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Abstract: Reinforcement learning is popular machine learning techniques for optimal planning in complex environment. The maze is a complex 
environment which has a grid made of an arbitrary number of squares of width and length where finding optimal path, which converge in 
minimum time, is always a challenging task. There are various reinforcement learning methods where agent learn from environment to find 
optimal path in maze problems viz. discrete Q-Learning, Dyna-CA Learning and FRIQ-Learning (Fuzzy Rule Interpolation-based Q-Learning). 
This research intends to carry out a comparative study of these three methods to locate a method with best convergence time. The algorithms 
pertaining to these methods are tested on MATLAB computational platform for different obstacles configurations of maze to compare their real 
time parameter of convergence time. The performance results were analyzed and presented. The final result reveals that FRIQ-Learning 
outperforms the others under all conditions. 
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1. INTRODUCTION 
 

Learning is the act of acquiring new knowledge or 
modifying and reinforcing, existing knowledge, behaviors, 
skills, values or preferences which may involve different 
types of information. The ability to learn is possessed by 
humans, animals, plants and machines. Learning means 
change in behavior occurs as a result of experience. 
According to Psychologists learning process often occurs in 
three stages: acquisition, retention and recall. Gagne divided 
learning into eight categories: Signal Learning, Stimulus-
Response Learning, Chain–Learning, Verbal Association 
Learning, Multiple Discrimination, Concept Learning, 
Learning of principles and Problem solving [1-3]. Machine 
learning is a subfield of Computer Science which means to 
train machines like a human or better than human to perform 
tasks. It involves the study of pattern recognition and 
computational learning theory in Artificial Intelligence.  The 
machine learning is of three types: Supervised Learning, 
Unsupervised Learning and Reinforcement Learning [2-3]. 
 
Reinforcement Learning (RL) is a learning theory that came 
from animal theory and now applied on machines to work 
like a human being. This learning is used to train machines 
by trial and error. The main strength of Reinforcement 
Learning is that it does not specify how to solve a particular 
problem rather only need is to define final goal. So this 
learning focuses on what to do not how to do. The primary 
idea of Reinforcement Learning technique was inherited 
from optimal control, Markov decision process and dynamic 
programming. RL techniques are a kind of trial-and-error 
style techniques adapting to dynamic environment through 
incremental iterations, without need for training the system 
with pre-fabricated examples like supervised learning 
methods. Basic components of Reinforcement Learning are: 
states, actions, rewards and policy [4-8]. 
 
 
 

2. REINFORCEMENT LEANING METHODS 
 
The sub sections 2.1, 2.2 and 2.3 of this section respectively 
represents the three popular reinforcement learning methods 
viz. discrete Q-Learning, Dyna-CA Learning and FRIQ-
Learning (Fuzzy Rule Interpolation-based Q-Learning) in 
details. 
2.1. Q-Learning 
 
Q-learning is the most popular Reinforcement Learning 
method and hence it is plausible to choose it for further 
study and extension possibilities. In its naïve, the Q- 
Learning method was developed by Watkins and others.  
The purpose behind development of this method was to find 
the fixed-point solution ‘Q’ of the Bellman Equation 
through iterations. This method is also known as ‘method of 
Asynchronous Dynamic Programming (ADP) [8] [9]. 

 
Q- Learning is a model free RL algorithm that uses last 
experience to update its policy. In this learning updated Q-
function 𝑄𝑄𝑡𝑡+1 depends only on the previous function 𝑄𝑄𝑡𝑡  
combined with the experience  𝑠𝑠𝑡𝑡  , 𝑎𝑎𝑡𝑡  and   𝑟𝑟𝑡𝑡  . This feature 
makes the algorithm more computationally and memory 
efficient. This technique is different from other techniques 
such as Experience Replay, where experience is stored for 
later use. In this learning, an agent`s experience consists of a 
sequence of distinct stages. In the 𝑛𝑛𝑡𝑡ℎ stage the agent [10] 
[11]: 
• Observes the current   𝑠𝑠𝑡𝑡  state. 
• Selects and performs   𝑎𝑎𝑡𝑡  action. 
• Observes the subsequent  𝑠𝑠𝑡𝑡+1 state. 
• Receives an immediate reward  𝑟𝑟𝑡𝑡  .  

