
��������	�
����	�������������

��� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(���������

© 2010, IJARCS All Rights Reserved 453

ISSN No. 0976-5697

Simulation Based QoS Analysis of Service Composition

Mojdeh Rahmanian

Young Researchers Club, Department of Computer
Islamic Azad University, Jahrom Branch

Jahrom, Iran
m.rahmanian@jia.ac.ir

Abstract: In recent years, various organizations offer their services with independent and reusable programs on internet. An important challenge
is to integrate them to create new value-added Web services. The selection of the most appropriate candidate for each service for complex
composite Web services becomes a difficult task. One possible solution is to use quality of service (QoS) to evaluate, compare and select the
most appropriate composition. Typical QoS properties associated with a web service are the execution cost and time, availability, Throughput.
We use Coloured Petri Nets (CPNs) for Web services composition. CPNs combine the strengths of Petri nets with the functional programming
language Standard ML. We use the associated software tool called CPN Tools to perform the analysis. We use the associated facilities of CPN
Tools to perform evaluate the QoS metrics.

Keywords: web service; service composition; Coloured Petri Net; Quality of Service

I. INTRODUCTION

Service oriented architecture (SOA) [1,2,3], are software
applications that allow the exchange of information over a
network between different software entities [4]. Services are
reusable, autonomous and self descriptive application programs
that can be accessible via standard network protocols such as
but not limited to SOAP[5] over HTTP. Services can be
presented on a network of computers with different operating
systems platforms as well as various programming languages.

In SOA, every person or organization can be a service
provider or a service requester and the communication between
them is achieved with XML messages and SOAP protocols.
Services specifications are stored in a repository called
UDDI1[6]. The language that is used for this specification is
WSDL2 [7].

Web service composition is a task of combining and linking
existing web services to create new web processes in order to
add value to the collection of services. Using of visual and
descriptive tools that can quickly and easily model services and
their compositions as well as analyzing them before
implementing, is necessary. For the sake of fast computation,
many researchers prefer Petri nets [8], since they are well
suited for capturing flows in web services, modeling the
distributed nature of web services, representing methods in a
web service and reasoning about the correctness of the flows. A
web service behavior is basically a partially ordered set of
operations. Therefore, it is straightforward to map it into a Petri
net.

The system should be able to detect quality patterns and
variations and adjust its selection accordingly. Quality of
Service (QoS) refers to the non functional aspects of Web
services. Several attributes can be taken into consideration at
once. In the case where several services are supposed to
execute in parallel, finding the best solution is not as easy as
choosing the best individual service but rather choosing the
service that would perform best as part of the complete
composition. Depending on the user’s need, several quality

1 Universal Description, Discovery and Integration
2 Web Service Description Language

attributes might be of importance, such as cost, response time,
availability, reliability, security, throughput, reputation and so
forth.[9]
In this paper we introduce a Colored Petri Nets (CPNs) based
approach to modeling and analyzing web service
compositions.

This work is organized as follows. Section II presents
related work. Section III gives a brief overview of CPNs. The
base services are introduced in Section IV. In section V
presents the QoS attributes for web service composition. Our
web service composition examples are explained in Section
VI. The CPN model is built in Section VII and constructed
with CPN Tools in Section VIII. Numerical results are given
in Section IX. Finally, Section X concludes and gives some
perspectives to this work.

II. RELATED WORK

Over the years there have been several research efforts to

model and analyze Web services. In [10], a number of operators
for proposing different compositions of web services were
given and formal meaning of these operators is shown using
Petri-Nets. Any relation among services shown as an
expression of these operators can be converted to a model in
Petri-Nets. Also, by using several features for these operators,
it is possible to transform and improve relationships between
them in such a way that their initial properties be unchanged.
In [11] describes new facilities that are fully integrated with CPN
Tools and supports simulation-based performance analysis using
CP-nets. Also, by using a simple example of a network protocol,
it illustrates how one can use these facilities to collect data during
simulations, for generating different kinds of performance-related
output, and for running multiple simulation replications. In [12],
DAML-S service descriptions of composite services are
represented as Petri Nets (Petri 1962), providing decision
procedures for Web services simulation, verification and
composition.

Mojdeh Rahmanian et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,453-459

© 2010, IJARCS All Rights Reserved 454

III. COLORED PETRI NETS

Petri-Net [13, 14, 15] is a graphical and mathematical tool,
used for specification and study of concurrent, asynchronous
and/or distributed information processing systems. Since
service oriented systems can have these features, using Petri-
Nets for specification of these systems is appropriate.

