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Abstract: In the present research paper, we introduced some techniques of cross-validation for time series data. Six different types of time series 
cross-validation techniques are presented and also discussed various problems in selecting the initial training sample size and the size of training 
folds. In this paper, all cross-validation techniques, most appropriate techniques for model selection in time series analysis and advantages of the 
each technique are discussed with empirical study.  
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I. INTRODUCTION 

Cross-validation is not only a method of choosing the best 
model but also a method of measuring accuracy. Since the 
order of the data is important in time series analysis, cross-
validation might be problematic for time series models [1]. 

The application of cross validation to the time series data is 
not straight forward. The main reasons are 

(i). Serial correlation in the data. 
(ii).  Non-stationarity of the data. 
The most appropriate cross-validation techniques are 

presented in the paper to determine the order of autoregressive 
model. These cross-validation techniques are useful for  

a) Determining the order of autoregressive model and 
also the order of moving average model. 

b) Selecting the best ARMA model among candidate 
models.  

c) Selecting the best time series model among candidate 
models. 

Consider the simple stationary linear autoregressive model 
of order ‘p’ 

1 1t t p t p ty a y a y ε− −= + + +  
( )2where are . . 0,t i i d Nε σ  

The number ‘p’ is called the order of the AR model. We need 
to choose ‘p’. 
It can be written as t t ty a x ε′= +   

Where ( )1 2, , , pa a a a ′=   and ( )1 2, , ,t t t t px y y y− − −
′=    

The autoregressive model of order ‘p’ fitted to the future 
data{ } 1

m
t ty

=
  is 

ˆt t ty a x ε′= +  . 

The process{ } 1

m
t ty

=
  has the same distribution as the sample 

data{ } 1

n
t ty

=
but is independent of it, and 

( )1 2, , ,t t t t px y y y− − −
′=    (Obviously, andt tx x  do not 

overlap) [2].
 The prediction error measures the predictive ability of the 

estimated model by
 { }2ˆPE t tE y a x′= −   

 
An estimate of PE using cross-validation is obtained on 

averaging the predictive square errors [3]. The following steps 
are used for estimate the predictive mean square error by 
cross-validation model selection procedures [4]. 
Step-1: Estimate a model based on a training sample.  
Step-2: Forecast of a test sample is obtained by using the 
estimated model. It is denoted by ŷα . 
Step-3: Calculate the value of the predictive square error
( )2ˆy yα α− . 
  Here yα  is a set of observations of the test sample. 
 Step-4: Repeat Steps (1), (2) & (3) for each α  and obtain 
 ( )2ˆPE E y yα α= −  

The candidate models are 
1 1 1: t t ty a y ε−= +M   

2 1 1 2 2: t t t ty a y a y ε− −= + +M  

3 1 1 2 2 3 3: t t t t ty a y a y a y ε− − −= + + +M  
 and so on 

1 1 2 2 3 3:p t t t t p t p ty a y a y a y a y ε− − − −= + + + + +M  
The best model or most appropriate autoregressive model of 
order *O for given a time series data is 

* * *1 1 2 2 3 3: t t t t tO O t O
y a y a y a y a y ε− − − −
= + + + + +M . 

Where *O p≤ . 
Shao(1993) defines the 'optimal model ' *O

M , which 

possess the smallest expected prediction error of any model 
{ }; 1, 2,3,O O p= M . Cross-validation estimates the 
expected prediction error of a model and cross-validatory 
model selection proceeds by selecting the model with smallest 
estimated expected prediction error [5]. 

The optimal AR order *O is chosen such that 
( ) ( ){ }* min O 1,2,3TSCV O TSCV O p= =    

Here ( )TSCV O  is the estimate of prediction mean square 
error in estimating the model OM  [6].  

Best model (i.e., optimal model) or most appropriate model 
*O

M is selected by the time series cross-validation techniques.  
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II. TIME SERIES CROSS-VALIDATIONS TECHNIQUES 

Six different types of cross-validation techniques 
introduced to determine the order of autoregressive process. 
 

