
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1026

ISSN No. 0976-5697

Software Maintenance: Challenges and Issues and Models for Reducing the
Maintenance Cost

Shray Khanna
UG, Depart of Computer Science
Vellore Institute of Technology

Vellore-632014, India

Shubham Jain
UG, Department of Computer Science

Vellore Institute of Technology
Vellore-632014, India

Ashay Shah
UG, Department of Computer Science

Vellore Institute of Technology
 Vellore-632014, India

Ramanathan L

Assistant Professor, Department of Software Systems
Vellore Institute of Technology

Vellore-632014, India

Abstract: Software maintenance is a very tedious and vital job in software development life cycle (SDLC). In today’s ever growing
technological market outsourcing is done for best product delivery as well high efficiency. The outsourcing companies usually deliver a
completed model to the company or user and further evolution or changes are done according to the requests made, these evolution or changes
comes under Software Maintenance. Software maintenance is basically the modification done to assure a quality product after it is sent to the
company or user who ordered it. This paper discovers the current models and strategies taken up by most of the leading companies for software
maintenance and handling. It also explores the common challenges faced and its mitigation strategies. The preventive strategies are then
discussed to help reduce for the issues faced by companies so as to overcome the overhead cost after delivering the product. The
model/framework and strategies will explain the working into different stages and how the traditional methods can be used effectively. The
maintenance issues is a wide field where each product has its own issues while there are some general issues too. This paper focuses majorly on
general issues of software maintenance.

Keywords: software maintenance, software development life cycle, challenges, model, mitigation.

I. INTRODUCTION
Building up of software goes through many processes. Each
step is very crucial and exclusion of a single step can lead to a
faulty software or errors in further steps. The software goes
through a cycle called SDLC or software development cycle in
which each stage is defined for its usage in the completion of
the product. A company usually outsources the components of
each stage to get a detailed data for building up of the
software. The outsourced companies usually specialize in a
particular field such as surveys, reports or ground testing [4].
These components are then combined as per the architecture of
the software given by the company and specified by the user.
The completion of these components is very important for the
initial setting up and testing. A SDLC includes
communication, requirement gathering, feasibility study,
system analysis, software design, coding, testing, integration,
implementation, operations, maintenance and disposition [2].

Communication is the initial stage where the product is
ordered with vague specification depicting how the software
product should be and usually the terms are negotiated on
various factors. Requirement gathering is the second step
where a team is formed from various departments to get
detailed information in the problem domain. The requirements
are first listed through various brain storming sessions and
segregated into three types of requirements that is user, system
and functional requirements. The requirements are gathered
according to the type of product by performing different task
as per user. The feasibility study is a step when the team
comes up with a rough idea of how the software product is to
be developed and whether or not all the requirements can be

fulfilled. System design helps to ensure the best fit of software
models into the rough design. It includes system limitations
and problems which might be faced while developing.

Fig 1. SDLC components

The next step is software design in which all the knowledge
gathered from analysis and requirements phase are put into use
by building the basic design of how the software should look
and respond. The coding phase is basically the implementation
of this software design on different platforms and frameworks
using different languages required as per the design. Testing is
very important to know the faults and working of the software
created. There are several tests to ensure perfect working of
the software and the software is tested usually by coders itself.
After coding the product gets integrated with different
libraries, databases and other programs for integrating it with
outer world entities as per the design configuration. The
implementation stage ensures installing of the newly created

Shray Khanna et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,1026-1032

© 2015-19, IJARCS All Rights Reserved 1027

software into user machines for final output and testing. It is
then tested for non-functional requirements. In operations and
maintenance phase the product is upgraded or evolved after
the delivery to increase its efficiency and keeping the program
up to date. The final stage is disposition where software
declines due to performance issues after ongoing usage over
time. It results in closing down the system or archiving data
[1].