 
In discrete environment, Q- Learning algorithm estimates 
the action-value function ‘Q’ iteratively by the following 
updating rule:  
 
𝑄𝑄𝑡𝑡+1(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) ∗ (𝑟𝑟𝑡𝑡+1) +
𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡+1,𝑎𝑎) − 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)……………….... (i) 
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Where ‘𝑡𝑡’ is discrete time step, 𝑠𝑠𝑡𝑡  is state at time ‘𝑡𝑡’,  𝑎𝑎𝑡𝑡  is 
the action at time ‘𝑡𝑡’, 𝑟𝑟𝑡𝑡+1 is reinforcement or reward after 
executing action 𝑎𝑎𝑡𝑡   in state 𝑠𝑠𝑡𝑡 , ⍺𝑡𝑡(𝑠𝑠𝑡𝑡  ,𝑎𝑎𝑡𝑡) is the step size 
parameter or learning rate, range belongs to (0<⍺<=1). ‘𝛾𝛾’ is 
discount factor, 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡  ,𝑎𝑎𝑡𝑡) is the estimated state–action–
value of action 𝑎𝑎𝑡𝑡  in state 𝑠𝑠𝑡𝑡  at time ‘𝑡𝑡’. 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡+1 ,𝑎𝑎) is 
the estimated optimal future value [11] [12]. 
 
The learning rate or step size parameter determines the 
extent to which the newly acquired information will 
override the old ones. If the value factor set to ‘0’ means 
agent does not learn anything and if factor is set to ‘1’ 
would make the agent consider only the most recent 
information. In practice, maximum constant learning rate is 
used, such as  ⍺𝑡𝑡 0T =0.01 for all ‘𝑡𝑡’ [8] [13]. 
 
 
 
 
 
 
 
 
 
 
 
 
Discount factor ‘𝛾𝛾’ 

 

determines the future rewards 
importance.  A value of ‘0’ will make the agent short-
sighted by only considering current rewards or counts the 
immediate reward only while a value approaching ‘1’ will 
make it strive for a long-term high reward.   Figure1 shows 
the basic framework of Q-Learning [8] [11].  

2.2. Dyna-CA Learning 
 
Dyna-CA Learning is a fast and effective learning 
algorithm. It is a Reinforcement Learning algorithm that is 
made by making some editing in Dyna Q- Learning 
algorithm. In this algorithm first of all the set of ‘𝑘𝑘’ states 
will be observed around the current state. Then by using 
functional mapping, probability distribution of ‘𝑘𝑘’ states on 
current state is calculated. On the current state, selection of 
action is made by recommending the weighted sum of best 
actions taken in the neighbor states to guarantee the learning 
with continuous actions. After that agent gets continuous 
actions and learns from experiences. Q values can be 
updated by using Dyna algorithm. These values are not only 
based on current neighbor state`s values but also the priori 
neighbor state`s experience [14]. 
 
Dyna-CA Learning is different from discrete Q- learning in 
the sense that in Dyna-CA Learning, updating Q values is 
the set of the ‘𝑘𝑘’ states at the same time. Modeling the 
experience of the previous transitions from ‘𝑘𝑘’ states to the 
next set of ‘𝑘𝑘’ states, improve the convergence speed in 
comparison to discrete Q-Learning which is inspired by 
Dyna-Q- Learning [14]. 
 
Dyna-CA Learning is a new Reinforcement Learning 
algorithm that makes the agents to learn more effectively 
with continuous actions. This learning has two learning 

processes; one process learns its nearest actions according to 
nearest states while second process models the environment. 
Thus in this learning, agent chooses the best action.  
 
Following algorithm describes the process of Dyna-CA 
algorithm. 
___________________________________________ 
Initialize A, S, k, γ, 𝜺𝜺, Q(s, a) ⟵ 0, mode = [] 
Repeat {for each stage} 
Initialize s 
K ⟵is set of k- nearest states of state s and get the probability P 
(K) 
J ⟵  𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝑨𝑨 Q (K, A) (probability 1-𝜺𝜺) 
 (J ⟵ 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑨𝑨 Q (K, A) (probability 𝜺𝜺)) 
a ⟵ <J, probability P (K) > 
Q (K, J) =< 𝒎𝒎𝒎𝒎𝒎𝒎𝑨𝑨 Q (K, A), P (K)> 
Repeat {for each step of stage} 
Take action a, observe state s` and reward r 
K` ⟵ is set of k- nearest states of s` and get probability P (K`) 
J` ⟵  𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝑨𝑨 Q (K`, A) (probability 1-𝜺𝜺) 
(J` ⟵ 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑨𝑨 Q (K`, A) (probability 𝜺𝜺)) 
a ⟵ <J`, probability P (K`) > 
Q (K`, J`) =< 𝒎𝒎𝒎𝒎𝒎𝒎𝑨𝑨 Q (K`, A), probability P (K`)> 
Update Q and mode: 
Q ⟵ Q + ⍺(r + γ Q (K`, I`) – Q (K, I)) 
Model = (K, J, r, K`, J`), Mode ⟵ [Mode; model] 
For I = 1 to N do 
K, I ⟵ random previously observed set of k nearest states and 
actions 
Get (K, J, r, K`, J`) from Mode 
Q ⟵ Q + ⍺(r + γ Q (K`, I`) – Q (K, I)) 
end for 
a ⟵ a`, s ⟵ s`, K ⟵ K`, J ⟵ J` 
until s is terminal 
until learning ends 
_______________________________________________ 
 