A Petri-Net is a directed and connected graph which has
three components :(1) Nodes which can be either a place or a
transition. (2) Arcs always connect a place to a transition or a
transition to a place. It is illegal to have an arc between two
nodes of the same kind, i.e., between two transitions or two
places (3) Tokens that are placed in places. If at least one token
exists in every input place which connects to a transition, that
transition is called "enabled". Enabled transition can "fire", so
that a token would be omitted from each input place of it, and a
token would be placed in each output place of it. The use of
visual modeling techniques such as Petri-Nets in the design of
complex Web services is justified by many reasons. For
example, visual representations providing a high-level yet
precise language allows to express and reason about concepts at
their natural level of abstraction. A Web service behavior is
basically a partially ordered set of operations. Therefore, it is
straight-forward to map it into a Petri-Net. Operations are
modeled by transitions and the state of the service is modeled
by places. The arrows between places and transitions are used
to specify causal relations. [10] Thus, firing of a transition that
causes moving tokens from some places to others, models an
operation that changes the state of a system.

A. Formal definitions

Definition 1. "A Petri-Net is a 5-tuple,
PN = (P, T, F, W, M0) where:

• P = {p1,p2, ….,pm} is a finite set of places,
• T = {t1,t2,….,tm} is a finite set of transitions,

• F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),

• W: F → {1,2,3,…} is a weight function,

• M0: P → {0,1,2,3,…} is the initial marking,

• P ∩ T = ∅ and P ∪ T ≠ ∅". [15]
Timed Petri-Net (TPN) is a Petri-Net in which timed

places or timed transitions exist. According to definition 1, a
formal definition for a TTPN can be stated as:

Definition 2. A Petri-Net is a 6-tuple, TTPN = PN ∪ LT
where:

• PN is a Petri-Net, and

• LT: T → D is latency time function of transitions. D,
set of transitions latency numbers, is a set of numbers that
each of them is the latency time number of a transition.
This number shows that how many units of times after
enabling, the transition will fire.
Input place is a place that does not have input arc and when

a token is placed on that place, it will mean the service has
received the necessary information from environment for its
operation and is in the ready state. Output place is a place that
does not have output arc and when a token is placed on that
place, it will mean that the service has returned the results of
its operation to environment and is in the complete state.

Colored Petri Nets (CPNs) are extensions of Petri Nets that
allow modeling of both timed and untimed and support a
powerful module mechanism that allows building of models in
hierarchical manner.

CPNs is a discrete-event modelling language combining
Petri nets [8] and the functional programming language CPN
ML which is based on Standard ML [16,17]. The inscriptions

are written in the CPN ML programming language which is an
extension of the Standard ML language.

IV. BASE SERVICES

Each service can implement a specific operation that it is
developed for it. However, to reply to a majority of
requirements, a process must be done that for implementing it,
several base services must be composed. For implementing
different processes, base services communicate and coordinate
with each other in different shapes, each shape appropriate for
the process being implemented. Hence for implementing a
process, a composite service will be developed by composing
base services.

We assume that necessary base services for the
compositions are ready; so, we should only concentrate on
how to compose them. The base services, S1,…, S5 are shown
in Fig. 1. As shown in the Fig. 1, a base service is represented
by a rectangle and only those nodes that play a role in
communication between services is shown in its figure.
Different shapes considered for these services are to
distinguish between them in a composition and is in some
cases because of their different roles which must be played in
compositions.

Figure 1: Base Services

V. QOS ATTRIBUTES

Individual Web services are conceptually limited to
relatively simple functionalities modeled through a collection
of simple operations. However, for certain types of
applications, it is necessary to combine a set of individual web
services to obtain more complex ones, called composite or
aggregated web services as mentioned in previous section.
One important issue within Web service composition is related
to the selection of the most appropriate one among the
different possible compositions. One possible solution is to use
quality of service (QoS) to evaluate, compare and select the
most appropriate composition(s). [18] Quality of Service
(QoS) refers to the non functional aspects of Web services.

The area of QoS management covers a wide range of
techniques that match the needs of service requesters with
service providers. service provider provides differentiated Web
services to different customers. In this research, the following
four quality metrics of a Web service are considered
• Response Time: the time interval between when a service

is invoked and when the service is finished.
• Execution Cost: the price that a service requester has to pay

for invoking the service;
• Execution Time: the average time expected for executing a

web service.
• Availability: the probability that the service is available at

some period of time;
• Throughput: the number of completions of web service

requests during an observation time interval.

Mojdeh Rahmanian et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,453-459

© 2010, IJARCS All Rights Reserved 455

VI. DYNAMIC SERVICE COMPOSITION

To illustrate the use of CPN and CPN Tools in modeling
and analyzing web services we consider a simple case as
shown in Fig. 2 which has consumers and one provider, where
the objective is to do a QoS analysis of various options
available for service composition and orchestration. In the first
composition, the path would have to execute Provider1, taking
only 50 milliseconds (ms) to complete and costing $10 with
limited service availability.