Software maintenance is very crucial for finishing and
upgrading the product to increase its efficiency and make it
less prone to errors. Software maintenance also helps to bring
the product as close to user specification as possible. Software
maintenance modifies the software after delivery of product.
The modifications are usually required because of the ever
changing market trends, client specifications, the host changes
in hardware or platforms used if necessary and organizational
changes. The maintenance is divided up into different types as
per the nature of product. The types of maintenance are
corrective maintenance, adaptive maintenance, perfective
maintenance and preventive maintenance. The corrective
maintenance gives modifications and updates done to fix the
problems or correction of products as processed through error
reports or by user. Adaptive maintenance is updating and
modifying so as to keep the software product up-to date in
order to keep up with present trends and scenarios. Perfective
maintenance is modifications and updates such that the
product runs over a long period. This usually includes new
features and requirements to enhance the working and
dependability of the product. Preventive maintenance includes
updating and modifying so as to prevent future failures or
errors in the product. It takes in non-functional and functional
requirements which are not significant in present but may
cause errors or problems in future.

Software maintenance ensures continuity in service so as to
keep the product in market as long as possible. With change in
trends and development of new technologies it is important to
modify and update the software according to the present needs.
Proper maintenance ensures all these by taking into
consideration each factor for maintaining the continuity of the
product.

II. MAINTENANCE ISSUES
The cost of maintaining and processing a software product is
pretty high. Recent studies and reports show that the cost of
maintenance is 50% more than the entire cost of developing
the software [3]. The various reasons which makes the cost go
high are usually divided into two categories which is real
world problems and software end issues.

The real-world problems are always kept in mind while
developing but the actual affects take place in the maintenance
stage [3]. The major issue is that the software usability is up to
a particular extent after which the product cannot be upgraded
further and has to be closed. The old software requiring less
configuration to run are not able to perform properly on the
new environment provided to them. The trial and errors
methods used while developing a software is an issue and
should not be encouraged. The new changes can often disrupt
the original design and structure which makes it difficult for
subsequent changes to be places. The changes can often be left

undocumented which causes problems in future while
maintaining. The software end issues can come up at any time
due to various reasons in platforms or user machines [4]. The
structure of the program might not fit into the newly updated
system. The programming language which is not common may
cause an issue while performing efficiently. The software
depends on the external environment such as hardware and
other devices plugged in, if any one of them causes problems
or is faulty then the software might not respond well or might
not even work [1]. The reliability on the original structure
while keeping it up to date is very difficult. According to these
types the following issues might occur:

A. Program Workability
Program is developed by keeping future issues into
consideration. The modifications and updates can only be
made by maintenance engineers if the original program is re-
usable. The most problems that occur are generally in this
phase and is usually considered as central research area under
maintenance. For a maintenance engineer it is important to
understand the behavior of code, functionalities and how
adding new features might change the working. Once that is
achieved it is easier to do the necessary changes. This field
consumes most of the resources for handling and maintenance
jobs [2].

B. Impact Analysis
The maintenance analysis is a tedious job as we have to
consider the previous analysis done and incorporate features
according to the new one. The maintenance analysts face the
general challenge that is to determine how the changing of
system affect the working environment of a software and what
are the impacts on the jobs. The main job for the analyst is to
analyze perfectly for the part that is to be modified. The
impact analysis is thus the analysis done to minimize the risks
of errors in working while adding new features to a software
product [1].

C. Implementation Modifications
Changes in the implementation take place over different
stages. The architectural design is divided into different
components and each component has its own implementation
technique. One problem faced is that if a component is
upgraded or modified it may not respond properly or may not
fit in the original design [6]. If that happens design has to be
changed entirely or component has to be brought back to its
original state or the nearby components should be changed as
per the specifications and the architecture. This process of
changes is referred as Change Propagation. Consistent
software usually includes successful changes while change
propagation occurs when the software has inconsistencies.

