
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 957

ISSN No. 0976-5697

Comparative Analysis of Reinforcement Learning Methods for Optimal Solution of
Maze Problems

Savita Kumari Sheoran

Associate Professor & Chairperson
Department of Computer Science & Applications

Ch. Ranbir Singh University, Jind (Haryana) - India

Poonam
M.Phil. Scholar

Department of Computer Science & Applications
Ch. Ranbir Singh University, Jind (Haryana) - India

Abstract: Reinforcement learning is popular machine learning techniques for optimal planning in complex environment. The maze is a complex
environment which has a grid made of an arbitrary number of squares of width and length where finding optimal path, which converge in
minimum time, is always a challenging task. There are various reinforcement learning methods where agent learn from environment to find
optimal path in maze problems viz. discrete Q-Learning, Dyna-CA Learning and FRIQ-Learning (Fuzzy Rule Interpolation-based Q-Learning).
This research intends to carry out a comparative study of these three methods to locate a method with best convergence time. The algorithms
pertaining to these methods are tested on MATLAB computational platform for different obstacles configurations of maze to compare their real
time parameter of convergence time. The performance results were analyzed and presented. The final result reveals that FRIQ-Learning
outperforms the others under all conditions.

Keywords: Reinforcement learning, maze environment, Q-Learning, Dyna-CA Learning and FRIQ-Learning.

1. INTRODUCTION

Learning is the act of acquiring new knowledge or
modifying and reinforcing, existing knowledge, behaviors,
skills, values or preferences which may involve different
types of information. The ability to learn is possessed by
humans, animals, plants and machines. Learning means
change in behavior occurs as a result of experience.
According to Psychologists learning process often occurs in
three stages: acquisition, retention and recall. Gagne divided
learning into eight categories: Signal Learning, Stimulus-
Response Learning, Chain–Learning, Verbal Association
Learning, Multiple Discrimination, Concept Learning,
Learning of principles and Problem solving [1-3]. Machine
learning is a subfield of Computer Science which means to
train machines like a human or better than human to perform
tasks. It involves the study of pattern recognition and
computational learning theory in Artificial Intelligence. The
machine learning is of three types: Supervised Learning,
Unsupervised Learning and Reinforcement Learning [2-3].

Reinforcement Learning (RL) is a learning theory that came
from animal theory and now applied on machines to work
like a human being. This learning is used to train machines
by trial and error. The main strength of Reinforcement
Learning is that it does not specify how to solve a particular
problem rather only need is to define final goal. So this
learning focuses on what to do not how to do. The primary
idea of Reinforcement Learning technique was inherited
from optimal control, Markov decision process and dynamic
programming. RL techniques are a kind of trial-and-error
style techniques adapting to dynamic environment through
incremental iterations, without need for training the system
with pre-fabricated examples like supervised learning
methods. Basic components of Reinforcement Learning are:
states, actions, rewards and policy [4-8].

2. REINFORCEMENT LEANING METHODS

The sub sections 2.1, 2.2 and 2.3 of this section respectively
represents the three popular reinforcement learning methods
viz. discrete Q-Learning, Dyna-CA Learning and FRIQ-
Learning (Fuzzy Rule Interpolation-based Q-Learning) in
details.
2.1. Q-Learning

Q-learning is the most popular Reinforcement Learning
method and hence it is plausible to choose it for further
study and extension possibilities. In its naïve, the Q-
Learning method was developed by Watkins and others.
The purpose behind development of this method was to find
the fixed-point solution ‘Q’ of the Bellman Equation
through iterations. This method is also known as ‘method of
Asynchronous Dynamic Programming (ADP) [8] [9].

Q- Learning is a model free RL algorithm that uses last
experience to update its policy. In this learning updated Q-
function 𝑄𝑄𝑡𝑡+1 depends only on the previous function 𝑄𝑄𝑡𝑡
combined with the experience 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 and 𝑟𝑟𝑡𝑡 . This feature
makes the algorithm more computationally and memory
efficient. This technique is different from other techniques
such as Experience Replay, where experience is stored for
later use. In this learning, an agent`s experience consists of a
sequence of distinct stages. In the 𝑛𝑛𝑡𝑡ℎ stage the agent [10]
[11]:
• Observes the current 𝑠𝑠𝑡𝑡 state.
• Selects and performs 𝑎𝑎𝑡𝑡 action.
• Observes the subsequent 𝑠𝑠𝑡𝑡+1 state.
• Receives an immediate reward 𝑟𝑟𝑡𝑡 .