In the second one, the first path would have to execute 2
services, (Provider1 and Provider2), which Provider2 taking
only 250 milliseconds (ms) to complete and costing $30 and
unlimited service availability. In case of no enough resources
available in Provider1, we can use of a Provider2.

We can consider it as a online library system where we can

view customers as consumers. If the books are not available in
Provider1 then the request can be placed to another library
which is the provider2, which can either accept the request or
decline it based on the availability. In fact, We have a choice of
making use of a third-party service provider for some of the
functionality we want to create. But this option has an
additional cost per use. Before coding and deploying our
services, we would like to evaluate each of these options in
terms of QoS attribiute. It is assumed that for our customer
base, we have a lower Execution Cost whereas making use of
third-party contracted services definitely has a higher delay
factor and higher Execution Cost. It is also assumed that the

thirdparty provider has better and more computational
resources.

VII. THE CPN MODEL

Petri Nets models have been a useful formalism in the
information technology industry, which are capable of
presenting complex system processes. This study develops a
Petri Nets-based Composing platform to address the issues of
composing Web services.

CPNs support a powerful module mechanism to support
hierarchical construction of a model. The module concept of
CP-nets is based on a hierarchical structuring mechanism,
allowing a module to have submodules and allowing a set of
modules to be composed to form a new module. [19] The
detailed activity associated with each of these entities can then
be represented on a subpage associated with it. Such transitions
are called substitution transitions. In CPN Tools, a substitution
transition is shown with a double border. The state of the
modelled system is represented by the places. Each place can
be marked with one or more tokens, and each token has a data
value attached to it. This data value is called the token colour. It
is the number of tokens and the token colours on the individual
places which together represent the state of the system. This is
called a marking of the CPN model, while the tokens on a
specific place constitute the marking of that place.

Next to each place, there is an inscription which determines
the set of token colours (data values) that the tokens on the
place are allowed to have. The set of possible token colours is
specified by means of a type (as known from programming
languages), and it is called the colour set of the place. By
convention the colour set is written below the place.

Based on our first model in Fig. 2, we have Consumer, one
Provider and the service request and response messages flow
from the provider to the consumer and provider via the network
as shown in Fig 2.

Figure 4: top-level module of the hierarchical composition model.

In this paper, each service requests and responses carry a
number which denote the service request and the response is
the same as the service number. In addition to service number,
the meesages carry Execution Time related to each service
providers. In CPN, the (type) declaration for tokens is given
using a color set. The relevant color set declarations for
messages are given in Fig. 5.

For simulation-based performance analysis and exploring

performance measures such as response time and throughput,

colset SID = product ID * COST;
colset MSG = union R: SID;
colset MSG_T = MSG timed;
colset MSGxTime = product MSG * TOR;

Figure 5: Colour sets for the timed CPN model

Provider1
$10/50ms

Availability 30

Provider2
$30/250ms

Availability infinity

����

Consumer1

Consumer2

Consumer n

If Provider1 is not

available

Provider1
$10/50ms

Availability 30

Consumer1

Consumer2

Consumer n

����

Figure 2. Simple Service Composition 1

Figure 3. Simple Service Composition 2

Mojdeh Rahmanian et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,453-459

© 2010, IJARCS All Rights Reserved 456

we need the time concept. In CP-Nets the passage of time is
modeled by global clock. In the timed CPN models, tokens
carry a timestamp denoting the earliest (model) time at which
the token can be used, i.e., removed by the occurrence of
binding element.

The activities associated with a consumer are modeled in
the subpage Consumer shown in Fig. 6. In this net, the place
Ready contains a timed token. The time stamp of this token
denotes the earliest time the next request will be sent. A service
request is sent by firing the transition SendRequest. The
generated request (token) consists of a request identifier and a
service and added to place Request1 denoting sending of the
request into the network. The place NextID keeps track of the
next request number. Each time a request is sent, this number
gets incremented by one. This is denoted by the increment
expression on the associated arc. Once a request is sent, a token
consisting of the time of the request and the request itself is
added to place Wait denoting the activity of waiting for rely. In
this simplified system, we do not model any timeouts. Thus, a
request may wait for arbitrary long time for a response. When a
response is received from the network, that is, a token appears
in the place Response2, it is matched for the id numbers before
it is accepted by the firing of the transition ReceiveResponse.
This is controlled by the guard [i1=i2] associated with this
transition. In general, a guard may be any arbitrary sequence of
boolean expressions belonging to the underlying programming
language CPN ML which itself is based on the popular
functional language SML [17].

