact of clones refactoring, first

calculate internal quality attributes of software without
applying any refactoring technique. After removal of clones,
calculate internal quality attributes. Internal quality attributes
values before refactoring and after refactoring is shown in
Table IV and Table V respectively.

Prabhjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,90-95

© 2015-19, IJARCS All Rights Reserved 93

Table IV. INTERNAL QUALITY ATTRIBUTES OF SOFTWARE BEFORE
REFACTORING

 Softwares

Metrics JChart2D Apache-
ant JMeter JEdit

Design Size 9.727 11.361 5.406 21.471
Hierarchies 3.636 2.689 2.914 2.382
Abstraction 0.0851 0.086 0.111 0.078

Encapsulation 0.8403 0.405 0.035 0.467
Coupling 6.818 7.205 4.383 6.882
Cohesion 2.463 2.890 2.336 3.731

Composition 1.411 2.597 2.424 2.985
Inheritance 0.882 0.123 0.123 0.158

Polymorphism 0.467 1.024 1.091 0.901
Messaging 3.991 8.266 8.85 5.685
Complexity 8.533 18.15 17.896 21.126

TLOC 6693 115744 81307 81004

Table V. INTERNAL QUALITY ATTRIBUTES OF SOFTWARE AFTER
REFACTORING.
 Softwares

Metrics JChart2D Apache-ant JMeter JEdit

Design Size 10.091 11.62 5.584 21.706
Hierarchies 3.73 2.748 2.957 2.385
Abstraction 0.0865 0.091 0.114 0.081

Encapsulation 0.8324 0.402 0.036 0.464
Coupling 7.182 7.388 4.497 7.059
Cohesion 1.855 2.92 2.415 3.759

Composition 1.36 2.538 2.368 2.951
Inheritance 0.891 0.128 0.124 0.156

Polymorphism 0.45 1.065 1.094 0.892
Messaging 4.153 8.293 8.79 5.707
Complexity 8.198 17.869 17.434 20.854

TLOC 6651 115300 81213 80065

C. Refactoring Impact on Complexity of Software

 Table VI, Shows the refactoring impact on
complexity of software. From Figure 1 and Figure 2, it is
clear at after refactoring weighted method per class and
MCcabe cyclomatic complexity of all the software has
reduced. So refactoring shows positive impact on complexity.

Table VI. IMPACT OF REFACTORING ON COMPLEXITY OF SOFTWARE

Complexity McCabe Cyclomatic

Complexity
Weighted methods per

Class
Softwares Before

Refactoring
After

Refactoring
Before

Refactoring
After

Refactoring
JChart2D 2.015 1.876(↓) 8.533 8.198 (↓)

Apache-ant 2.109 2.0699(↓) 18.150 17.869(↓)

JMeter 1.864 1.822(↓) 17.896 17.434(↓)
JEdit 3.161 3.095(↓) 21.126 20.854 (↓)

Figure 1. Impact of Clones refactoring on McCabe Cyclomatic
Complexity

Figure 2. Impact of Clones refactoring on weighted method per class

D.Refactoring Impact on External Quality Attributes
The external quality attributes are calculated by using formulas
given by Bansiya and Davis [6]. According to the formula
given above, the values of external quality attributes are shown
in Table VII and Table VIII.

Table VII. EXTERNAL QUALITY ATTRIBUTES VALUES BEFORE RFACTORING

External Quality

Attributes
JChart2D Apache-ant JMeter JEdit

Reusability 5.770 8.734 6.616 12.790
Flexibility -0.555 0.110 0.684 0.339

Understandability -7.367 -11.395 -8.750 -15.265

Functionality 4.216 5.481 4.297 7.144
Extendibility -2.691 -2.986 -1.529 -2.872

Effectiveness 0.737 0.847 0.764 0.917

Table VIII. EXTERNAL QUALITY ATTRIBUTES VALUES AFTER
REFACTORING

External QA JChart2D Apache-

ant
JMeter JEdit

Reusability 5.790↑) 8.839(↑) 6.665(↑) 12.881(↑)

Flexibility -0.682(↓) 0.055(↓) 0.615(↓) 1.302 (↑)

Understandability -7.695(↓) -11.456(↓) -8.669(↑) -15.981(↓)
Functionality 4.275(↑) 5.570(↑) 4.343(↑) 7.655(↑)

Extendibility -2.877(↓) -3.052(↓) -1.582(↓) -1.935(↑)

Effectiveness 0.723(↓) 0.844(↓) 0.747(↓) 1.3206(↑)