D. Regression Testing
Regression testing is applied after updating and modifying the
software product to know how changes work in real
environment. This testing assures that the modifications done
are not faulty and the system architecture has not been affected
by changes done. The testing can be done several times to
assure quality product and better performance. The system
software changes if there is any addition of module to the
system [4]. New rules have to be defined, new control system
and new data flow paths are sets with changes in input /output.
The new modification might cause an error with the previous
system and devices. Regression testing is thus used to make

Shray Khanna et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,1026-1032

© 2015-19, IJARCS All Rights Reserved 1028

sure that the changes should not affect the original system
architecture and there is no hindrance with the working. By
doing testing successful tests are acknowledged and the
modifications are passed accordingly. Regression can be done
manually by the re-execution of some previous test cases and
using the previous test sets to ensure proper working. The new
test cases are added later to make sure the modifications are
valid and efficient. It can also be done through an automated
way that is by using capture/playback tools. The tools are used
for testing and capturing of test cases by the maintenance and
software engineers [5]. There are three different classes of test
cases that is the software functions which are needed to be
exercised on the test cases must have a sample, new additional
software in the system affect the change and implementation
and finally the components that are considered for tests change
according to the modifications and updates. The tests usually
become large as the test sample size increases.

E. Programmer Availability
The availability of programmer is also a major concern. The
original version of the code written cannot be easily edited by
a new a programmer as the knowledge and understanding of
previous used components is very essential. The response
requests of programmers should be managed according to the
updates and modifications required [5]. The previous version
of code might not be easily understandable and re-usable and
might not fit for the new modification. The programmers
should keep all these things in mind while modifying or
developing a new code for a component or system.

F. User Knowledge
Many problems are faced due to the scenario where user lacks
the knowledge required for understanding the system. This
limits the capability and working efficiency of the system and
brings down the product value. This can be also because of
lack in training provided or taken up by the user. It is
important for a user to understand the changes and updates
done on the system. Major effort is put in by the maintenance
team so that the users are able to understand the system and
limit the risk of bringing down the changes. The limited
understanding concludes low quality documentation and
descriptions of the updates. To minimize all the limitations
different strategies are taken up like boot camps or different
learning ways to ensure that the user understands the changes
and responds well to the system changes.

G. Demands And Expectations
These refer to both the market and user demands and
expectations. The demands by user are generally to change the
software as soon as possible to increase its performance as per
the new trends. The market or in real world the timely changes
and modifications are required periodically to keep up with
new advancements. The company is expected to ensure the
proper working of software product according to the new
demands and expectations and are required to keep up with the
new market trends. Due to constant changes in technology
sector, the burden on maintenance team increases as the
demands of both increases [6].

H. Software Product and Real Time Environment
The modifications sometime work perfectly at the time of
testing but may cause trouble at real time where the data flow
cannot be controlled and the data to be worked on forms wide
cases [4]. This happens when there is partial testing or the test

case sets are taken by single resource. This form biasing at the
time of test and the results may come only for a particular type
of scenario. The relationship between the software product and
the environment should be assured so that the system works on
any form of data [6].

I. Maintenance Team and User
The major cause of problems faced by the companies are due
to lack of interaction between the user and maintenance team
which leads to poor quality surveys and make the product
more vulnerable. The user knowledge also is a factor between
the relationship of maintenance team and the user. The user
specifications should be handled according to the
modifications which can done to the product and based on the
survey the reports should be sent [5].

J. Databases
Databases play a vital role in functioning of any software
product. The size, value, attributes, schemas and relationship
all contribute towards the efficiency of system. Database size
is an important factor which has the number files and
characters stored. Database size increases or decreases the
speed of functioning of a software. It may also happen that
modifications done on a product may lead to altering of the
database. Databases are thus carefully administered by an
administrator who keeps a check on the database such that any
alterations or update might not corrupt the data or to check the
data losses due to modifications [1].

K. Product Quality
It is very important to ensure that the delivered product is of
top quality. Any maintenance done on that product should be
ensured with proper care so as to maintain quality. Quality of a
product includes all the stages that is ranging from data and
sources collected to combining of different components to
form a product. The code on which the program runs may have
some issues or ay run on a particular type of data sets. The
non-functional requirements may not be fulfilled after the
modification of the product or the new code changes may
affect the working of the product on some data points. The
quality is then compromised due to the above factors.

L. System Age
Each software product has an expiry date associated with it
that is the time when that system design may become obsolete.
A time comes for each product when even the modifications
and updates doesn’t increase the performance and efficiency,
at this time the software system is shut down by the user or
company because investing further is of no use. The age factor
is correlated with corrective maintenance of the product.