Agent selects the best action from its nearest states and 
updates the ‘𝑞𝑞’ value. ‘𝑗𝑗’ is the set of best actions and ‘𝐾𝐾’ is 
the set of nearest neighbor states. 𝑃𝑃(𝐾𝐾) is the probability of 
‘𝐾𝐾’ nearest states. ‘𝑠𝑠’ is the current state, ‘𝑎𝑎’ is the action on 
state ‘𝑠𝑠’ and ‘𝑠𝑠`’ is the next observed state. ‘𝐾𝐾’ is the set of 
𝑘𝑘- nearest states of ‘𝑠𝑠`’ and 𝑃𝑃(𝐾𝐾`)  is the probability of set 
‘𝑘𝑘`’. In the Algorithm of Dyna-CA the 𝜀𝜀-greedy policy had 
been referred to make the action-selection. The main 
characteristics of DYNA- CA algorithm are that this 
algorithm works on the problem that has continuous actions. 
It has faster convergence of learning than discrete Q- 
Leaning and DYNA Q- Learning [14]. 
 
2.3. FRIQ- Learning 

 
In Fuzzy Rule Interpolation-Based Q- Learning, fuzzy rules 
are used to represent action-value function with the 
capability of sparse rule base. FRIQ is an extension of 
discrete Q- Learning with fuzzy rule interpolation method. 
Hence this method could handle continuous state and action 
space because of fuzzy rule based knowledge representation.  
FRIQ Learning algorithm is same as standard Q- Learning 
algorithm except of making derivation of Q-values using 
fuzzy inference system and updating of the Q- function 
(fuzzy rules). FQ- Learning has drawback of having same 
rule base for all number of state - action pairs. So, if there is 
a problem with large states, then it will be very complicated 
to handle all states with their state–action–value function 
using FQ- Learning. To eliminate this drawback, Fuzzy 

 
Figure 1: Basic Framework of Q-Learning 
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Rule Interpolation (FRI) methods have been applied with 
FQ- Learning. By using FRI methods the rule-base can be 
simplified as well as the number of the rules representing 
the Q-function can be optimized for reducing the size of the 
state - action space representation because it can handle 
sparse rule base. There exist numerous FRI methods in the 
literature with the application of Q- Learning [12] [15].  
 
The most important of them is FIVE (Fuzzy rule 
Interpolation based on Vague Environment) FRI method 
applied with Q- Learning (FRIQ- Learning).  FRIQ- 
Learning method is application oriented method and serves 
crisp conclusions directly, without requirement any 
additional defuzzification steps. Most of the applications 
require crisp observations and crisp conclusions from the 
controller. The main idea of the FIVE is based on the fact 
that FIVE turn the fuzzy interpolation to crisp interpolation. 
The idea of a Vague Environment (VE) is based on the 
similarity of rules in the rule base or considered elements. In 
VE, the fuzzy membership function μA(x) is indicating the 
level of similarity, equivalently, or the degree to which ‘𝑥𝑥’ 
is indistinguishable from specific element ′𝑎𝑎′ that is a 
representative or prototypical element of the fuzzy set 
𝜇𝜇𝜇𝜇(𝑥𝑥) [8] [16]. 
 
FQ-learning allows the omission of fuzzy rules or action - 
state values from the rule base and it has potentiality of 
applying in higher state dimensions with a reduced action - 
state space. By using the 0-order Takagi-Sugeno fuzzy 
model in FQ- Learning with the FIVE the FRI convert in to 
FRIQ- Learning [8] [16] [17]. 
 