In discrete environment, Q- Learning algorithm estimates
the action-value function ‘Q’ iteratively by the following
updating rule:

𝑄𝑄𝑡𝑡+1(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛼𝛼𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) ∗ (𝑟𝑟𝑡𝑡+1) +
𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡+1,𝑎𝑎) − 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)……………….... (i)

Savita Kumari Sheoran et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 957-962

© 2015-19, IJARCS All Rights Reserved 958

Where ‘𝑡𝑡’ is discrete time step, 𝑠𝑠𝑡𝑡 is state at time ‘𝑡𝑡’, 𝑎𝑎𝑡𝑡 is
the action at time ‘𝑡𝑡’, 𝑟𝑟𝑡𝑡+1 is reinforcement or reward after
executing action 𝑎𝑎𝑡𝑡 in state 𝑠𝑠𝑡𝑡 , ⍺𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) is the step size
parameter or learning rate, range belongs to (0<⍺<=1). ‘𝛾𝛾’ is
discount factor, 𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) is the estimated state–action–
value of action 𝑎𝑎𝑡𝑡 in state 𝑠𝑠𝑡𝑡 at time ‘𝑡𝑡’. 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑄𝑄𝑡𝑡(𝑠𝑠𝑡𝑡+1 ,𝑎𝑎) is
the estimated optimal future value [11] [12].

The learning rate or step size parameter determines the
extent to which the newly acquired information will
override the old ones. If the value factor set to ‘0’ means
agent does not learn anything and if factor is set to ‘1’
would make the agent consider only the most recent
information. In practice, maximum constant learning rate is
used, such as ⍺𝑡𝑡 0T =0.01 for all ‘𝑡𝑡’ [8] [13].

Discount factor ‘𝛾𝛾’

determines the future rewards
importance. A value of ‘0’ will make the agent short-
sighted by only considering current rewards or counts the
immediate reward only while a value approaching ‘1’ will
make it strive for a long-term high reward. Figure1 shows
the basic framework of Q-Learning [8] [11].

2.2. Dyna-CA Learning

Dyna-CA Learning is a fast and effective learning
algorithm. It is a Reinforcement Learning algorithm that is
made by making some editing in Dyna Q- Learning
algorithm. In this algorithm first of all the set of ‘𝑘𝑘’ states
will be observed around the current state. Then by using
functional mapping, probability distribution of ‘𝑘𝑘’ states on
current state is calculated. On the current state, selection of
action is made by recommending the weighted sum of best
actions taken in the neighbor states to guarantee the learning
with continuous actions. After that agent gets continuous
actions and learns from experiences. Q values can be
updated by using Dyna algorithm. These values are not only
based on current neighbor state`s values but also the priori
neighbor state`s experience [14].

Dyna-CA Learning is different from discrete Q- learning in
the sense that in Dyna-CA Learning, updating Q values is
the set of the ‘𝑘𝑘’ states at the same time. Modeling the
experience of the previous transitions from ‘𝑘𝑘’ states to the
next set of ‘𝑘𝑘’ states, improve the convergence speed in
comparison to discrete Q-Learning which is inspired by
Dyna-Q- Learning [14].

Dyna-CA Learning is a new Reinforcement Learning
algorithm that makes the agents to learn more effectively
with continuous actions. This learning has two learning

processes; one process learns its nearest actions according to
nearest states while second process models the environment.
Thus in this learning, agent chooses the best action.

Following algorithm describes the process of Dyna-CA
algorithm.