Figure 6: Consumer Module

We have assumed the network to operate under ideal

conditions. That is, we assume Packet loss and retransmission
issues are also not accounted, because the model becomes too
specific to the protocol implementation. The server is only
concerned with servicing a number of HTTP requests generated
by the consumers. If we want to change these assumptions, we
could take advantage of the modular approach supported by
CPN and enhance the network behavior without affecting the
other components of the system. The ideal network under the
present assumptions is depicted in Fig. 7.

Figure 7: Network Module

Figure 8: Provider Module

The final component of our model is the provider1. Quality

of service annotations are encoded as color set. The
Availability of services represented by the place ServiceAvail.
In the net depicted in Fig. 8, a request received from the
network (i.e., a token in place Request2) is accepted and
serviced only if there are enough resources available.

Figure 9: Provider Module in Second Model

In the second model as shown in Fig. 9, the consumer part

is similar to the Fig. 6. The provider side in this one, if there is
no resource available, the request is sent to provider2. In Fig. 9,
the substitution transition HandleRequest choose if the
availability is zero in provider1 send the request to provider2.

Before implementing and deploying our services, we
would like to evaluate each of these options in terms of
Response Time and throughput.In the next step we develop
our CPN model to evaluate these scenarios.

VIII. CONSTRUCTION OF CPN MODELS

CPN Tools [20] is a graphical software tool that supports
modification, simulation, state space analysis, and
performance analysis of CPN models. While constructing a
model, syntax checking is incrementally performed by the
CPN tool. CPN Tools allows one to create a visual
representation of a CPN model which is based on interaction
techniques, such as tool palettes and marking menus. It is
possible to explore the behavior of the modeled system using
simulation. A license for CPN Tools can be obtained via the
CPN Tools web site [20]. Readers are recommended to refer to
[21] for further information and guidelines for CPN tools.

A simulation of the composition models shown in Fig. 10.
During simulating of a model we can examine and extract

Mojdeh Rahmanian et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,453-459

© 2010, IJARCS All Rights Reserved 457

information from the states and events without having to
modify the structure of it. In CPN Tools it is possible with
monitors. A monitor is a mechanism that is used to observe,
inspect, control or modify a simulation of a CP-net. [22] CPN
Tools support different kinds of monitors. Depends on our
purpose we can use one kind of them. In our work, we use
monitors for calculating QoS metrics of web services;
Response Time and Throughput. In CPN Tools, monitors can
be used to examine the binding elements that occur and the
markings that are reached during a simulation. Different kinds
of monitors can be used for different purposes [19].

The Response Time represents the time to send a request
from the consumer to the provider i.e. when SendRequest
transition occurs and back to the consumer i.e. when the
ReceiveResult fires.

We apply a data collector monitor on ReceiveResult
transition for collecting specific data during steps of
simulation. The Type of the monitor indicates that it is a data
collector monitor, i.e. it collects the numerical data on our
transition. The transition ReceiveResult that is associated with
the monitor can be found

Figure 10 Screenshot of CPN Tools

in the Nodes ordered by pages entry. The predicate

function determines when the monitor should collect data from
model. The predicate function for RoundTripTime monitor
looks like this:

fun predBindElem (Services'ReceiveResult (1,{i1,i2,s1,s2,t})) = true

The function returns true every time ReceiveResult occurs

that it means a new response received by consumer. The
observation function collects numerical data from the model
whenever the predicate function for the same monitor is called
and returned true. The observation function for measuring
Response Time of messages subtracts the time of sending
request t from the model time at which the transition occurs.

IntInf.toInt(time())-t

The initialization and stop functions are not used to collect

data from markings. The data values that are returned by the
observation function are used to calculate statistics. Simulation
output is most often random and the statistics in a simulation
performance report are unreliable. Confidence intervals are
often used to evaluate the accuracy of performance measure
estimates. Accurate confidence intervals can only be

calculated for data values that are independent and identically
distributed (IID) [21]. By running simulation replications on a
net that contains data collector monitors, some of the statistics
that are calculated at the end of each simulation are used to
calculate more accurate and reliable statistics. For this reason,
we run 5simulation replication that each one consists of 5000
steps.

The Throughput represents the number of completions of
web service requests during an observation time interval. We
use a data collector monitor on ReceiveResult transition that
count the number of firing transition. Each of them shows that
a request is responded completely. It is also necessary to
define predicate, observation, initialization and stop functions
for the Throughput monitor, even though these functions will
not be used to collect data.

The Execution Cost represents the price that a service
requester has to pay for invoking the service. We use a data
collector monitor on ReceiveResult transition that sum the cost
of each token when the transition fire. The average Execution
Cost in each composition can be calculated at the end of a
simulation by dividing the sum by the number of firing
transition.