In FRIQ- Learning method, Q-values are derived using 
fuzzy rule interpolation method by fuzzy inference system. 
Suppose a learning agent receives a vector of continuous 
states 𝑆𝑆= (𝑠𝑠1 ,𝑠𝑠2,….𝑠𝑠𝑛𝑛 ) with ‘𝑛𝑛’ dimensions and ‘𝑎𝑎’ is the 
action on the state ‘𝑠𝑠’. Fuzzy rules that derive Q values of 
state - action pair are given below: 
 
𝑅𝑅𝑖𝑖  : If 𝑠𝑠1 is 𝑉𝑉𝑖𝑖𝑠𝑠1  and ….𝑠𝑠𝑛𝑛  is 𝑉𝑉𝑖𝑖𝑠𝑠𝑛𝑛    and ‘a’ is    𝑉𝑉𝑖𝑖𝑖𝑖   then Q= 
𝑓𝑓𝑖𝑖  (𝑠𝑠1 ,𝑠𝑠2,….𝑠𝑠𝑛𝑛 ) .........................................(ii) 
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  𝑉𝑉𝑖𝑖𝑠𝑠1 ,…., 𝑉𝑉𝑖𝑖𝑖𝑖  are fuzzy sets on variables. ‘R’ is vector 
of reward and ′𝑅𝑅𝑖𝑖 ′ is the ith

 
 reward. 

Algorithm: Fuzzy Rule Interpolation Based Q- Learning 
(FRIQ) [13]: 
__________________________________________ 
Step 1: 𝒔𝒔𝒕𝒕 is the current state at time t. 
Step 2: Derive Q-Values for each state-action pair (𝒔𝒔𝒕𝒕, 𝒂𝒂𝒕𝒕) using 
fuzzy inference  system. 
Step 3: Choose an action 𝒂𝒂𝒕𝒕 on state 𝒔𝒔𝒕𝒕. 
Step 4: Carry out action 𝒂𝒂 and transit the state  𝒔𝒔𝒕𝒕 to next state  
𝒔𝒔𝒕𝒕+𝟏𝟏 . 
Step 5: Derive Q-Values for each state-action pair (𝒔𝒔𝒕𝒕+𝟏𝟏,𝒂𝒂𝒕𝒕+𝟏𝟏 ) 
using fuzzy inference system. 
Step 6: Calculate update amount of Q-Value (ΔQ). 
Step 7: Update Q-Function or fuzzy rules. 
Step 8: Now go back to step 1. 
___________________________________________ 
 
As explained above, FRIQ has fuzzy rule base in the place 
of state-action-value function as was in traditional Q- 
Learning. In fuzzy rule base, 𝑘𝑘𝑡𝑡  fuzzy rule has the following 
form [8] [12] [17] [18]: 

 
Suppose 𝑠𝑠1=𝑆𝑆𝑘𝑘 ,1 , 𝑠𝑠2= 𝑆𝑆𝑘𝑘 ,2……., 𝑠𝑠𝑁𝑁= 𝑆𝑆𝑘𝑘 ,𝑁𝑁 and a=  𝐴𝐴𝑘𝑘  Then 
𝑄𝑄�(𝑠𝑠,𝑎𝑎)= 𝑞𝑞𝑘𝑘 ..............................................(iii) 
 
Where ′𝑠𝑠1′ is observational state with kth

 

 rule in the set of the 
discrete possible states ‘𝑆𝑆’ and ‘𝑎𝑎’ is the action at 𝑘𝑘𝑡𝑡   rule in 
the set of the discrete possible actions ‘𝐴𝐴’. Also 𝑞𝑞𝑘𝑘  is the 
observed value of the 𝑘𝑘𝑡𝑡ℎ rule. 

According to state – action - value function 𝑄𝑄�(𝑠𝑠,𝑎𝑎)  
updating rule, with fuzzy rule consequents (𝑞𝑞𝑖𝑖1𝑖𝑖2….,𝑖𝑖𝑁𝑁𝑢𝑢

) is the 
following form: 
 
𝑞𝑞𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖
𝑘𝑘+1 = 𝑞𝑞𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖

𝑘𝑘+1  + = ∆𝑄𝑄�𝑖𝑖,𝑢𝑢𝑘𝑘+1 + 𝛼𝛼𝑖𝑖 ,𝑢𝑢𝑘𝑘 .( 𝑔𝑔𝑖𝑖 ,𝑢𝑢 ,𝑗𝑗 +
𝛾𝛾.𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑄𝑄�𝑗𝑗 ,𝑣𝑣

𝑘𝑘+1 − 𝑄𝑄�𝑖𝑖,𝑢𝑢𝑘𝑘 )  ........................................ (iv)  
 
