
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1193

ISSN No. 0976-5697

SMALL DATA CHALLENGE: HOW TO USE OTHER PEOPLE’S DATA WHEN YOU DON’T HAVE YOUR OWN -
SOFTWARE REUSABILITY

Lakkysetty Nikhil, Praveen Raja, Kamisetty Yeshwanth* and N. Jaya Krishna Naidu

Dept. of SCOPE, VIT university
Vellore, India

Abstract: The concept of using a segment of source code again and again in order to add new functions with minimal or no modifications is
known as Reusability. By use of this concept, it localizes code modifications when a change in implementation is required and will eliminate
bugs. A code reusability deals with two challenging issues i.e. i) deciding which part of the code to be retained same and ii) deciding which part
of the code will be need to be designed from scratch.However, there are numerous approaches such as identifying and qualifying of reusable
software components based on coupling, inheritance, external dependency, and polymorphism and reuse index of the component, through newly
implemented tool DROOP which stands for Detection of Reusable components in Object Oriented Programming using Java NETBEANS & Java
Swings, through multi-layer architecture, through frameworks, through Component Based Software Engineering(CBSE) and various other
techniques. The main aim of this paper is to compare and analyze the various reusing techniques in order to find out the best one.

Keywords: Reusability; Components; software; metrics; code; architecture

Abbreviations: CBSE - Component Based Software Engineering; DROOP – Detection of Reusable components in Object Oriented
Programming; TCC—Technical Communication Corporation; DIT—Depth of Inheritance, OOS—Object Oriented Software; RLF—Reusability
Library Frameworks

INTRODUCTION

As budding programmers and software developers we are
often encouraged to reuse our code, some of us are even
taught mantras like DRY (Don’t Repeat Yourself). But more
often than not we start coding from scratch, without even a
second thought as to whether we’re repeating ourselves.
Existing code reuse tools do exist but are often poorly
documented and unintuitive to use.
The set of guidelines to help user to judge the quality of the
component that is to be reused is known as reusability of
code. It is necessary to achieve how much effectively the
software component is reusable. To achieve this, the
component identification is mandatory. The quality of a
reuse system is highly dependent on the quality of the
components. There are many ways to reuse code, ranging
from the simple, but popular, copy-and-paste to buying off-
the shelf software from a vendor and customizing it to
specification. This research however is not concerned with
these types of code reuse but the reuse of codified
algorithms; codified algorithms being methods, functions,
subroutines, subprograms or code blocks, depending on
what language one’s using our approach for identifying and
qualifying of reusable software components is based on
coupling, inheritance, external dependency, and
polymorphism and reuse index of the component.
This paper aims to analyze the source code of these software
to identify pieces of code that may form reusable
components. Our motivation is that components mined from
the analysis of several existing software will be more useful
(reusable) for the development of new software than those
mined from singular ones.

II. SURVEY ON SMALL DATA CHALLENGE
(REUSABILITY OF CODE)

Er.NehaBudhija [1] presented about the reusability, it is the
concept of using a segment of source code again and again
to add new functionalities with slight or no modifications.
They proposed numerous approaches for identifying and
qualifying of reusable software components which is based
on coupling, inheritance, external dependency, and
polymorphism and reuse index of the component. They
implemented tool is tool DROOP stands for Detection of
Reusable components in Object Oriented Programming
using Java NETBEANS & Java Swings. This designed
system discovered by them is suitable for reusing
components to assist developers by providing them
automatic functionality of reusable components searching.
Ankita Mann [2] presented about all the existing metrics on
implemented elements and inherited elements to measure
quality of design. The proposed cohesion can be increased
or decreased depending upon design structure of super class
and sub class by including inherited elements. To measure
design complexity of software, TCC and LCC are used.
LCC aids in assessing the reusability of code which uses the
concept of public, private, protected and internal elements
require investigation.
Priti Srinivas Sajja [3] proposed a general architecture
which is divided into three layers. The first layer is Agent
Layer. This layer consists of multiple agents for different
activities in a system. For each activity an agent is designed.
Agents in the architecture are: Pattern matching, Diagnosing
agent etc. These agents, in order to perform their intended
activities, they use pre-developed code or tools provided by
the Library Layer. And the other is Knowledge layer. Their
proposed library layer of architecture includes reusable code
to develop software on demand in dynamic manner
Automatic Generation of agents using libraries necessitates
to generate the code once. Once agents are created, they are