Initialize A, S, k, γ, 𝜺𝜺, Q(s, a) ⟵ 0, mode = []
Repeat {for each stage}
Initialize s
K ⟵is set of k- nearest states of state s and get the probability P
(K)
J ⟵ 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝑨𝑨 Q (K, A) (probability 1-𝜺𝜺)
 (J ⟵ 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑨𝑨 Q (K, A) (probability 𝜺𝜺))
a ⟵ <J, probability P (K) >
Q (K, J) =< 𝒎𝒎𝒎𝒎𝒎𝒎𝑨𝑨 Q (K, A), P (K)>
Repeat {for each step of stage}
Take action a, observe state s` and reward r
K` ⟵ is set of k- nearest states of s` and get probability P (K`)
J` ⟵ 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝑨𝑨 Q (K`, A) (probability 1-𝜺𝜺)
(J` ⟵ 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝑨𝑨 Q (K`, A) (probability 𝜺𝜺))
a ⟵ <J`, probability P (K`) >
Q (K`, J`) =< 𝒎𝒎𝒎𝒎𝒎𝒎𝑨𝑨 Q (K`, A), probability P (K`)>
Update Q and mode:
Q ⟵ Q + ⍺(r + γ Q (K`, I`) – Q (K, I))
Model = (K, J, r, K`, J`), Mode ⟵ [Mode; model]
For I = 1 to N do
K, I ⟵ random previously observed set of k nearest states and
actions
Get (K, J, r, K`, J`) from Mode
Q ⟵ Q + ⍺(r + γ Q (K`, I`) – Q (K, I))
end for
a ⟵ a`, s ⟵ s`, K ⟵ K`, J ⟵ J`
until s is terminal
until learning ends

Agent selects the best action from its nearest states and
updates the ‘𝑞𝑞’ value. ‘𝑗𝑗’ is the set of best actions and ‘𝐾𝐾’ is
the set of nearest neighbor states. 𝑃𝑃(𝐾𝐾) is the probability of
‘𝐾𝐾’ nearest states. ‘𝑠𝑠’ is the current state, ‘𝑎𝑎’ is the action on
state ‘𝑠𝑠’ and ‘𝑠𝑠`’ is the next observed state. ‘𝐾𝐾’ is the set of
𝑘𝑘- nearest states of ‘𝑠𝑠`’ and 𝑃𝑃(𝐾𝐾`) is the probability of set
‘𝑘𝑘`’. In the Algorithm of Dyna-CA the 𝜀𝜀-greedy policy had
been referred to make the action-selection. The main
characteristics of DYNA- CA algorithm are that this
algorithm works on the problem that has continuous actions.
It has faster convergence of learning than discrete Q-
Leaning and DYNA Q- Learning [14].

2.3. FRIQ- Learning

In Fuzzy Rule Interpolation-Based Q- Learning, fuzzy rules
are used to represent action-value function with the
capability of sparse rule base. FRIQ is an extension of
discrete Q- Learning with fuzzy rule interpolation method.
Hence this method could handle continuous state and action
space because of fuzzy rule based knowledge representation.
FRIQ Learning algorithm is same as standard Q- Learning
algorithm except of making derivation of Q-values using
fuzzy inference system and updating of the Q- function
(fuzzy rules). FQ- Learning has drawback of having same
rule base for all number of state - action pairs. So, if there is
a problem with large states, then it will be very complicated
to handle all states with their state–action–value function
using FQ- Learning. To eliminate this drawback, Fuzzy

Figure 1: Basic Framework of Q-Learning

Savita Kumari Sheoran et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 957-962

© 2015-19, IJARCS All Rights Reserved 959

Rule Interpolation (FRI) methods have been applied with
FQ- Learning. By using FRI methods the rule-base can be
simplified as well as the number of the rules representing
the Q-function can be optimized for reducing the size of the
state - action space representation because it can handle
sparse rule base. There exist numerous FRI methods in the
literature with the application of Q- Learning [12] [15].

The most important of them is FIVE (Fuzzy rule
Interpolation based on Vague Environment) FRI method
applied with Q- Learning (FRIQ- Learning). FRIQ-
Learning method is application oriented method and serves
crisp conclusions directly, without requirement any
additional defuzzification steps. Most of the applications
require crisp observations and crisp conclusions from the
controller. The main idea of the FIVE is based on the fact
that FIVE turn the fuzzy interpolation to crisp interpolation.
The idea of a Vague Environment (VE) is based on the
similarity of rules in the rule base or considered elements. In
VE, the fuzzy membership function μA(x) is indicating the
level of similarity, equivalently, or the degree to which ‘𝑥𝑥’
is indistinguishable from specific element ′𝑎𝑎′ that is a
representative or prototypical element of the fuzzy set
𝜇𝜇𝜇𝜇(𝑥𝑥) [8] [16].