The QoS metrics of models are examined for request
arrival rates of 5, 10, 20, 40 and 50 requests/second. Ten
independent simulations are executed for each web service
composition that are
calculated for the in question.
interarrival times between requests are exponentially
distributed. This is not the most accurate model for request
arrivals [

Simulation output is most often random and the statistics in
a simulation performance report are unreliable. Confidence
intervals are often used to evaluate the accuracy of
performance measure estimates. Accurate confidence intervals
can only be calculated for data values that are independent and
identically distributed (IID) [
replications on a net that contains data collector monitors,
some of the statistics that are calculated at the end of each
simulation are
statistics. For this reason, we run 5simulation replication that
each one consists of 5000 steps.

Fig.
for two supposed model, described in Section
represents the request/second and the y
throughput as the number of completed response per second
calculated from data collector monitor.

Fig.

model. The x
represents the average Cost calculated from data collector
monitor.

Fig.

model. The x

Mojdeh Rahmanian

The QoS metrics of models are examined for request
arrival rates of 5, 10, 20, 40 and 50 requests/second. Ten
independent simulations are executed for each web service
composition that are
calculated for the in question.
interarrival times between requests are exponentially
distributed. This is not the most accurate model for request
arrivals [26], but it proved to be sufficient

Simulation output is most often random and the statistics in
a simulation performance report are unreliable. Confidence
intervals are often used to evaluate the accuracy of
performance measure estimates. Accurate confidence intervals

only be calculated for data values that are independent and
identically distributed (IID) [
replications on a net that contains data collector monitors,
some of the statistics that are calculated at the end of each
simulation are used to calculate more accurate and reliable
statistics. For this reason, we run 5simulation replication that
each one consists of 5000 steps.

Fig. 11 shows the plot of Throughput of service requests
for two supposed model, described in Section
represents the request/second and the y
throughput as the number of completed response per second
calculated from data collector monitor.

Fig. 12 shows the Average Cost plot of two supposed
model. The x-axis represents the request/second and the y
represents the average Cost calculated from data collector
monitor.

Figure

Fig. 13 shows the
model. The x-axis represents the request/second and the y

Mojdeh Rahmanian et al

IX. RESULTS

The QoS metrics of models are examined for request
arrival rates of 5, 10, 20, 40 and 50 requests/second. Ten
independent simulations are executed for each web service
composition that are examined. 95% confidence intervals are
calculated for the in question.
interarrival times between requests are exponentially
distributed. This is not the most accurate model for request

6], but it proved to be sufficient
Simulation output is most often random and the statistics in

a simulation performance report are unreliable. Confidence
intervals are often used to evaluate the accuracy of
performance measure estimates. Accurate confidence intervals

only be calculated for data values that are independent and
identically distributed (IID) [21
replications on a net that contains data collector monitors,
some of the statistics that are calculated at the end of each

used to calculate more accurate and reliable
statistics. For this reason, we run 5simulation replication that
each one consists of 5000 steps.

shows the plot of Throughput of service requests
for two supposed model, described in Section
represents the request/second and the y
throughput as the number of completed response per second
calculated from data collector monitor.

Figure 11: Throughput

shows the Average Cost plot of two supposed
axis represents the request/second and the y

represents the average Cost calculated from data collector

Figure 12: Average Execution Cost

shows the Response Time plot of two supposed
axis represents the request/second and the y

et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan.

ESULTS

The QoS metrics of models are examined for request
arrival rates of 5, 10, 20, 40 and 50 requests/second. Ten
independent simulations are executed for each web service

examined. 95% confidence intervals are
 We will assume that the

interarrival times between requests are exponentially
distributed. This is not the most accurate model for request

6], but it proved to be sufficient for our purposes.
Simulation output is most often random and the statistics in

a simulation performance report are unreliable. Confidence
intervals are often used to evaluate the accuracy of
performance measure estimates. Accurate confidence intervals

only be calculated for data values that are independent and
21]. By running simulation

replications on a net that contains data collector monitors,
some of the statistics that are calculated at the end of each

used to calculate more accurate and reliable
statistics. For this reason, we run 5simulation replication that

shows the plot of Throughput of service requests
for two supposed model, described in Section VI
represents the request/second and the y-axis represents the
throughput as the number of completed response per second
calculated from data collector monitor.

: Throughput

shows the Average Cost plot of two supposed
axis represents the request/second and the y

represents the average Cost calculated from data collector

: Average Execution Cost

Response Time plot of two supposed
axis represents the request/second and the y

, International Journal of Advanced Research in Computer Science, 2 (1), Jan.