Kamisetty Yeshwanth et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 1193-1198

© 2015-19, IJARCS All Rights Reserved 1194

verified by the host or administrator for reliable and
guaranteed execution. Once thorough testing is done, the
code of agent is entered into the code repository for future
use.
Geetika Batra [4] proposed a methodology describing that it
contains code repository for the reusability. To support this
approach, they used analogy estimation technique for
comparison of newer requirements from previous codes. It is
necessary to collect historic projects for the reuse of code
and design a code repository. This implementation describes
that concept of analogy estimation with cosine similarity as
search technique of previous code similar to the new
required code.
Anas Shatnawi [5] proposed an approachComponent Based
Software Engineering (CBSE)which is one of the most
important approaches that support software reuse, it
proposes an approach to mine reusable components from a
set of similar object-oriented software, which were
developed in the same domain, ideally by the same
developers. Their proposed approach(Romantic) is mainly
based on two models: first an object-to-component mapping
model, second a quality measurement model to evaluate the
quality of components which are mined from object-oriented
source code. Based on these two models, mining
components from similar software provides more guarantees
for the reusability of the mined components rather than
depending on single software.
Karabo Selaolo [6] proposed the use of ontologies in
tackling these issues, seeing as ontologies inherently
encourage reuse. Their research is concerned with the reuse
of codified algorithms; being methods, functions,
subroutines, subprograms or code blocks, depending on
what language one’s using. In order to understand common
software engineering knowledge and to perform certain
types of computations, the software engineering ontology
enables the communication between computer systems or
software engineersThe ontology cluster is designed for use
by agents, both human and software alike, however the
relationship goes even further when it comes to software
agents. There are many tasks that could be done by agents
that will initially be done by simple scripts. Integration with
agents was considered out of the scope of this initial
building of the system and thus has been left for future visits
into this project. In the conclusion of this paper, it is
believed that the proposed ontology cluster is a viable
alternative to current code reuse tools.
Manoj H.M[7] proposed a model using stochastic based
Markov model to find that proposed system can extract
significant information of maximized values of code
reusability with increasing level of uncertainties of software
project methodologies.
Neelamadhab Padhy[8] proposed the new metrics which
calculates the reusable codes in the object oriented
programme and it is one of the combinations of CK metrics
suite. They presented that DIT (Depth of Inheritance) has
positive sign on the reusability of the class. If there are more
number of methods in the class, then more impact will be on
the children class and restrictive the possible of reuse. They
concluded that the OOS (Object Oriented System) using the
parameterized constructor in C++ programs is more reusable
up to some extent. When the larger ethics (values) of
proposed Metrics-2 and - 3 are obtained then definitely it
gives the negative collision on the reusability. So the