M. Staff Dependencies
The team has a major contribution in maintenance as well as
building up of the product. The general problems faced by any
company is that the turnover from the staff makes the
maintenance improper. Improper maintenance means difficult
handling of the product as the original team who knew the
product from top to bottom are not present so the new team
has to learn and understand each step from its making to the
recent modifications which causes faulty new updates. The
effort spent on understanding is far greater than that of
modifying. Staff turnovers is the major problems faced by the
manufacturing companies and thus maintenance cost can
increase due to this [5].

Shray Khanna et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,1026-1032

© 2015-19, IJARCS All Rights Reserved 1029

N. Operating Environment
The operating environment includes all the components of the
ready product and the testing of the product depending on
different specifications and test cases. It includes the hardware
and software reliability, failure in tests, documentation and
integration of the product with real environment [4]. The
operating environment is made in a way such that the real-
world application is as close as possible so as to mitigate
errors. The problems generally faced are that of the working of
the system according to the new trends and failure of the teams
to replicate the real-world issues into test cases. If the testing
part results failure then the operation has to be performed from
the start. Another issue faced is in documentation where each
new modification and update has to be carefully listed so that
the user is able to comprehend with the new changes. If there
is any issue in the documentation then the client connection
may become vulnerable thus the documentation is very crucial
at the final stage [6]. The documentation hence should be of
high quality but sometimes negligence from the team makes
the document more difficult for the client to understand. A
large system with many components usually increases the
chance of errors and the issue comes to the databases which
are relatively large as there is a great change in the system files
and properties. These operations are carefully processed and
thus they all come under the operating environment.

O. Maintenance Budget
The budget given by the company for a particular product
sometimes seems less and even though the team puts all its
efforts in maintaining, the job is not properly accomplished.
The resources associated with the product directly affects its
maintenance, if there are plenty of resources given by the
company for a particular product then the maintenance jobs
are performed perfectly with minimal errors.

The maintenance issues are sometimes complex to handle and
even though the resources provided are in plenty the product
may not perform as per the new specifications. To minimize
the errors every company follows a particular model which is
best suited for the product. The aim is to make sure that the
model fits the product and other efforts are put in to lower
errors such as re-documentation, testing qualities and various
other features which are explained in the following sections.

III. MAINTENANCE ACTIVITIES

Fig 2. Maintenance Activity model for simplification of jobs

Almost all companies follow this framework as the base for
keeping the check of maintenance activities. This sequential
framework is provided by IEEE to ease the flow of activities
and at the same time taking into consideration the jobs done
under each. The process demarcates one maintenance job into
several steps which are in sequential order such that start of the
job is correct and minimum roll back is required. This is a basic
framework which can be used iteratively for different activities
and can be easily expanded as per the specifications and
processes [2].

A. Identification and Tracing
Identification of the problem and tracing its root is the initial
step and a very crucial one. The team looks into each
perspective very carefully so that the problem identification is
done with no lags. The modifications or maintenance
requirement is identified by a set of steps according to the
specifications of client or the periodic change of product. The
major issue for maintenance is generated by the user via report
logs or messages. The type of maintenance on which the team
should work is also identified.

B. Analysis
The modifications or updates in the system should be analyzed
with proper care and handling. The analysis is done so as to
make sure that the new changes are not impacting the system
and it is not making the system vulnerable to attacks. The
analysis ensures the safety and security of the system. If the
impact of the change is drastic then more number of options
are looked into so as to get best solution from the problem.
Once solution is found then the required changes to be done is
materialized into the specifications received. At this stage only
the cost of maintenance is analyzed and an estimation for the
job is provided.

C. Design
The designs which are required for the new components are
created at this stage and it is made sure that it fits in the
original system. If the new design causes problems in the
working or changes the desired working then that design is
discarded and the team has to work on the new design. The
team makes sure that the new designs fulfills all the
requirements and specifications given by the user. The test
cases for validating the new designs are taken to ensure high
performance and efficiency of the system under the new
design.