A. Time Series Cross Validation-1 Technique 
In time series cross validation-1 model selection procedure, 

there is a series of test samples; each test sample contains only 
one observation. The corresponding training samples 
consisting of the observations prior to the single observation of 
the test sample. It means that forecast at a time point is 
dependent on the past observations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  1. Time Series Cross Validation-1(TSCV-1) 

In the figure-1, sample data{ } 1

n
t ty

=
 is repeatedly split into a 

training sample (shown in grey colour) and a validation set 
(i.e., test sample) that contains only one observation (shown in 
black colour). 
Training Samples: { }1 2 1, ;i 1, 2, , n ki ky y y + − = −   

Test Samples: { };i 1, 2, , n ki ky + = −  (or) { } 1

n

kyα α = +
  

Here k is minimum training sample size to estimate the model. 
An estimate of PE using TSCV-1 technique is  
 ( )21 ˆPE y y

n k α α= −
− ∑

 
 
B. Time Series Cross Validation-2 Technique 

In time series cross validation-2 model selection 
procedure, there is a series of test samples; each test sample 
contains only one observation. The corresponding training 
samples consisting of a number of observations prior to the 
single observation of the test sample. The TSCV-2 technique 
is similar to TSCV-1 technique, but the size of training sample 
in TSCV-2 technique is constant.  
Training Samples: { }1, , ;i 1, 2, , n ki i ky y + − = −   

Test Samples: { };i 1, 2, , n ki ky + = −  (or) { } 1

n

kyα α = +
 

Here k is minimum training sample size to estimate the model 
and is the size of training sample in each split. 
An estimate of PE using TSCV-2 technique is  
 ( )21 ˆPE y y

n k α α= −
− ∑  

 

 
 
 
 
 
 
 

 

 

 

 

 

 

Figure  2. Time Series Cross Validation-2(TSCV-2) 

In the figure-2, sample data{ } 1

n
t ty

=
 is repeatedly split into a 

training sample (shown in grey colour), the size of the training 
samples are fixed and a validation set (i.e., test sample) that 
contains only one observation (shown in black colour). 

 
C. Time Series Cross Validation-3 Technique 

In time series cross validation-3 model selection 
procedure, there is a series of test samples; each test sample 
contains only one observation (i.e., 3-step-ahead data point). 
In time series analysis, multi-step forecasts are relevant than 
one-step forecasts. The TSCV-3 technique is a relevant 
selection procedure than TSCV-1 and TSCV-2 techniques. 
 

 

 

 

 

 

 

 

 

 

 

Figure  3. Time Series Cross Validation-3(TSCV-3) 

In the figure-3, sample data{ } 1

n
t ty

=
 is repeatedly split into a 

training sample (shown in grey colour) and a validation set 
(i.e., test sample) that contains only one observation (shown in 
black colour). The single observation of the test sample is a 
 3-step-ahead data point. 
Training Samples: { }1 1, , ;i 1, 2, , n k 2i ky y + − = − −   

Test Samples: { }2 ;i 1, 2, , n k 2i ky + + = − −  (or) 

{ } 3, 5, ,k k nyα α = + + 
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Here k is minimum training sample size to estimate the model. 
An estimate of PE using TSCV-3 technique is  
 ( )21 ˆPE

2
y y

n k α α= −
− − ∑

 
 
D. Time Series Cross Validation-4 Technique 

In time series cross validation-4 model selection 
procedure, there is a series of test samples or test folds, each 
test fold contains a set of observations and test fold sizes are 
equal. The TSCV-4 technique is a good model selection 
procedure than TSCV-1, TSCV-2 and TSCV-3 techniques.  
Assumption:   

1. n is multiple of k 
2. The size of first training fold is same as the size of 

first test fold. 
3. Test folds are equal in size. It means that each test 

sample consists of an equal number of observations  
in it. 