negative impact on the reusability of the classes is given by
the parameterized constructor.
Priti Srinivas Sajja [9] presented the generic neuro-fuzzy
framework which provides advantages such as reusable of
code,where there is no need for the user to write codes for
the component, the codes can be attached on demand. Now
to increase the quality of the system, user may concentrate
on analysis and design of the system. He presented that the
framework is divided into three layers. In first layer reusable
codes such as neural network, fuzzy logic and neuro-fuzzy
systems are stored as generic independent objects. The
second and third are database and interface layer
respectively. Users need not deal with the background code,
instead they can deal with the framework.
Dr. Vivek Chaplot [10] that the concept of Reusability is
strongly supported by C++. Once a class is created, it can be
used by another programmer to suit their requirements. One
can create new classes, reusing the properties of the existing
classes. This concept of deriving a new class from an old
one is called inheritance.
V. Subedha, Dr.S. Sridhar [11] presented on reusability
assessment model and different approach in the existing
literature which helps the user for mining the suitable
component in terms of reusability. When an organization
decides to implement software reuse programs to improve
productivity and quality of the system development, then
they must be able to measure the quality of the reusable
software components and identify the most effective reuse
strategies. They explained about metrics such as Size
Metrics, Coupling metrics, Cohesion metrics and Variability
Metrics.
Neha Budhija, Satinder Pal Ahuja [12] presented on
empirical study of the software reuse activity by expert
designers in the context of object-oriented design. They
described about the three following aspects of reuse: the
interaction between some design processes, the mental
processes involved in reuse and the mental representations
constructed throughout the reuse activity. They also
concentrated on software reuse benefits, types of reuse and
reuse approaches. The two approaches mentioned by them
for reuse of code are: identify and extract the reusable code
from already developed code and develop the reusable code
from scratch.
Danail Hristov, Werner Janjic [13] presented on the
reusability of software components in an adhoc reuse
scenario. It means the spontaneous decision of a developer
to use a search engine, indexing or component repository.
The results of this survey were separated for the sake of
practicality i.e., the discovered metrics are divided into two
categories: one for white-box (allowing to look into the code
of the components) and one for black-box (where usually
merely interface and documentation of a component are
available) reusability. The reusability requirements for
software components are explained and structured well in a
reusability requirements model.
Neelamadhab Padhy, R. P. Singh1 [14] presented about new
metrics which is the combination of one of the CK metrics
suite and the one which calculates the reusable codes in the
object oriented programming. Software measurement can be
done in traditional or object oriented approach. The latest
approach in the industry is an object oriented metrics
through which the reusable components are created using
inheritance. Some popular object oriented metrics which are

Kamisetty Yeshwanth et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 1193-1198

© 2015-19, IJARCS All Rights Reserved 1195

mentioned by them are developed in such a way to measure
the reusable codes in the multi paradigm languages like
(C++, Java Script, Ruby, Php, Perl, C# etc).
Edward A. Stohr [15] focused on the broad framework of
software reusability research, and also suggests directions
for future research. He presented about general, technical,
and nontechnical issues of software reuse, and finally
concluded that reuse needs to be viewed in the context of a
total systems approach. He represented number of levels of
abstraction, from abstract to concrete, in which both data
and process entities are considered. He also presented about
cost benefit and economic benefits models. Technical issues
and organizational issues are clearly explained by him.
William W. Agresti [16] presented about a survey of 128
developers to explore their perceptions and experiences
about using codes of other people. This also includes to
what extent does the “not invented” here attitude exist? The
survey was carried around a simple “4A” model, which is
introduced in this article. The following are the four
conditions must obtain to obtain benefits for reusing code:
availability, accessibility, awareness and acceptability. This
survey also includes the ways to take greater advantage of
existing code and its related facts.
Manuel Sojer, Joachim Henkel [17] focused on open source
software(OSS) which presents on how and why individuals
and firms add to the commons of public OSS code i.e. on
the “giving” side of this open innovation process. They also
presented on how existing OSS code is reused and which
serves as an input for further OSS development. It also
mentions the interest of developers to handle difficult
technical challenges as detrimental (tending to cause harm)
to efficient reuse-based innovation.
Gui and Paul. D. Scott[18] presented about a set of new
static metrics of coupling and cohesion which is developed
to assess the reusability of Java components retrieved from
the Internet by a software component search engine. These
metrics differ from the majority of established metrics in the
following three respects: they measure the degree to which
entities are coupled or resemble each other, they
quantitatively take account of indirect coupling and
cohesion relationship and they also reflect the functional
complexity of classes and methods. They focused mainly on
issues in the development of such metrics for object-
oriented systems.
Sarbjeet Singh, Sukhvinder singh [19] presented about the
reusability concepts for Component based Systems and also
discussed on several existing metrics for both white-box and
black box components that can be used to measure
reusability directly or indirectly and presents the special
requirements on software in this domain. They also
presented about glass box reusability. Components of
reusability such as business component, distributed
component, group component and software development
component are discussed by them. Reusability models such
as productivity model and maturity model are also discussed
by them.
Adnan Khan, Khalid Khan[20] presented about a component
based framework for software reusability which allows us to
develop and integrate product components. This facilitate
software reusability, high quality and simplification for
testing. This component based framework uses kind of
approaches which are based on object oriented design,
architecture definition languages and software architecture.