D. Implementation
The new designs are forwarded to the programmers who code
for the implementation of the new design making sure that it
follows the original structure of the code. The testing of each
component is done in parallel to ensure the working of new
component with the original code. The programmers ensure
the optimality in code so that the system performs with more
accuracy in the new environment.

E. System Testing
Integration testing is performed among the newly developed
components. The testing is also carried out at both system and
component level. The integration tests are also carried between
the system and each component to ensure that each new
module works well with the system with no errors. After
integration testing regressive testing procedures are carried out
on the entire system to note its working with new components.
The tests are carried out in the operating environment to

Shray Khanna et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,1026-1032

© 2015-19, IJARCS All Rights Reserved 1030

ensure that it works in real time with minimal faults and at
high rate [2].

F. Acceptance Testing
After testing it in the operating environment the system is
tested for acceptance with users to ensure that all requirements
are fulfilled as specified by the user. If there are any
discrepancies at this stage then the user’s evaluation is noted
and rectified by following iteration. The iteration performed is
then made with user so that the acceptance from the user is
achieved.

G. Delivery
After getting acceptance from the user for the new changes the
new product is deployed to the field by different methods.
Generally, the new updates are given through an update
package or re-installation or up-gradation of the entire
software product. The final tests are carried out by the client
now so as to ensure that all non-functional and functional
requirements specified are fulfilled [7]. The entire system is
documented with incorporation of new changes/modifications
made on the system. The report and documentation is given to
the client.

H. Maintenance Management
The team assigned now solves the queries of different users
who face problems with the software either in installation or
working. The queries are solved for the user who face
difficulties at any step and a proper log is maintained so that
any errors happening are rectified at the next modification or
update to minimize bugs.

IV. MAINTENANCE REDUCTION
There are various ways involving the reduction of the software
maintenance. If there earlier steps are carefully looked out and
if they are done with high precision then maintenance jobs can
be significantly reduced. Jobs like designing the right
architecture, programming steps, appropriate and unbiased
testing and proper documentation of the product. The
following methods describe the possible ways in reducing the
maintenance:

A. Re-documentation
The maintenance jobs are can be reduced almost up to half if
the Re-documentation of the product is done properly in
accordance with the new trends and specifications. It is noted
that the re-documentation reduces the cost by almost 12%,
which is a very big number as companies invest a huge sum of
money in maintenance of the products. It is then made sure
that the software teams should be able to know and make
proper use of the legacy of the system. One purpose is to
generate the documentations for all the new tasks carried out
and to improve the current provided document since updating
system changes is a tedious job. It is also done to create
alternative opinions of the system in dataflow, design or
control flows to make sure that the users are able to understand
the product easily. The re-documentation can be incremental
re-documentation or model oriented re-documentation [2].
Generally incremental re-documentation is preferred over
model oriented. The incremental re-documentation improves
the understandability of product and incrementally rebuilds the
document after the jobs of programmers are completed. The
major advantage of this is to take out the common issues in the

maintenance process and makes sure that the requirements or
specifications made by the user or client is fulfilled. The initial
step is to request for the changes that need to be collected by
the customers [1]. The change requests made should
understandable by the programmer so that the necessary
changes take place successfully, for this the current
documentation should be perfectly made and should be easy to
understand. Programmer then implements the specified
changes according to his knowledge and tests the
compatibility of the new components with the architecture.
The programmer also measures the correctness of the program
and confirms the changes made. At the end of re-
documentation PAS tool is used for program comprehension
achieved during the implementation of the new components
and it is recorded in hypertext so that the changes are not
forgotten and can be used in later implementations.

Model oriented documentation uses a different strategy in
dealing with this as it uses source code to re-document the
legacy of system. Model Oriented Redocumentation
(MOREDOC) generate models from the legacy systems that
were previously produced and generates new models from the
previous structure by using Model Driven Engineering (MDE)
technique [1]. Software models are able to bridge a gap from
an old system to an updated one and hence enhances the
abstraction level in documentation done. This increases the
computerization in the development of a program.
MOREDOC hence works to get all the information about the
system and ethics put in using MDE to generate a document
which is well defined and includes everything from the legacy
system source code to new component implementation.