The QoS metrics of models are examined for request
arrival rates of 5, 10, 20, 40 and 50 requests/second. Ten
independent simulations are executed for each web service

examined. 95% confidence intervals are
will assume that the

interarrival times between requests are exponentially
distributed. This is not the most accurate model for request

for our purposes.
Simulation output is most often random and the statistics in

a simulation performance report are unreliable. Confidence
intervals are often used to evaluate the accuracy of
performance measure estimates. Accurate confidence intervals

only be calculated for data values that are independent and
]. By running simulation

replications on a net that contains data collector monitors,
some of the statistics that are calculated at the end of each

used to calculate more accurate and reliable
statistics. For this reason, we run 5simulation replication that

shows the plot of Throughput of service requests
VI. The x-axis

axis represents the
throughput as the number of completed response per second

shows the Average Cost plot of two supposed
axis represents the request/second and the y-axis

represents the average Cost calculated from data collector

Response Time plot of two supposed
axis represents the request/second and the y-axis

, International Journal of Advanced Research in Computer Science, 2 (1), Jan.

The QoS metrics of models are examined for request
arrival rates of 5, 10, 20, 40 and 50 requests/second. Ten
independent simulations are executed for each web service

examined. 95% confidence intervals are
will assume that the

interarrival times between requests are exponentially
distributed. This is not the most accurate model for request

Simulation output is most often random and the statistics in
a simulation performance report are unreliable. Confidence
intervals are often used to evaluate the accuracy of
performance measure estimates. Accurate confidence intervals

only be calculated for data values that are independent and
]. By running simulation

replications on a net that contains data collector monitors,
some of the statistics that are calculated at the end of each

used to calculate more accurate and reliable
statistics. For this reason, we run 5simulation replication that

shows the plot of Throughput of service requests
axis

axis represents the
throughput as the number of completed response per second

axis

axis

represents the average Response Time calculated from data
collector monitor.

.

The Throughput, Response Time and Average Cost are

largest when the arrival rate is 10 request/second. As seen
from these graphs, there is a sharp cut
of 40 for two models. Increasing the arrival rate of requests
more than 40 req
all our QoS metrics. When the request arrival rate is 10
requests/second, then the throughput is 60, i.e. more the
requests completed and responded the providers. Even though
in the arrival rate 10 requests/secon
and Response Time.

In this paper, a simulation based approach was proposed
for analyzing QoS metrics of web services composition. We
used Colored Petri Net for modeling our alternative design.
Also, we showed how we can u
order to measure the QoS metrics of web services models.
Petri nets were developed precisely for modeling such systems
and scenarios. In fact, the graphical nature of the language
gives a very visual representation of sequential
composition, both asynchronous and synchronous
communication, resource constraints, and mutual
exclusion.
Petri Nets that allow modeling of both timed and untimed and
support a powerful module me
models in hierarchical manner. CPNs combine the strengths of
ordinary Petri Nets with the strengths of a high
programming language. Petri Nets provide the primitives for
process interaction, while the programming langu
the primitives for the definition of data types and the
anipulations of data values.

In fact we have successfully employed CPNs to model and
analyze both the internal components and interactions as well
as the external user/service request pa
an Enterprise Service Bus (ESB) developed defense
applications [
time concept.
Tools) provides support for construction as well as analyzing
CPN models. We used the simulation
supported by CPN
web service composition

In our
both timed and untimed activities and to perform quality of
service (Q

, International Journal of Advanced Research in Computer Science, 2 (1), Jan.

represents the average Response Time calculated from data
collector monitor.

Figure 13

The Throughput, Response Time and Average Cost are
largest when the arrival rate is 10 request/second. As seen
from these graphs, there is a sharp cut
of 40 for two models. Increasing the arrival rate of requests
more than 40 requests/second, two models work similarly for
all our QoS metrics. When the request arrival rate is 10
requests/second, then the throughput is 60, i.e. more the
requests completed and responded the providers. Even though
in the arrival rate 10 requests/secon
and Response Time.

X.

In this paper, a simulation based approach was proposed
for analyzing QoS metrics of web services composition. We
used Colored Petri Net for modeling our alternative design.
Also, we showed how we can u
order to measure the QoS metrics of web services models.
Petri nets were developed precisely for modeling such systems
and scenarios. In fact, the graphical nature of the language
gives a very visual representation of sequential
composition, both asynchronous and synchronous
communication, resource constraints, and mutual
exclusion.[23] Colored Petri Nets (CPNs) are extensions of
Petri Nets that allow modeling of both timed and untimed and
support a powerful module me
models in hierarchical manner. CPNs combine the strengths of
ordinary Petri Nets with the strengths of a high
programming language. Petri Nets provide the primitives for
process interaction, while the programming langu
the primitives for the definition of data types and the
anipulations of data values.