This speeds up software development by using already
existing components, which in turn reduces cost and time.
Ravichandran[21] proposed a detailed systematic literature
review on software reusability metrics for object oriented
software program. Reusability is an only one best direction
to increase developing productivity and maintainability of
application. One must search for the better tested software
component and reusable. Developed Application computer
code by one coder may be shown helpful for
others conjointly element. this may be proving that code
specifics to application needs can be conjointly reused in
develop comes connected with same needs. the main aim of
this paper is to project some way for reusable module. A
process that takes source code as a input that will helped to
take the decision approximately, reusable artefacts ought
to be reused or not.
A.N.Swamynathan and Dr.K.Nirmala[22] presented a
comparative study on main and sub-code reusability. Most
of the coding and reused coding of south Indian
IT companies will be based on the
object oriented programming surroundings (OOP)). While
calling the class member function in objects of a particular
class, interface and the dependency related problems are
encountered. To beat these forms of issues, we have a
tendency to propose a general purpose code reusable model
that analyzes language structure
through two attainable reusing environments. The common
and ancient approach of this paper is that the main to sub-
coding. It justifies the model based mostly approach for
code reusability under OOPs for these two approaches.
Stephan Fischer [23] proposed the reusability of interactive
resources in web based educational systems. Reusability can
be triggered by a mixture of these
reusable transmission elements and therefore
the applicable use of information to
regulate the elements similarly as their combination. in
this article, we tend to discuss the reusability and
flexibility aspects of multimedia content in web-based
learning systems. In distinction to existing approaches, we
tend to extend the component-based design to
create multimedia visualization units with the
utilization of information for reusability and customizability.
Richard T. Vaughan [24] proposed the device abstractions
for portable, reusable robot code. This paper describes the
appliance of three acknowledge abstractions, the character
device model, the interface/driver model, and also
the client/server model to the present purpose. One product
of this project is that the Player Abstract Device Interface
(PADI) specification which defines a group of interfaces
that capture the practicality of logically similar sensors and
actuators. This specification is that the central
abstraction that allows Player-based controllers to run
unchanged on a range of real and simulated devices. we
have a tendency to propose that PADI may well be a place
to begin for development of a typical platform
for mechanism interfacing, freelance of Player,
to change code movability and re-use, whereas still
providing access to the distinctive capabilities of individual
devices.
AshishAgrawal [25] presented an approach to analysis
software reusability. The degree that could be a software
Reusability module or early product work will be used
inadditional than one system computing or software

Kamisetty Yeshwanth et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 1193-1198