FQ-learning allows the omission of fuzzy rules or action -
state values from the rule base and it has potentiality of
applying in higher state dimensions with a reduced action -
state space. By using the 0-order Takagi-Sugeno fuzzy
model in FQ- Learning with the FIVE the FRI convert in to
FRIQ- Learning [8] [16] [17].

In FRIQ- Learning method, Q-values are derived using
fuzzy rule interpolation method by fuzzy inference system.
Suppose a learning agent receives a vector of continuous
states 𝑆𝑆= (𝑠𝑠1 ,𝑠𝑠2,….𝑠𝑠𝑛𝑛) with ‘𝑛𝑛’ dimensions and ‘𝑎𝑎’ is the
action on the state ‘𝑠𝑠’. Fuzzy rules that derive Q values of
state - action pair are given below:

𝑅𝑅𝑖𝑖 : If 𝑠𝑠1 is 𝑉𝑉𝑖𝑖𝑠𝑠1 and ….𝑠𝑠𝑛𝑛 is 𝑉𝑉𝑖𝑖𝑠𝑠𝑛𝑛 and ‘a’ is 𝑉𝑉𝑖𝑖𝑖𝑖 then Q=
𝑓𝑓𝑖𝑖 (𝑠𝑠1 ,𝑠𝑠2,….𝑠𝑠𝑛𝑛) ...(ii)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑉𝑉𝑖𝑖𝑠𝑠1 ,…., 𝑉𝑉𝑖𝑖𝑖𝑖 are fuzzy sets on variables. ‘R’ is vector
of reward and ′𝑅𝑅𝑖𝑖 ′ is the ith

 reward.

Algorithm: Fuzzy Rule Interpolation Based Q- Learning
(FRIQ) [13]:
__
Step 1: 𝒔𝒔𝒕𝒕 is the current state at time t.
Step 2: Derive Q-Values for each state-action pair (𝒔𝒔𝒕𝒕, 𝒂𝒂𝒕𝒕) using
fuzzy inference system.
Step 3: Choose an action 𝒂𝒂𝒕𝒕 on state 𝒔𝒔𝒕𝒕.
Step 4: Carry out action 𝒂𝒂 and transit the state 𝒔𝒔𝒕𝒕 to next state
𝒔𝒔𝒕𝒕+𝟏𝟏 .
Step 5: Derive Q-Values for each state-action pair (𝒔𝒔𝒕𝒕+𝟏𝟏,𝒂𝒂𝒕𝒕+𝟏𝟏)
using fuzzy inference system.
Step 6: Calculate update amount of Q-Value (ΔQ).
Step 7: Update Q-Function or fuzzy rules.
Step 8: Now go back to step 1.

As explained above, FRIQ has fuzzy rule base in the place
of state-action-value function as was in traditional Q-
Learning. In fuzzy rule base, 𝑘𝑘𝑡𝑡 fuzzy rule has the following
form [8] [12] [17] [18]:

Suppose 𝑠𝑠1=𝑆𝑆𝑘𝑘 ,1 , 𝑠𝑠2= 𝑆𝑆𝑘𝑘 ,2……., 𝑠𝑠𝑁𝑁= 𝑆𝑆𝑘𝑘 ,𝑁𝑁 and a= 𝐴𝐴𝑘𝑘 Then
𝑄𝑄�(𝑠𝑠,𝑎𝑎)= 𝑞𝑞𝑘𝑘 ..(iii)

Where ′𝑠𝑠1′ is observational state with kth

 rule in the set of the
discrete possible states ‘𝑆𝑆’ and ‘𝑎𝑎’ is the action at 𝑘𝑘𝑡𝑡 rule in
the set of the discrete possible actions ‘𝐴𝐴’. Also 𝑞𝑞𝑘𝑘 is the
observed value of the 𝑘𝑘𝑡𝑡ℎ rule.