 

Figure  4. Time Series Cross Validation-4(TSCV-4) 

Training Samples (or) Training folds: 

{ }1 2
n k, ;i 1, 2, ,

ki ky y y ×

−
=   

Test Samples (or) Test folds: 

( ) ( ){ }1 1
n k, , ;i 1, 2, ,

ki k i ky y× + + ×

−
=    

Here k is minimum training sample size to estimate the model. 
 
An estimate of PE using TSCV-4 technique is  
 ( ) ( ) ( )

( )

2 3
2 2 2

1 2 1 1

1 ˆ ˆ ˆPE
+ + − +

 
= − + − + + − 

−   
∑ ∑ ∑

k k n

k k n k
y y y y y y

n k α α α α α α

 Where 

 ( )
2

2

1

ˆ
k

k
y yα α

+

−∑ is a total predictive square error of first test 

sample { }1 2, ,k ky y+   

( )
3

2

2 1

ˆ
k

k
y yα α

+

−∑  is a total predictive square error of second test 

sample { }2 1 3, ,k ky y+   

( )
( )

2

1

ˆ
n

n k
y yα α

− +

−∑  is a total predictive square error of last test 

sample ( ){ }1, , nn ky y− + 
 

 

E. Time Series Cross Validation-5 Technique 
In time series cross validation-5 model selection 

procedure, there is a series of test samples or test folds, each 
test fold contains a set of observations and test fold sizes are 
equal. The corresponding training samples consisting of the 
number of observations prior to the test sample. In TSCV-5 
model selection procedure, the size of training samples and 
test samples are equal in each split.  
Assumption:  

1. n is multiple of k 
2. The size of training fold is same as the size of test 

fold in each split. 
3. Test folds are equal in size. It means that each test 

sample consists of an equal number of observations 
 in it. 

 
Figure  5. Time Series Cross Validation-5(TSCV-5) 

Training Samples (or) Training folds: 

( ){ }1 1
n k, , ;i 1, 2, ,

ki ki ky y ×+ −

−
=   

Test Samples (or) Test folds: 

( ) ( ){ }1 1
n k, , ;i 1, 2, ,

ki k i ky y× + + ×

−
=    

Here k is minimum training sample size to estimate the model. 
 
An estimate of PE using TSCV-5 technique is  
 ( ) ( ) ( )

( )

2 3
2 2 2

1 2 1 1

1 ˆ ˆ ˆPE
+ + − +

 
= − + − + + − 

−   
∑ ∑ ∑

k k n

k k n k
y y y y y y

n k α α α α α α

 Where  

( )
2

2

1

ˆ
k

k
y yα α

+

−∑ is a total predictive square error of first test 

sample { }1 2, ,k ky y+   

( )
3

2

2 1

ˆ
k

k
y yα α

+

−∑  is a total predictive square error of second test 

sample { }2 1 3, ,k ky y+   

( )
( )

2

1

ˆ
n

n k
y yα α

− +

−∑  is a total predictive square error of last test 

sample ( ){ }1, , nn ky y− + 
 

 
F. Time Series Cross Validation-6Technique 

In time series cross validation-6 model selection 
procedure, there is a series of test samples or test folds, each 
test fold contains a set of observations which are k-step-ahead 
data points and test fold sizes are equal.  
Assumption:  

1. n is multiple of k 
2. The size of first training fold is same as the size of 

first test fold. 
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3. Test folds are equal in size. It means that each test 
sample consists of an equal number of observations 
 in it. 

 

 
Figure  6. Time Series Cross Validation-6(TSCV-6) 

Training Samples (or) Training folds: 

{ }1
n 2k, , ;i 1, 2, ,

ki ky y ×

−
=   

Test Samples (or) Test folds: 

( ) ( ){ }1 1 2
n 2k, , ;i 1, 2, ,

ki k i ky y+ + +

−
=    

Here k is minimum training sample size to estimate the model. 
 