© 2015-19, IJARCS All Rights Reserved 1196

program. It is a belief that software reusability provides the
key to tremendous advantages and saving in software
development product. The U.S. Department of
Defense solely can be save $300 million annually by
increasing its level of reuse by as very little as one percent.
Measurement might facilitate U.S.A. not solely to be
told the way to build reusable parts however additionally to
spot reusable parts among the wealth of existing programs.
Existing programs contain the information and
knowledge gained from operating within
the specific application domain and meeting the
organization’s software needs.
William B. Frakes and Thomas P. Pol[26] proposed the
methods for reusable software components. An empirical
study of strategies for representing reusable computer
components are described. Thirty-five subjects searched
for reusable parts in a very informative of operating
system tools exploitation four totally
different illustration methods: attribute-value, enumerated,
faceted, and keyword. The study used Proteus,
an employ library system that supports
multiple illustration strategies. looking effectiveness was
measured with recall, precision, and overlap. Search time for
the four strategies was additionally compared. Subjects rated
the strategies in terms of preference and helpfulness in
understanding parts. Some principles for
constructing employ libraries, supported the results of this
study are mentioned.
Deng-jyi Chen [27] presented the integration of reusable
software components. Software reuse is an efficient suggests
that of improving the software productivity
and software quality. Reusable computer elements of
code (RSCs) are the
fundamental building elements for critical software
programs created mistreatment the
software utilize approach. The object-oriented approach is
employed to style and implement our RSCs. multimedia
system software plays a vital role within the software
business. In contrast to ancient software, multimedia
system software provides users with visual and audio effects
through their interfaces and may have a lot of accurately
model the real world.
James Solderitsch, Elizabeth A. Bradley [28] proposed an
approach i.e. reusability library framework(RLF). Reducing
unnecessary and redundant system development through
reuse is a key element in the Department of Defense's
Software Technology Strategy to reduce the annual DoD
software cost. The STARS1 program is implementing this
strategy with an approach that combines reuse with other
elements including the identification of software processes
along with a focus to specific application domains. The
Reusability Library Framework(RLF), being developed and
employed by Electronic systems/Valley Forge Laboratories
in cooperation with Tactical Systems, addresses these needs.
This paper will describe the current status of the RLF and
give examples of how it has been applied to date to several
paramax application areas.
Li Jingyue [29] presented a survey on software reuse.
Software reuse means that reusing the inputs, the
processes, and therefore the outputs of previous software
development efforts.
Although there are several studies during this space, there
still some fields to be explored. Four fields, that is, domain

engineering, business line, and component
based software engineering and COTS square
measure mentioned during this paper. Challenges
in every field are generalized and summarized during
this paper so as to own a full image of the state of the art
of software reuse.
Catherine Blake Jaktman [30] presented about the software
reuse. Software reuse has come to mean anything from the
ad-hoc process of copying and modifying code that basically
achieves the required task to the more systematic reuse of
various forms of software development experience.
Organizations often attempt to implement a software reuse
program without an adequate understanding of their
capability for doing so effectively. This paper describes an
initial reuse assessment that can assist organizations in
planning their reuse strategy based on their current
infrastructure, reuse goals, and availability and quality of
existing reusable assets.
Judith Barnard [31] proposed that, the managers of software
companies came to know that the reuse of code can bring
financial rewards to their companies. So that many
companies are going to start their own reuse libraries. The
factors that are related to the reusability of code which are
identified by metrics are coupling between objects, method
correctness and method interface complexity. The
reusability of code metrics which can be used to provide a
value of reusability for a class from any programming
language and it can also be used to guide the programmer
for writing more reusable code.
William Frakes and Carol Terry [32] viewed that software
reuse is the program which is developed by the
organizations to improve its productivity and quality. We
can identify the most reuse strategies by reuse metrics and
reuse models. A metric is a quantitative indicator for an
attribute. A model specifies relationships between the
metrics. The metrics will provide good management
information for a library system. Metrics can also be used in
various ways in-order to demonstrate the value of the library
to management as well as to provide information for quality
improvement.