B. Decreasing Turnovers
One way to reduce the cost of maintenance cost is by reducing
turnovers internally and externally. The internal turnovers can
be due to many factors happening inside the company and may
result in a huge turnover while external turnovers are due to
the external factors and usually influence the employee by
additional benefits or services being provided to them. To
reduce this completely strict policies and work schedules are
made such that in a project the turnovers are minimal [7].

C. Dead Code Elimination
Dead code elimination makes the system more optimized for
running and decreases the failure rate. Dead code is basically a
chunk of code which is not used by the system and has no role
to play in any component [7]. This code is generally there
because it was used in the initial steps of the product
constructions and after modifications and updates the
programmers didn’t remove it from the system. Reducing code
size impacts the speed and performance of the working as the
system uses less resources and thus runs at a higher speed [1].

D. Understandability
It is important for the maintenance team to gain a proper
knowledge and understanding of the system before
implementation so as to minimize the risk of errors. They need
to go through all the phases of making of the product and
should be updated about the current market demands and how
modifications need to be implemented. They need to ensure
that they understand the design of the system very thoroughly
and the interconnections of the components for various
purposes is done with par excellence. Changes that need to be
done on the design need to be well communicated with all the

Shray Khanna et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,1026-1032

© 2015-19, IJARCS All Rights Reserved 1031

different teams and individuals such as programmers and
users. The documentation should be made instantly such that
information about each new component added or modified is
maintained. The documentation made should be accurate and
well organized with all the specifications and detailing. The
programmer needs to ensure that the tests that are been carried
out are performed under all the possible scenarios and its real-
time implementation should be projected. It is necessary to
make sure that there is no redundancy in the data [7].

E. Software Re-engineering
The updates and modifications done on a product without
affecting its functionality is called software re-engineering. It
is a major process carried out by all the firms to eliminate the
bugs and errors reported by the user. The code is re-engineered
such that it works well with all the platforms. Legacy software
cannot be tuned every time as it may become obsolete due to
the new changes in the market and thus updating might seem a
more tedious job than developing a new one. One thing that
doesn’t change is its functionality although it may become old
and not up to date but the base functionality of a product never
changes.
The maintenance team also focuses on the components that
need the most modification jobs to make sure the product is up
to date with the market and thus re-engineering is done to
ensure the workability of these components.
Re-engineering process include deciding the part to be re-
engineered. Performing reverse engineering on the system so
as to obtain existing specifications of software. Restructuring
of the program wherever necessary and restructuring of data
according to new specification and market demands. And final
step is to apply forward engineering concepts so as to get the
re-engineered software [2].

Fig. 3 Software Re-engineering model

F. Reverse Engineering
Reverse engineering is a process to complete system
specifications by proper analysis and understanding of the
system. This process is sometimes considered as reverse
SLDC model since the abstraction is done on a higher level by
analysis of the lower ones. An existing system is then first
implemented about which the team knows nothing about, this
is done to get to know the functionality so that it can be
implemented together with the current product [3]. Designers
of the team then carry out reverse engineering by seeing the
code and converting it into system design and the
specifications are usually concluded at that time only.

Fig. 4 Reverse Engineering model

G. Program Restructuring
The process of restructuring and rebuilding of the existing
software is known as program restricting. The programmers
re-arrange the code into the same language or a different one
as per the information provided to them. Restructuring
includes program and data restructuring but it is not mandatory
to include bot in the process as it is according to the
specifications and rules provided. Restructuring increases the
non-functional requirement of the system and the functionality
is not affected by the changes. The bugs and errors reported in
the product are rectified at this stage [3]. The dependability of
a software on obsolete platforms are also removed by carrying
out restructuring process.

H. Forward Engineering
It is the process of obtaining the desired product from the in-
hand specifications and data which was obtained during the
reverse engineering process. It is assumed that some processes
of software engineering have already been carried out. The
working of forward engineering is very similar to software
engineering process with one minor difference that is it comes
after the reverse engineering process [3].
Forward engineering not only covers the previous design and
functionality but it makes sure that all the current and future
prospect designs are considered so as to enhance the quality
and functioning of the system.