An estimate of PE using TSCV-6 technique is  
 ( ) ( ) ( )

( )

3 4
2 2 2

2 1 3 1 1

1 ˆ ˆ ˆPE
2 + + − +

 
= − + − + + − 

−   
∑ ∑ ∑

k k n

k k n k
y y y y y y

n k α α α α α α  

Where  

( )
3

2

2 1

ˆ
k

k
y yα α

+

−∑ is a total predictive square error of first test 

sample { }2 1 3, ,k ky y+   

( )
4

2

3 1

ˆ
k

k
y yα α

+

−∑  is a total predictive square error of second test 

sample { }3 1 4, ,k ky y+   

( )
( )

2

1

ˆ
n

n k
y yα α

− +

−∑  is a total predictive square error of last test 

sample ( ){ }1, , nn ky y− + 
 

III. EMPIRICAL STUDY 

We generated a series of 250 observations from the 
autoregressive model of order 2, 

1 20.58 0.65t t t ty y y ε− −= − + , ( )where are . . 0,1 .t i i d Nε  
 
The candidate models are  

1 1 1: t t ty a y ε−= +M   

2 1 1 2 2: t t t ty a y a y ε− −= + +M  

3 1 1 2 2 3 3: t t t t ty a y a y a y ε− − −= + + +M  

4 1 1 2 2 3 3 4 4: t t t t t ty a y a y a y a y ε− − − −= + + + +M  

5 1 1 2 2 3 3 4 4 5 5: t t t t t t ty a y a y a y a y a y ε− − − − −= + + + + +M  
TSCV techniques are used to estimate the optimal order of 

autoregressive model.  
The prediction mean square error for each candidate model 

is estimated by different TSCV techniques using R Software 
and these values are presented in table I to V. 

 
 

Table I.  Estimates of PE by TSCV-1 technique 

k 
Estimates of PE by TSCV-1 technique for the Model 

AR(1) AR(2) AR(3) AR(4) AR(5) 
25 1.530311 0.973941 0.985433 1.014555 1.025889 
50 1.582546 1.01608 1.02759 1.049468 1.059643 
75 1.581222 1.00519 1.012122 1.034494 1.038942 
100 1.423709 0.986364 0.992325 1.003767 1.007592 
125 1.405905 0.993532 0.998706 1.012341 1.014716 
150 1.33519 0.941361 0.946084 0.949703 0.951085 
175 1.243363 0.934801 0.942493 0.94613 0.944047 
200 1.595412 1.136492 1.145097 1.150882 1.146659 
225 1.309337 0.770816 0.770429 0.769918 0.781212 

For k=225, AR(4) model is the most appropriate model by 
TSCV-1 technique. Since the estimate of prediction error 
based on less number of observations, the TSCV-1 technique 
is not selecting the most appropriate model. The minimum 
number of observations required to estimate the prediction 
error is 40 in this situation. For remaining k values, TSCV-1 
technique performs well. 

Table II.  Estimates of PE by TSCV-2 technique 

 
In the TSCV-2 technique, the first observation in each 

training sample is not far from the observation of the test 
sample. A minimum number of observations in each training 
sample are not less than 10 % of the data is considered for the 
present study. For all selected values of k, TSCV-2 technique 
performing well. 

Table III.  Estimates of PE by TSCV-3 technique 

k 
Estimates of PE by TSCV-3 technique for the Model 

AR(1) AR(2) AR(3) AR(4) AR(5) 
25 1.779215 1.371621 1.384179 1.399293 1.415454 
50 1.835528 1.427255 1.436383 1.462076 1.474493 
75 1.84689 1.438611 1.44419 1.471097 1.475356 
100 1.63721 1.392555 1.395461 1.407555 1.408046 
125 1.599433 1.334273 1.337071 1.349015 1.347026 
150 1.451404 1.271021 1.272582 1.27731 1.274207 
175 1.461919 1.237995 1.242911 1.251946 1.24351 
200 1.647454 1.354596 1.35926 1.368044 1.354306 
225 1.596424 1.185301 1.180439 1.176958 1.191044 