M.Ramesh and H.Raghav Rao [33] defines the reuse and the
categories in it in this model. The reusable code is not very
complicated.A Reuse Support System (RSS) should be able
to find and retrieve the components according to the
givencriteria, evaluate the retrieved components according
to the given constraints, and rank the each
evaluatedcomponent in some order. A classification scheme
is needed in order to find and retrieve the components.
William B. Frakes [34] declares that in this model we came
to know the factors that affect the reuse, the reuse
measurement, and the techniques for tailoring a reuse
program to a given organization via a failure modes model.
The software reuse improvement strategies can be created
and fine-tuned for an organization. This improves the
productivity, reliability, better bid estimation, better early
estimates, and faster time to market.
W B Frakes and P B Gandel[35] proposed an approach that
relates the reusable methods to one another and also to the
software life-cycle model. A software representation is a
mapping of predicates and the terms that describes the
individual objects and the relationships among objects from
the represented to the representing world. The main aim of

Kamisetty Yeshwanth et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 1193-1198

© 2015-19, IJARCS All Rights Reserved 1197

the reusable library developers is to provide various ways
for software users to search for the software components
that satisfy the user needs.
J E Gaffney, Jr, and T aDurek [36] presented that due to the
software and code reuse there is a reduction in development
and overall software life-cycle costs. It enables us to build
more software and reduce application backlogs. It improves
the enhance quality. Therefore, it results in the saving of
money and enhancing the productivity. The quantitative and
qualitative models are employed to estimate its impact on
time, schedule, and required to develop a software based on
the extent of reusing involved in the construction.
Tuomas Ihme [37] presented that a software reuse system
can be characterised by input specifications, output models,
constraints from requirements and technologies to support
reuse. We can make it more flexible by getting the feedback
from the actual user. The important activities in the software
reusability process in each specification and every design
stage are creating, focus, locate, adjust, and configure.
Patrick A V Hall [38] presented that software reusability
fulfills the user needs. Software reuse also reduces the work
of repeatedly doing the tasks in detail the same constructs to
achieve the same end. To make reusable of software, it must
be able to specify the software with sufficient precision and
completeness for a potential user to be possible to make his
selection. The reusing of software includes the algorithms
and methods, languages and systems etc.
Jaime Nino [39] presented that the development method for
generating the reusable software is incremental software
development. A concept of modular software is needed for
the support of incremental software development through
the refinement of the existing software modules. Object
Oriented Programming Languages provide us with several
design and implementation alternatives of this flexible
modular structure.
Capers Jones T [40] presented that the first concept of
reusable modules was a single function that could line by
line: functions such as square root extraction, date
conversions, and statistical routines have been utilized since
the early days of computing. The attempts when creating
standard reusable modules have faced 3 major obstacles: i.)
the problem of data reusability should be solved, ii.) an
architecture for reusability should be created, and iii.)
reusable designs should be created.

III.CONCLUSION

On analyzing these various techniques, the most important
technique is Component Based Software Engineering
(CBSE), it proposes to mine reusable components from a set
of similar object-oriented software, which were developed
in the same domain, ideally by the same developers. Even
though we have analyzed and compared various techniques
to reuse the code, the new set of the code that needs to be
programmed is designed in such a way that it should possess
certain level of code reusability for the future client, which
is unpredictable. An unpractical design in this case will go
for complete loss of production and may not meet the
reusability factor for new projects. Hence, its future
direction of study will focus on estimating the level of code
reusability for complex software projects, anticipating that
proposed design concept will highly encourage and motivate

the stakeholder to consider it as most cost-effective tool till
date.

IV. ACKNOWLEDGEMENT

The authors wish to acknowledge prof. Lavanya.K for her
guidance in research work. We would also like to express
our gratitude for her valuable time and assistance given in
helping us to write this review paper.

V.REFERENCES

1.Er. Bhupinder Singh, Er. Satinder Pal Ahuja “Detection of

reusable components in object oriented programming using
quality metrics” International Journal of Advanced Research
in Computer Science and Software Engineering,Volume 3,
Issue 1, January 2013 ISSN: 2277 128X

2. Sandeep Dalal,Dhreej Chhillar “An effort to improve cohesion
metrics using inheritance” International Journal of
Computational Engineering Research,Vol 03,Issue 6,June
2013

3. Priti Srinivas Sajja “Automatic generation of agents using
reusable soft computing code libraries to develop multi agent
system for healthcare” I.J. Information Technology and
Computer Science,05, 48-54,Published Online April 2015 in
MECS (http://www.mecs-press.org/),DOI:
10.5815/ijitcs.2015.05.07