According to state – action - value function 𝑄𝑄�(𝑠𝑠,𝑎𝑎)
updating rule, with fuzzy rule consequents (𝑞𝑞𝑖𝑖1𝑖𝑖2….,𝑖𝑖𝑁𝑁𝑢𝑢

) is the
following form:

𝑞𝑞𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖
𝑘𝑘+1 = 𝑞𝑞𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖

𝑘𝑘+1 + = ∆𝑄𝑄�𝑖𝑖,𝑢𝑢𝑘𝑘+1 + 𝛼𝛼𝑖𝑖 ,𝑢𝑢𝑘𝑘 .(𝑔𝑔𝑖𝑖 ,𝑢𝑢 ,𝑗𝑗 +
𝛾𝛾.𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑄𝑄�𝑗𝑗 ,𝑣𝑣

𝑘𝑘+1 − 𝑄𝑄�𝑖𝑖,𝑢𝑢𝑘𝑘) .. (iv)

Otherwise,
𝑞𝑞𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖
𝑘𝑘+1 = 𝑞𝑞𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖

𝑘𝑘+1 +
∏ (1

𝛿𝛿𝑠𝑠,𝑘𝑘
𝜆𝜆�)𝑁𝑁

𝑛𝑛=1 /(∑ 1
𝛿𝛿𝑠𝑠,𝑘𝑘
𝜆𝜆�𝑟𝑟

𝑘𝑘=1). ∆𝑄𝑄�𝑖𝑖,𝑢𝑢𝑘𝑘+1

= 𝑞𝑞𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖
𝑘𝑘+1 + ∏ (1

𝛿𝛿𝑠𝑠,𝑘𝑘
𝜆𝜆�)𝑁𝑁

𝑛𝑛=1 /(∑ 1
𝛿𝛿𝑠𝑠,𝑘𝑘
𝜆𝜆�𝑟𝑟

𝑘𝑘=1). 𝛼𝛼𝑖𝑖,𝑢𝑢𝑘𝑘 .(𝑔𝑔𝑖𝑖 ,𝑢𝑢 ,𝑗𝑗 +

𝛾𝛾.𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑄𝑄�𝑗𝑗 ,𝑣𝑣
𝑘𝑘+1 − 𝑄𝑄�𝑖𝑖,𝑢𝑢𝑘𝑘) (v)

Where q𝒊𝒊𝟏𝟏,𝒊𝒊𝟐𝟐,….,𝒊𝒊𝒏𝒏,𝒖𝒖

k+1 is the (𝑘𝑘 + 1)𝑡𝑡 iteration of fuzzy rule
consequents (𝑞𝑞𝑖𝑖1𝑖𝑖2….,𝑖𝑖𝑁𝑁𝑢𝑢

) with action ‘𝐴𝐴𝑢𝑢 ’. The factor gi,u,j is
the observed reward from state 𝑆𝑆𝑖𝑖 → 𝑆𝑆𝑗𝑗 with action𝐴𝐴𝑢𝑢 . αi,u

k
is the step size parameter between range [0, 1] and ‘𝛾𝛾’ is
the discount factor.

3. MAZE ENVIRONMENT

A Maze is a path or network of paths that has a goal. It has
many obstacles in the path, so one has to cover these
obstacles to find goal. Main motive is to find goal with
shortest path with less time and more accuracy from these
puzzle network of paths. In Figure 2 and 3, the Green
Square is an initial point and Black Square is goal point.
There are two paths for find the goal. But the path in later
figure is lengthy and time consuming in comparison to later
[19].

There is a need of better algorithms and techniques for
solving this puzzle network of paths (solving maze) for
arriving at the goal. The solution to a Maze problem, mean
finding a route through the maze to arrive at the goal. The
Maze can be solved manually or by computing machines.
For such problems there is need is to solve these puzzle
paths with minimum time, high speed and with high
accuracy, which can be only be possible with computer [18].

Savita Kumari Sheoran et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 957-962

© 2015-19, IJARCS All Rights Reserved 960

Reinforcement Learning techniques are applied on maze
problem with different obstacle delays. As the states
increases in any problems, time also increases to find goal.
Discrete Q- Learning is often considered a slow procedure.
However, in the case of other Reinforcement Learning
methods such as Dyna-CA- Learning and FRIQ- Learning
are fast, incremental and scalable. These states of art
Reinforcement Learning algorithms are applied on maze
problem to analyze the performance. FRIQ- Learning
algorithm has recently received much attention because it
reduces size of state – action – value function. It highly
reduced state representations by varying these dimensions in
maze environment. We have achieved better search
efficiency per simulation. Furthermore, the advantage of
FRIQ- Learning increased with larger state dimensions.