In fact we have successfully employed CPNs to model and
analyze both the internal components and interactions as well
as the external user/service request pa

Enterprise Service Bus (ESB) developed defense
applications [24, 25]. For
time concept. The associated graphical software tool (CPN

provides support for construction as well as analyzing
CPN models. We used the simulation
supported by CPN Tools to analyze and compare o
web service composition

In our work, we used
timed and untimed activities and to perform quality of

service (QoS) analysis of w

, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,

represents the average Response Time calculated from data

13: Average Response Time

The Throughput, Response Time and Average Cost are
largest when the arrival rate is 10 request/second. As seen
from these graphs, there is a sharp cut
of 40 for two models. Increasing the arrival rate of requests

uests/second, two models work similarly for
all our QoS metrics. When the request arrival rate is 10
requests/second, then the throughput is 60, i.e. more the
requests completed and responded the providers. Even though
in the arrival rate 10 requests/second we have the most Cost

X. CONCLUSION

In this paper, a simulation based approach was proposed
for analyzing QoS metrics of web services composition. We
used Colored Petri Net for modeling our alternative design.
Also, we showed how we can use CPN Tools facilities in
order to measure the QoS metrics of web services models.
Petri nets were developed precisely for modeling such systems
and scenarios. In fact, the graphical nature of the language
gives a very visual representation of sequential
composition, both asynchronous and synchronous
communication, resource constraints, and mutual

Colored Petri Nets (CPNs) are extensions of
Petri Nets that allow modeling of both timed and untimed and
support a powerful module mechanism that allows building of
models in hierarchical manner. CPNs combine the strengths of
ordinary Petri Nets with the strengths of a high
programming language. Petri Nets provide the primitives for
process interaction, while the programming langu
the primitives for the definition of data types and the
anipulations of data values.

In fact we have successfully employed CPNs to model and
analyze both the internal components and interactions as well
as the external user/service request pa

Enterprise Service Bus (ESB) developed defense
For analyzing QoS metrics

associated graphical software tool (CPN
provides support for construction as well as analyzing

CPN models. We used the simulation
Tools to analyze and compare o

web service composition.
work, we used CPNs with

timed and untimed activities and to perform quality of
of web service composition

Feb, 2011,453-459

represents the average Response Time calculated from data

: Average Response Time

The Throughput, Response Time and Average Cost are
largest when the arrival rate is 10 request/second. As seen
from these graphs, there is a sharp cut-off at inter-arrival value
of 40 for two models. Increasing the arrival rate of requests

uests/second, two models work similarly for
all our QoS metrics. When the request arrival rate is 10
requests/second, then the throughput is 60, i.e. more the
requests completed and responded the providers. Even though

d we have the most Cost

ONCLUSION

In this paper, a simulation based approach was proposed
for analyzing QoS metrics of web services composition. We
used Colored Petri Net for modeling our alternative design.

se CPN Tools facilities in
order to measure the QoS metrics of web services models.
Petri nets were developed precisely for modeling such systems
and scenarios. In fact, the graphical nature of the language
gives a very visual representation of sequential and parallel
composition, both asynchronous and synchronous
communication, resource constraints, and mutual

Colored Petri Nets (CPNs) are extensions of
Petri Nets that allow modeling of both timed and untimed and

chanism that allows building of
models in hierarchical manner. CPNs combine the strengths of
ordinary Petri Nets with the strengths of a high
programming language. Petri Nets provide the primitives for
process interaction, while the programming language provides
the primitives for the definition of data types and the

In fact we have successfully employed CPNs to model and
analyze both the internal components and interactions as well
as the external user/service request patterns and behaviors of

Enterprise Service Bus (ESB) developed defense
analyzing QoS metrics, we

associated graphical software tool (CPN
provides support for construction as well as analyzing

CPN models. We used the simulation-based analysis
Tools to analyze and compare our

CPNs with CPN Tools, to model
timed and untimed activities and to perform quality of

service composition.

represents the average Response Time calculated from data

The Throughput, Response Time and Average Cost are
largest when the arrival rate is 10 request/second. As seen

arrival value
of 40 for two models. Increasing the arrival rate of requests

uests/second, two models work similarly for
all our QoS metrics. When the request arrival rate is 10
requests/second, then the throughput is 60, i.e. more the
requests completed and responded the providers. Even though

d we have the most Cost

In this paper, a simulation based approach was proposed
for analyzing QoS metrics of web services composition. We
used Colored Petri Net for modeling our alternative design.

se CPN Tools facilities in
order to measure the QoS metrics of web services models.
Petri nets were developed precisely for modeling such systems
and scenarios. In fact, the graphical nature of the language

and parallel
composition, both asynchronous and synchronous
communication, resource constraints, and mutual

Colored Petri Nets (CPNs) are extensions of
Petri Nets that allow modeling of both timed and untimed and

chanism that allows building of
models in hierarchical manner. CPNs combine the strengths of
ordinary Petri Nets with the strengths of a high-level
programming language. Petri Nets provide the primitives for

age provides
the primitives for the definition of data types and the

In fact we have successfully employed CPNs to model and
analyze both the internal components and interactions as well

tterns and behaviors of
Enterprise Service Bus (ESB) developed defense

, we used the
associated graphical software tool (CPN

provides support for construction as well as analyzing
based analysis

ur 2 simple

CPN Tools, to model
timed and untimed activities and to perform quality of

Mojdeh Rahmanian et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,453-459

© 2010, IJARCS All Rights Reserved 459

XI. REFERENCES

[1] Newcomer E., Lomow G., 2004, Understanding SOA
With Web Services, Addison Wesley.