4. Kuntal Barua and Dr. M. K Rawat “a minimization of software
cost and effort estimation using code reusability concept by
analogy estimation technique” Engineering Universe for
Scientific Research and Management,(International
Journal),Impact Factor: 3.7,Vol. 6 Issue 4,April 2014

5. Abdelhak-Djamel Seriai “mining reusable software components
from object-oriented source code of a set of similar software”
1This work has been funded by grant ANR 2010 BLAN
021902.

6.Hlomani Hlomani, “towards an algorithms ontology cluster: for
modular code reuse and polyglot programming” ACSIJ
Advances in Computer Science: An International Journal,
Vol. 5, Issue 2, No.20, ISSN: 2322-5157, March 2016.

7.Nandakumar A.N, “constructing relationship between software
metrics and code reusability in object oriented
designAPTIKOM Journal on Computer Science and
Information Technologies,Vol. 1, No. 2, pp. 59~72,ISSN:
2528-2417,DOI: 10.11591/APTIKOM.J.CSIT.16,2016,

8. Suresh Satapathy and R. P. Singh, “utility of an object oriented
reusability metrics and estimation complexity” Indian Journal
of Science and Technology, Vol 10(3), DOI:
10.17485/ijst/2017/v10i3/107289, ISSN (Print): 0974-6846,
ISSN (Online): 0974-5645, January 2017.

9. Priti Srinivas Sajja, “Computer aided development of fuzzy,
neural and neuro-fuzzy systems” International Journal of
Engineering and Applied Computer Science (IJEACS) ISBN:
978-0-9957075-2-8,Volume: 02, Issue: 01, January 2017.

10.Dr. Vivek Chaplot, “study & analysis of object oriented
programming principles”,International Educational and
Research Journal,E-ISSN No:2454-
9916,Volume:1,Issue:4,Nov 2015

11. V. Subedha, Dr. S. Sridhar “A Systematic Review of
Reusability Assessment Model and Related Approach
for Reusable Component Mining” Journal of Computer
Applications (JCA)ISSN: 0974-1925, Volume V, Issue 2,
2012.

12. Neha Budhija and Satinder Pal Ahuja “Review of software
reusability”International Conference on Computer Science
and Information Technology (ICCSIT'2011) Pattaya, Volume
VI– No.10, Dec. 2011

13. Danail Hristov, Oliver Hummel, Mahmudul Huq, Werner
Janjic“Structuring Software Reusability Metrics for

Kamisetty Yeshwanth et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 1193-1198

© 2015-19, IJARCS All Rights Reserved 1198

Component-Based Software Development” Software
Engineering Group, University of Mannheim, Mannheim,
Germany, Vol 10(3), DOI: 10.17485/ijst/2010, Nov. 2011

14. Neelamadhab Padhy1, Suresh Satapathy2 and R. P. Singh1
“Utility of an Object Oriented Reusability Metrics and
Estimation Complexity” Indian Journal of Science and
Technology, Vol 10(3), DOI:
10.17485/ijst/2017/v10i3/107289, January 2017

15. Edward A. Stohr “Software Reuse: Issues and Research
Directions” Indian Journal of Science and Technology,Volume
9– No.9, October, 2010

16. William W. Agresti “Software Reuse: Developers’ Experiences
and Perceptions” journal of software engineering and
applications, 2011, 1, 48-58, doi:10.4236/jsea.2011.41006
Published Online January 2010
(http://www.scirp.org/journal/jsea)

17. Manuel Sojer1 and Joachim Henkel “Code Reuse in Open
Source Software Development: Quantiative Evidences,
drivers and Impidents” Centre for Economic Policy Research
(CEPR), London, Volume 10– No.5, November 2010