Maze problem is a simple benchmark for comparing the
effectiveness of different RL algorithms. So this
environment is chosen for comparison of these techniques.
Maze itself is n*m matrix, where ‘n’ represents number of
rows and ‘m’ represents number of columns. This play area
has a start point, a goal point and some obstacles that make
problems to achieve the goal. The agent has to start from the
start point and goes to the goal point as well as avoiding the
obstacles. The main objective of this agent is to find the
shortest path from start position to goal position by avoiding
the obstacles. To find out goal with shortest path, here start

position, obstacles and goal position are denoted by
variables [12].

4. PERFORMANCE ANALYSIS

The discrete Q- Learning, Dyna-CA Learning and FRIQ
Learning are implemented on the basis of time taken from
start position to goal position in different maze
environments. For implementing these reinforcement
learning techniques in maze environment with time
convergence, MATLAB GUI tool has been used. Four maze
environments have been taken without and with obstacles
delay. Four edit buttons are used for denoting maze matrix
as 9×6 and 18×12. The convergence time is calculated in
traditional unit of “second”. The command button name as
“compare” is used to compare these four maze
environments:

 9×6 (without obstacle).
 9×6 WO (with obstacle).
 18×12 (without obstacle).
 18×12 WO (with obstacle).

Figure 4 depicts the graphical representation of convergence
times for these three methods without obstacle delay in
maze environments. Figures 5, 6, 7 and figure 8 graphically
analyses the convergence times for these three methods with
obstacle delays 0.001, 0.002, 0.01 and 0.02 respectively.
The cohesive intra comparison of convergence time for
three learning methods is presented below:

As revealed from plots presented in Figures 4, 5, 6, 7 and 8
with difference of times on different maze environments
with varying obstacles and increasing state-action-value
function, it is clear that discrete Q- Learning effected more
because Q- Learning uses action-value function of each
state-action. Therefore, with increase in states, state-action-
value functions also increases. Hence for large state space, it
is difficult to handle large state - action- value function
because it takes more time with large state space. FRIQ-
Learning affected less than other methods because, in FRIQ
Learning state-action-value function is used as rule base. In
rule base, fuzzy rule interpolation method has been applied,
because of that rules those not have more importance or
rules those are beyond the upper or lower limit, they not
fired.

(A) Comparative Analysis of Q-Learning, Dyna-CA,

FRIQ- Learning without Obstacle Delay

(B) Comparative Analysis of Q-Learning, Dyna-CA-

Learning, and FRIQ- Learning with Obstacle Delay =
0.001

Figure 2: Not the Most Efficient Short Path
in this Maze [19]

Figure 3: A Better Result of Shortest Path
in this Maze [19]

Figure 4: Convergence Time Comparison
 without Obstacle Delay

Savita Kumari Sheoran et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 957-962

© 2015-19, IJARCS All Rights Reserved 961

(C) Comparative Analysis of Q-Learning, Dyna-CA-

Learning, FRIQ- Learning with Obstacle Delay =
0.002:

(D) Comparative Analysis of Q-Learning, Dyna-CA-

Learning and FRIQ- Learning with Obstacle Delay =
0.01:

(E) Comparative Analysis of Q-Learning, Dyna-CA-

Learning and FRIQ- Learning with Obstacle Delay =
0.02:

It can be concluded from these plots that Q- Learning takes
more time than both DYNA-CA- Learning and FRIQ-
Learning while FRIQ- Learning converge in minimum time
to find the goal.

5. CONCLUSION AND FUTURE DIRECTION OF

RESEARCH

By observing graphs, it is clear that discrete Q- Learning
affected more with increasing obstacles delays and states,
because Q- Learning uses action – value function for each
state-action. Therefore with increasing of states, state –
action - value functions also increases. So in large state
space, it is difficult to handle large state – action - value
function, it takes more time with large state space. FRIQ-
Learning is affected less in comparison to other methods.
FRIQ- Learning has rule base with fuzzy rule interpolation
method. In rule base, only the method within the upper or
lower limit of system can fire. Q- Learning takes more time
than both DYNA-CA- Learning and FRIQ- Learning while
FRIQ- Learning takes minimum time to find the goal.
Therefore, FRIQ- Learning emerge as fastest converging (in
term of speed and time) Reinforcement Learning technique
for maze environment with or without obstacle.