 
The TSCV-3 technique is dependent on the observations of

 the test sample which is h-step ahead data point and the value 
of k. To select the most appropriate model, we chose h as 2, 3, 
4 and 5. The TSCV-3 technique is performing well for the size
 of training sample which lies between 10% and 75% of the  
data. For the k (25 to 175) values, TSCV-3 technique performs
 well. 

k 
Estimates of PE by TSCV-2 technique for the Model 

AR(1) AR(2) AR(3) AR(4) AR(5) 
25 1.59852 1.086066 1.163132 1.254259 1.32851 
50 1.604598 1.052419 1.081964 1.095242 1.130196 
75 1.594136 1.024215 1.041528 1.052716 1.070726 
100 1.428297 0.998333 1.006905 1.016553 1.024421 
125 1.405954 1.000571 1.009877 1.021016 1.027763 
150 1.337799 0.958747 0.964872 0.969574 0.972083 
175 1.24323 0.9398 0.94585 0.95669 0.960398 
200 1.599547 1.144698 1.162594 1.176925 1.176468 
225 1.309116 0.764238 0.766044 0.781315 0.793078 
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Table IV.  Estimates of PE by TSCV-4 technique 

k 
Estimates of PE by TSCV-4 technique for the Model 

AR(1) AR(2) AR(3) AR(4) AR(5) 
5 1.491581 0.944388 0.958796 1.006564 1.014591 
10 1.508478 0.970101 1.025693 1.021178 1.028944 
25 1.514073 0.946957 0.951758 0.964936 0.971821 
50 1.561074 1.012016 1.023154 1.056757 1.06298 
125 1.406476 0.953078 0.953496 0.971115 0.970077 

 
In the TSCV-4 technique, we chose the k value such that 

n k
k
− is an integer and 5k ≥ . For all selected values of k,  

TSCV-4 technique performs well.  
For k=125, the training fold consisting of the first 50% of 

 the data and the test fold consisting of the last 50% of the 
 data. 

Table V.  Estimates of PE by TSCV-5 technique 

k 
Estimates of PE by TSCV-5 technique for the Model 

AR(1) AR(2) AR(3) AR(4) AR(5) 
10 1.538369 1.02339 1.221861 1.19563 1.288271 
25 1.522967 0.980885 0.995129 1.027841 1.134396 
50 1.56086 1.010527 1.047324 1.071945 1.091911 
125 1.406476 0.953078 0.953496 0.971115 0.970077 

 
In the TSCV-5 technique, we chose the k value such that 

n k
k
− is an integer and 5k ≥ . For all selected values of k,  

TSCV-5 technique performing well.  
For k=125, the training fold consisting of the first 50% of 

the data and the test fold consisting of the last 50% of the data. 

Table VI.  Estimates of PE by TSCV-6 technique 

k 
Estimates of PE by TSCV-6 technique for the Model 

AR(1) AR(2) AR(3) AR(4) AR(5) 
5 1.496793 0.950885 1.01355 1.212872 1.216627 
10 1.524203 0.982224 0.999622 1.013216 1.017292 
25 1.565564 0.995341 1.003848 1.03383 1.043173 
50 1.407914 0.989371 0.987399 1.035232 1.039462 

 
In the TSCV-6 technique, we chose the k value such that 

n 2k
k
− is an integer and 5k ≥ . The TSCV-6 technique  

performs better for small values of k. 
By the TSCV techniques, AR(2) model is the most  

appropriate model for the simulated data. 

IV. CONCLUSIONS 

In the present research work, we have investigated the use 
of time series cross-validation techniques for determining the 
order of autoregressive model. These time series cross-
validation techniques are also useful for obtaining best model 
among the candidate models in time series forecasting. These 
time series cross-validation techniques are alternative to the 
model selection procedures such as Final Prediction Error 
(FPE) Criterion, Akaike Information Criterion (AIC), Bias-
Corrected Akaike Information Criterion (AICc), Bayesian 
Information Criterion (BIC) and Minimum Description Length 
(MDL). 
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