18. Gui and Paul. D. Scott “Measuring software reusability
component by coupling and cohesion metrics” JOURNAL OF
COMPUTERS, VOL. 4, NO. 9, SEPTEMBER 2009

19. Sarbjeet Singh, Manjit Thapa, Sukhvinder singh and Gurpreet
Singh “Software Engineering: Survey of reusability based on
software component” International Journal of Computer
Applications (0975 – 8887) Volume 8– No.12, October 2010

20. Adnan Khan, Khalid Khan, Muhammad Amir and M. N. A.
Khan “Component based framework for software reusability”
International Journal of Software Engineering and Its
Applications, Vol. 8, No. 10 (2014), pp. 13-24
http://dx.doi.org/10.14257/ijseia.2014.8.10.02, Oct 2009

21. Anthes, Gary I “Software Reuse Plans BringPaybacks,”
Compute world, Vol. 27, KO. 49, pp.7376. 22.G.Chin, “Agile
Project Management: How to Succeed in the Face of
Changing Project Requirements” American Management
Association (AMACOM), New York, USA, 2004.

23.Roschelle, J., Digiano, J., Koutlis, M., Repenning, A., Phillips,
J., Jackiw, N., and Suthers, D. 1999. developing educational
software components. IEEE Computer 32, 9 (Sept.), 50–58,
Dec. 2002

24.Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard.
Player User Manual 1.3. Player/Stage Project,
http://playerstage.sourceforge.net, December 2002.

25. Ashish Agarwal “Software Reusability: Applications and
Experiences”, IEEE computer32, Vol II, Addison Wesley,
1999.

26.R. Prieto-Diaz, “Implementing faceted classification for
software reuse,” Communication ACM, vol. 34, pp. 88-97,
Oct 1999.

27.R. E. Johnson, “How frameworks compare to other object-
oriented reuse techniques: Frameworks = Components +
Patterns,” Communications of the ACM, Vol. 40, No. 10,
1997, pp. 39-42.

28. Ronald j.brachman and j.schmolze “An overview of the kl-one
knowledge representation system” cognitive science,9(2),171-
216, Nov 2001.

29. Colin Atkinson, Joachim Bayer, Christian Bunse, Erik
Kamsties, Oliver Laitenberger, Roland Laqua, Dirk Muthig,
Barbara Paech, Jürgen Wüst, Jörg Zettel, “Component-based
Product Line Engineering with UML”, Vol. 20, No. 10
Addison-Wesley, 2002.

30. Frakes, W.B. and Isoda, S. "Success Factors of Systematic
Reuse," IEEE Software,pp. 15-18, September 2004

31. Judith Barnard “New reusability metric for object-oriented
software”, Software Quality Journal 7, (1998) 35–50

32.William Frakes and Carol Terry “Software Reuse: Metrics and
models“1996, ACM Computing Surveys, Vol. 28, No. 2, June
1996

33. M.Ramesh and H.Raghav Rao “Software Reuse: Issues and an
example” Decision Support Systems 12 (1994) 57-77
57,North-Holland

34. William B. Frakes “Software Reuse: An Empirical Approach”
Annual Review of Automatic Programming Vol. 16. pp. 41-
44, 1992

35. W B Frakes and P B Gandel “Representing Reusable Software”
Vol 32 no 10 December 1990

36. J E Gaffney, Jr, and T A Durek “Software Reuse – Key to
Enhanced Productivity: Some Quantitative Models” journal of
information and science technology,1989

37. Tuomas Ihme “A Reuse Base for Real-Time Software
Specifications”North- Holland Micro processing and
Microprogramming 27 (1989) 639—646

38. Patrick A V Hall “Software Components and Reuse – getting
more out of your code” vol 29 no I January/February1987

39. Jaime Nino “Object Oriented Models for Software
Reusability”IEEE Conference Publications,vol.2, 395-399.

40. Capers Jones T “Reusability in programming: A survey of the
State of the Art” IEEE Transactions on software engineering,
vol. se-10, no. 5, September 1984.