Otherwise, 
𝑞𝑞𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖
𝑘𝑘+1  = 𝑞𝑞𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖

𝑘𝑘+1  + 
∏ (1

𝛿𝛿𝑠𝑠,𝑘𝑘
𝜆𝜆� )𝑁𝑁

𝑛𝑛=1 /(∑ 1
𝛿𝛿𝑠𝑠,𝑘𝑘
𝜆𝜆�𝑟𝑟

𝑘𝑘=1 ). ∆𝑄𝑄�𝑖𝑖,𝑢𝑢𝑘𝑘+1  

= 𝑞𝑞𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖
𝑘𝑘+1  + ∏ (1

𝛿𝛿𝑠𝑠,𝑘𝑘
𝜆𝜆� )𝑁𝑁

𝑛𝑛=1 /(∑ 1
𝛿𝛿𝑠𝑠,𝑘𝑘
𝜆𝜆�𝑟𝑟

𝑘𝑘=1 ). 𝛼𝛼𝑖𝑖,𝑢𝑢𝑘𝑘 .( 𝑔𝑔𝑖𝑖 ,𝑢𝑢 ,𝑗𝑗 +

𝛾𝛾.𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑄𝑄�𝑗𝑗 ,𝑣𝑣
𝑘𝑘+1 − 𝑄𝑄�𝑖𝑖,𝑢𝑢𝑘𝑘 ) ............................. (v) 

 
Where q𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖

k+1  is the (𝑘𝑘 + 1)𝑡𝑡  iteration of fuzzy rule 
consequents (𝑞𝑞𝑖𝑖1𝑖𝑖2….,𝑖𝑖𝑁𝑁𝑢𝑢

) with action ‘𝐴𝐴𝑢𝑢 ’. The factor gi,u,j is 
the observed reward from state 𝑆𝑆𝑖𝑖 →  𝑆𝑆𝑗𝑗  with action𝐴𝐴𝑢𝑢 . αi,u

k  
is the step size parameter between range  [0, 1] and ‘𝛾𝛾’ is 
the discount factor. 
 

3. MAZE ENVIRONMENT 
 
A Maze is a path or network of paths that has a goal. It has 
many obstacles in the path, so one has to cover these 
obstacles to find goal. Main motive is to find goal with 
shortest path with less time and more accuracy from these 
puzzle network of paths. In Figure 2 and 3, the Green 
Square is an initial point and Black Square is goal point. 
There are two paths for find the goal. But the path in later 
figure is lengthy and time consuming in comparison to later 
[19]. 
 
There is a need of better algorithms and techniques for 
solving this puzzle network of paths (solving maze) for 
arriving at the goal. The solution to a Maze problem, mean 
finding a route through the maze to arrive at the goal. The 
Maze can be solved manually or by computing machines. 
For such problems there is need is to solve these puzzle 
paths with minimum time, high speed and with high 
accuracy, which can be only be possible with computer [18]. 
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Reinforcement Learning techniques are applied on maze 
problem with different obstacle delays. As the states 
increases in any problems, time also increases to find goal. 
Discrete Q- Learning is often considered a slow procedure. 
However, in the case of other Reinforcement Learning 
methods such as Dyna-CA- Learning and FRIQ- Learning 
are fast, incremental and scalable. These states of art 
Reinforcement Learning algorithms are applied on maze 
problem to analyze the performance. FRIQ- Learning 
algorithm has recently received much attention because it 
reduces size of state – action – value function. It highly 
reduced state representations by varying these dimensions in 
maze environment. We have achieved better search 
efficiency per simulation. Furthermore, the advantage of 
FRIQ- Learning increased with larger state dimensions.  
 
Maze problem is a simple benchmark for comparing the 
effectiveness of different RL algorithms. So this 
environment is chosen for comparison of these techniques. 
Maze itself is n*m matrix, where ‘n’ represents number of 
rows and ‘m’ represents number of columns. This play area 
has a start point, a goal point and some obstacles that make 
problems to achieve the goal. The agent has to start from the 
start point and goes to the goal point as well as avoiding the 
obstacles. The main objective of this agent is to find the 
shortest path from start position to goal position by avoiding 
the obstacles. To find out goal with shortest path, here start 

position, obstacles and goal position are denoted by 
variables [12]. 
 