Figure 3. Impact of Refactoring on Reusability of software

5.770

8.734
6.616

12.7903

5.790

8.839

6.665

12.8815

0
2
4
6
8

10
12
14

JChart2D Apache-ant JMeter JEdit

Before Refactoring

After Refactoring
Reusability

8.533

18.15 17.896 21.126

8.198

17.869 17.434
20.854

0

5

10

15

20

25

JChart2D Apache-ant JMeter JEdit

Before Refactoring

After Refactoring
Weighted Method per Class

2.015 2.109 1.864

3.161

1.876 2.0699
1.822

3.095

0
1
2
3
4

JChart2D Apache-ant JMeter JEdit

Before Refactoring

After Refactoring
McCabe Cyclomatic Complexity

Prabhjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,90-95

© 2015-19, IJARCS All Rights Reserved 94

Figure 4. Impact of Refactoring on Flexibility of software

Figure 5. Impact of Refactoring on Understandability of software

Figure 6. Impact of Refactoring on Functionality of software

Figure 7. Impact of Refactoring on Effectiveness of software

Figure 8. Impact of Refactoring on Extendibility of software

As shown in Figures 3 and Figure 5, Reusability and
functionality of all the four open source softwares increased
when refactoring is applied. In Figure 4, flexibility of
JChart2D, Apache-ant, JMeter has decreased, but only JEdit
flexibility have increased. In Figure 5, understandability of
JChart2D, Apache-ant, JEdit is decrease, but only JMeter
show slight improvement. In Figure 7 and Figure 8,
effectiveness and extendibility of JChart2D, apache-ant,
JMeter has decreased, only JEdit attributes values increased a
huge amount.

VI. CONCLUSION

Refactoring makes code easy to use. In this work four,
different softwares are used to analyze the impact of clones’
refactoring on quality of softwares. From experimental results,
conclusion comes out that the complexity of the softwares has
reduced after refactoring. By applying refactoring on softwares,
reusability and functionality of all the softwares has increased
and other quality attributes like flexibility, understandability,
effectiveness, extendibility is decreased. Some refactoring
techniques improved have the quality of softwares and some
refactoring techniques have shows negative effect on quality.
Result shows that refactoring techniques also have inverse
impact on software quality attributes.

VII. REFERENCES

[1] M. Fowler, K. Back, J. Brant, W. Opdyke and D.B. Roberts,

“Refactoring: improving the design of existing code,” Addison-
Wesley, New York, 1992.

[2] C.K. Roy, J.R. Cordy and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach,” Science of Computer Programming
ELSEVIER, Vol. 74, pp. 470–495, 2009.

[3] T. Kamiya, S. Kusumotoand K. Inoue, “CCFinder: a
multilinguistic token based code clone detection system for
large scale source code,” IEEE Transactions on Software
Engineering, Vol. 28, No. 7, pp. 654-670, 2002.

[4] R. Gargand and R. Tekchandani, “Enhancing code clone
management by prioritizing code clones,” Master’s Thesis,
Thapar University, Patiala, 2014.

[5] N. Tsantalis, M. Mazinanian and G.P. Krishnan, “Assessing the
refactorability of software clones, ” IEEE Transactions on
Software Engineering, Vol. 41, No. 11, 2016.

[6] J. Bansiya and C.G. Davis, “A hierarchical model for object-
oriented design quality assessment”, IEEE Transactions on
Software Engineering, Vol. 28, No. 1, pp. 4-17, 2002.

-2.691
-2.986

-1.529

-2.872-2.877
-3.052

-1.582
-1.935

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
JChart2D Apache-ant JMeter JEdit

Before Refactoring
After RefactoringExtendibility

0.737
0.847

0.762
0.917

0.723
0.8448 0.747

1.3206

0

0.2

0.4

0.6

0.8

1

1.2

1.4

JChart2D Apache-ant JMeter JEdit
Before Refactoring
After Refactoring

Effectiveness

4.216

5.481
4.297

7.144

4.275
5.570

4.343

7.655

0
1
2
3
4
5
6
7
8

JChart2D Apache-ant JMeter JEdit

Before Refactoring
After RefactoringFunctionality

-7.367

-11.395
-8.75

-15.265

-7.695

-11.4546

-8.669

-15.98-18
-16
-14
-12
-10

-8
-6
-4
-2
0

JChart2D Apache-ant JMeter JEdit

Before Refactoring
After Refactoring

Understandability

-0.555

0.1105
0.684

0.339

-0.682

0.055

0.615

1.302

-1

-0.5

0

0.5

1

1.5

JChart2D Apache-ant JMeter JEdit

Before Refactoring

After RefactoringFlexibility

Prabhjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,90-95

© 2015-19, IJARCS All Rights Reserved 95

[7] F.A. Fontana, M. Zanoni, A. Ranchetti and D. Ranchetti,
“Software Clone Detection and Refactoring,” ISRN Software
Engineering, 2013.

[8] M. Alshayeb, “Empirical investigation of refactoring effect on
software quality, ” Information and Software Technology,
ELSEVIER, 2009.

[9] JDeodorant, URL - Retrieved from
https://marketplace.eclipse.org/content/jdeodorant.

[10] JChart2D Retrieved from
https://sourceforge.net/projects/jchart2d/.

[11] Apache-ant Retrieved from http://ant.apache.org/.
[12] JMeter Retrieved from http://jmeter.apache.org.
[13] JEdit Retrieved from http://www.jedit.org/.
[14] Metrics Plugin, URL – Retrieved from

http://sourceforge.net/projects/metrics/.

	Impact of Clones Refactoring on External Quality Attributes of Open Source Softwares
	I. Introduction
	Code Clone
	Refactoring
	Refactoring Techniques
	Quality Attributes

	Literature survey
	Problem formulation
	research methology
	Methology
	External Quality Attributes
	Internal Quality attributes

	Results
	Number of clones Detected in Software
	Refactoring Impact on Internal Quality Attributes of Software
	Refactoring Impact on Complexity of Software
	D.Refactoring Impact on External Quality Attributes

	Conclusion
	References