Fig. 5 Forward Engineering

I. Reuse Process
The reuse processes are carried out by most of the
maintenance team as it is easier to reuse a product or a
component rather than developing one. Generally, the methods
adopted are by keeping the same requirements as before and
adjusting of components or modifying the requirements and
keeping components same as before [2].

The processes carried out in the reuse process includes
requirement specification of the product according to both
functional and non-functional requirements in accordance with
the existing system. The design is a major step where the
errors can come up and if not done with precision might cause
harm to the system. The design process is carried out similar
to SDLC and basic system with the new component as a whole
is created with its sub-systems. Specifying of Components by
studying the design created and dividing the system design
into various small sub-systems or components on which
various sectors of team can work on. Searching of the suitable
components from the repository is essential to get the correct

Shray Khanna et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,1026-1032

© 2015-19, IJARCS All Rights Reserved 1032

match for components on the basis of specifications and
functionalities provided to them.

Fig. 6 Reuse Process model

Components are finally incorporated as a single system to be
able to work in real time and is tested according to the test
sets. The product is now updated and can be made available to
users.

V. CONCLUSION
The software maintenance is considered as the major process
after the product is made and carrying out jobs can become
tedious. Software maintenance is an ever-growing market
where the money and cost for maintenance and production is
usually more than that of developing. The processes carried
out are usually taken up by a team and divided accordingly as
per the specialization of team members and specification
requirement. The processes done in modifying and updating a
software needs to be carried out with proper precision such

that all the previous bugs are rectified and the old functionality
is not compromised. This is made sure by carrying out
different processes by taking up a model so that there is no
confusion in the maintenance jobs. The maintenance part of
the product is very essential to keep up with market such that
the system doesn’t become obsolete. The challenges or issues
which occur after the delivery can be due to the problems in
the development phase or can be due to changing technology.
The problem is taken up and tasks are performed such that the
costing doesn’t go very high and the base functionality is
maintained and shouldn’t be obsolete. The processes taken up
by the models of maintenance are thus handled by the team
and updates of the system are made available to the user with
bug or error free product.

VI. REFERENCES

[1]Uttamjit Kaur, Gagandeep Singh “A Review on Software
Maintenance Issues and How to Reduce Maintenance Efforts”
GIMET, Amritsar. Volume 118- No. 1, May 2015.
[2] (Online Source) https://www.tutorialspoint.com/
[3] Tracy Hall, Austen Rainer, Nathan Baddoo, Sarah
Beecham “An Empirical Study of Maintenance Issues within
Process Improvement Programmes in the Software Industry”
Department of Computer Science, University of Hertfordshire,
UK.
[4] RanaEjaz Ahmed “Maintenance issues in outsourced
software components” School of Engineering, American
University of Sharjah, United Arab Emirates.[5]Aakriti Gupta,
Shreta Sharma “Software Maintenance: Challenges and
Issues” St. Xaviers College, Jaipur, India. Vol. 4 No. 01 Jan
2015.
[6] Rajiv D. Baskar, Srikant M. Datar and Chris F. Kemerer
“Factors Affecting Software Maintenance Productivity:
AnExploratory Study” Carnegie Mellon University and
Massachusetts Institute of Technology.
[7] Chris F. Kemerer, “Software complexity and software
maintenance: A survey of empirical research” Sloan School of
Management, Massachusetts Institute of Technology,
Cambridge, USA.

	Introduction
	Maintenance issues
	Program Workability
	Impact Analysis
	Implementation Modifications
	Regression Testing
	Programmer Availability
	User Knowledge
	Demands And Expectations
	Software Product and Real Time Environment
	Maintenance Team and User
	Databases
	Product Quality
	System Age
	Staff Dependencies
	Operating Environment
	Maintenance Budget

	maintenance activities
	Identification and Tracing
	Analysis
	Design
	Implementation
	System Testing
	Acceptance Testing
	Delivery
	Maintenance Management

	maintenance reduction
	Re-documentation
	Decreasing Turnovers
	Dead Code Elimination
	Understandability
	Software Re-engineering
	Reverse Engineering
	Program Restructuring
	Forward Engineering
	Reuse Process

	conclusion
	References