The FRIQ-Learning has smaller Q-function representation,
leads to better convergence speed. But equal size of the Q-
function rule bases in all the maze configurations raise
concern in decision making, so rule-base reduction method
needs further investigation in FRIQ- Learning for better
result. Since this study is a based upon theoretical
conceptualization. Therefore, the practical implementation
of proposed objectives on real time maze environment may
depict the desired outcome and can be applied to daily life
problems. Also the whole study is carried out in 2-D only.
The 3-D extension of study may be much fruitful to solve
intricate geometrical problems in Euclidean and Non-
Euclidian space.

6. REFERENCES

[1]. N. J. Nilsson, “Introduction to Machine Learning,”

Mach. Learn., vol. 56, no. 2, pp. 387–99, 2005.
[2]. K. Wagstaff, “Machine Learning that Matters,” Proc.

29th Int. Conf. Mach. Learn., pp. 529–536, 2012.
[3]. Hal Daume, a book “A Course in Machine Learning”

version 0.8 , August 2012
[4]. S. Mahajan, “Reinforcement Learning : A Review from a

Machine Learning Perspective,” vol. 4, no. 8, pp. 799–
806, 2014.

[5]. W. Qiang and Z. Zhongli, “Reinforcement learning
model, algorithms and its application,” IEEE Int. Conf.
Mechatron. Sci. Electr. Eng. Comput., no. 1, pp. 1143–
1146, 2011.

[6]. Jos´e Antonio Mart´ın H., “An Effective Algorithm for
Continuous Actions Reinforcement Learning Problems”
IEEE, 2009.

[7]. R. S. Sutton and A. G. Barto, “Reinforcement learning,”
Learning, vol. 3, no. 9, p. 322, 2012.

[8]. D. Vincze, university of Miskolc faculty of mechanical
engineering and informatics, Ph. D. Dissertation on
“Fuzzy Rule Interpolation-based Q-learning,” 2013.

[9]. M. Pieters and M. A. Wiering, “Q-learning with
Experience Replay in a Dynamic Environment.”

[10]. Christopher Watkins and Peter Dayan, “Technical Note:
Q-Learning” 1992.

[11]. C. H. C. Ribeiro, “A Tutorial on Reinforcement Learning
Techniques,” Supervised Learn. track tutorials 1999 Int.
Jt. Conf. Neural Networks, pp. 1–44, 1999.

Figure 5: Convergence Time Comparison
 with Obstacle Delay = 0.001

Figure 6: Convergence Time Comparison
 with Obstacle Delay = 0.002

Figure 7: Convergence Time Comparison
 with Obstacle Delay = 0.01

Figure 8: Convergence Time Comparison

 with Obstacle Delay = 0.02

Savita Kumari Sheoran et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 957-962

© 2015-19, IJARCS All Rights Reserved 962

[12]. T. Tompa and S. Kovács, “Q-learning vs. FRIQ-learning
in the Maze problem,” IEEE, pp. 1–6, 2015.

[13]. Tackishi Horiuchi, Akiiiori Fujino, Osaniu Kat ai and
Tetsuo San-aragi, “Fuzzy Interpolation based Q-Learning
with continuous states and actions,” IEEE, 1996.

[14]. F. U. Bo, C. Xin, H. E. Yong, and W. U. Min, “An
Efficient Reinforcement Learning Algorithm for
Continuous Actions,” IEEE, pp. 80–85, 2013.

[15]. D. Vincze and S. Kovacs, “Rule base reduction in Fuzzy
Rule Interpolation based Q-Learning” vol. 2, no. 1, pp.
1–6, 2015.

[16]. D. Vincze and S. Kovács, “Fuzzy Rule Interpolation-
based Q-learning,” pp. 55–60, 2009 IEEE.

[17]. D. Vincze and S. Kovács, “Reduced Rule Base in Fuzzy
Rule Interpolation- based Q-learning,” pp. 533–544.

[18]. M. Ahuja, B. Homchaudhuri, K. Cohen, M. Kumar, S.
Member, and A. Fellow, “Fuzzy Counter Ant Algorithm
for Maze Problem,” no. January, pp. 1–13, 2010.

[19]. A. Bakar and S. Saman, “Solving a Reconfigurable Maze
using Hybrid Wall Follower Algorithm,” Int. J. Comput.
Appl., vol. 82, no. November, pp. 22–26, 2013.