4. PERFORMANCE ANALYSIS 
 
The discrete Q- Learning, Dyna-CA Learning and FRIQ 
Learning are implemented on the basis of time taken from 
start position to goal position in different maze 
environments. For implementing these reinforcement 
learning techniques in maze environment with time 
convergence, MATLAB GUI tool has been used. Four maze 
environments have been taken without and with obstacles 
delay. Four edit buttons are used for denoting maze matrix 
as 9×6 and 18×12. The convergence time is calculated in 
traditional unit of “second”. The command button name as 
“compare” is used to compare these four maze 
environments: 

 9×6 (without obstacle). 
 9×6 WO (with obstacle). 
 18×12 (without obstacle). 
 18×12 WO (with obstacle).  

Figure 4 depicts the graphical representation of convergence 
times for these three methods without obstacle delay in 
maze environments. Figures 5, 6, 7 and figure 8 graphically 
analyses the convergence times for these three methods with 
obstacle delays 0.001, 0.002, 0.01 and 0.02 respectively. 
The cohesive intra comparison of convergence time for 
three learning methods is presented below: 

 
As revealed from plots presented in Figures 4, 5, 6, 7 and 8 
with difference of times on different maze environments 
with varying obstacles and increasing state-action-value 
function, it is clear that discrete Q- Learning effected more 
because Q- Learning uses action-value function of each 
state-action. Therefore, with increase in states, state-action-
value functions also increases. Hence for large state space, it 
is difficult to handle large state - action- value function 
because it takes more time with large state space. FRIQ- 
Learning affected less than other methods because, in FRIQ 
Learning state-action-value function is used as rule base. In 
rule base, fuzzy rule interpolation method has been applied, 
because of that rules those not have more importance or 
rules those are beyond the upper or lower limit, they not 
fired.  
 
(A) Comparative Analysis of Q-Learning, Dyna-CA, 

FRIQ- Learning without Obstacle Delay 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) Comparative Analysis of Q-Learning, Dyna-CA- 

Learning, and FRIQ- Learning with Obstacle Delay = 
0.001 

 

Figure 2: Not the Most Efficient Short Path 
in this Maze [19] 

 

 

Figure 3: A Better Result of Shortest Path 
in this Maze [19] 

 

 

 

Figure 4: Convergence Time Comparison    
    without Obstacle Delay 
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(C) Comparative Analysis of Q-Learning, Dyna-CA- 

Learning, FRIQ- Learning with Obstacle Delay = 
0.002:  

 
 
 
 
 
 
 
 
 
 
 
 
(D) Comparative Analysis of Q-Learning, Dyna-CA- 

Learning and FRIQ- Learning with Obstacle Delay = 
0.01:  

 
 
 
 
 
 
 
 
 
 
 
 
 
(E) Comparative Analysis of Q-Learning, Dyna-CA- 

Learning and FRIQ- Learning with Obstacle Delay = 
0.02:  

 
 
 
 
 
 
 
 
 
 
 
 
 
It can be concluded from these plots  that Q- Learning takes 
more time than both DYNA-CA- Learning and FRIQ- 
Learning while FRIQ- Learning converge in minimum time 
to find the goal. 

 
5. CONCLUSION AND FUTURE DIRECTION OF 

RESEARCH 
 

By observing graphs, it is clear that discrete Q- Learning 
affected more with increasing obstacles delays and states, 
because Q- Learning uses action – value function for each 
state-action. Therefore with increasing of states, state – 
action - value functions also increases. So in large state 
space, it is difficult to handle large state – action - value 
function, it takes more time with large state space. FRIQ- 
Learning is affected less in comparison to other methods. 
FRIQ- Learning has rule base with fuzzy rule interpolation 
method. In rule base, only the method within the upper or 
lower limit of system can fire. Q- Learning takes more time 
than both DYNA-CA- Learning and FRIQ- Learning while 
FRIQ- Learning takes minimum time to find the goal. 
Therefore, FRIQ- Learning emerge as fastest converging (in 
term of speed and time) Reinforcement Learning technique 
for maze environment with or without obstacle. 
 
The FRIQ-Learning has smaller Q-function representation, 
leads to better convergence speed. But equal size of the Q-
function rule bases in all the maze configurations raise 
concern in decision making, so rule-base reduction method 
needs further investigation in FRIQ- Learning for better 
result. Since this study is a based upon theoretical 
conceptualization. Therefore, the practical implementation 
of proposed objectives on real time maze environment may 
depict the desired outcome and can be applied to daily life 
problems. Also the whole study is carried out in 2-D only. 
The 3-D extension of study may be much fruitful to solve 
intricate geometrical problems in Euclidean and Non-
Euclidian space. 
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