[2] Erl T. , 2005, SOA; Concepts, Technology & Design,
Prentice Hall PTR.

[3] Josuttis N., 2007, SOA in Practice, O'Reilly.

[4] M. Gudgin, M. Hadley, and T. Rogers. Web services
addressing 1.0 - core. May 2002. http://www.w3.org/
TR/2006/REC-ws-addr-core-20060509/.

[5] Weerawarana S., Curbera F., Leymann F., Storey T.
and Ferguson D., 2005, Web Services Platform
Architecture: SOAP, WSDL, WS-Policy,
SAddressing, WS-BPEL, WS-Reliable Messaging,
and More, Prentice Hall PTR.

[6] Apte N., Mehta T., 2002, UDDI: Building Registry-
Based Web Services Solution, Prentice Hall PTR.

[7] Sommerville I., 2007, Software Engineering, Eighth
Edition, Addison Wesley.

[8] W. Reisig. Petri Nets, volume 4 of EATCS
Monographs on Theoretical Computer Science.
Spriger-Verlag, 1985.

[9] Rami Mounla,QoS-Aware Web Service
Composition, NZCSRSC 2008, April 2008

[10] Hamadi R., Benatallah B., 2003, A Petri Net-based
Model for Web Service Composition, Proceedings of
the 14th Australasian database Conference (ADC’03),
pp. 191-200.

[11] L. Wells, Performance Analysis using CPN Tools,
Proceedings of the First International Conference on
Performance Evaluation Methodologies and Tools
2006,ACM Press, 2006

[12] Srini Narayanan, Sheila McIlraith, Analysis and
simulation of Web services Eleventh International
World Wide Web Conference (WWW11), 2002.

[13] Peterson J., 1981, Petri Net Theory and the Modeling
of Systems, Prentice Hall PTR.

[14] Reisig W., 1985, Petri Nets: An Introduction,
Springer.

[15] Murata T., 1989, Petri Nets: Properties, Analysis and
Applications, Proceedings of the IEEE, April 1989,
Vol. 77(4), pp. 541-580.

[16] Standard ML of New Jersey. www.smlnj.org.

[17] J.D. Ullman. Elements of ML Programming.
Prentice-Hall, 1998.f

[18] Y. Ma and C. Zhang. Quick convergence of genetic
algorithm for QoS-driven Web service selection.
Computer Networks. 2008. 52.

[19] L. Wells, Performance Analysis using Coloured Petri
Nets. PhD Dissertation, Department of Computer
Science, University of Aarhus, 2002.

[20] CPN Tools. Online: http://wiki.daimi.au.dk/cpntools/

[21] K. Jensen, L. M. Kristensen, and L. Wells. Coloured
Petri Nets and CPN Tools for modelling and
validation of concurrent systems. International
Journal on Software Tools for Technology Transfer
(STTT), 9(3–4):213–254, 2007.

[22] L. Wells, Performance Analysis using CPN Tools,
Proceedings of the First International Conference on
Performance Evaluation Methodologies and Tools
2006, ACM Press, 2006

[23] V. Gehlot, K. Edupuganti. Use of Colored Petri Nets
to Model, Analyze, and Evaluate Service
Composition and Orchestration. Proceedings of the
42nd Hawaii International Conference on System
Sciences , 2009.

[24] V. Gehlot and A. Hayrapetyan. A CPN model of a
SIPbased dynamic discovery protocol for
webservices in a mobile environment. In Proc. 7th
Workshop on Practical Use of Coloured Petri Nets
(CPN�06), pages 197�216, 2006.

[25] V. Gehlot, T. Way, R. Beck, and P. DePasquale.
Model driven development of a service oriented
architecture (soa) using colored Petri nets. In Proc.
First Workshop on Quality in Modeling, ACM/IEEE
9th International Conference on Model Driven
Engineering Languages and Systems
(QiM/MoDELS�06), 2006.

[26] M. Arlitt and C. Williamson. Internet web servers:
Workload characterization and performance
implications. IEEE Transactions on Networking,
5(5):631–645, 1997.

