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Abstract:  Due to an unprecedented increase in the number of computing resources in different organizations, effective job scheduling algorithms 
are required for efficient resource utilization. Job scheduling in considered as NP hard problem in parallel and distributed computing 
environments such as cluster, grid and clouds. Metaheuristics such as Genetic Algorithms, Ant Colony Optimization, Artificial Bee Colony, 
Cuckoo Search, Firefly Algorithm, Bat Algorithm etc. are used by researchers to get near optimal solutions to job scheduling problems. These 
metaheuristic algorithms are used to schedule different types of jobs such as BSP, Workflow and DAG, Independent tasks and Bag-of-Tasks. 
This paper is an attempt to provide comprehensive review of popular nature-inspired metaheuristic techniques which are used to schedule 
different categories of jobs to achieve certain performance objectives.  
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I. INTRODUCTION 

Various researchers have shown a keen interest in 
scheduling strategies due to exponential increase in number 
of resources in different organizations. Scheduling allows 
optimal resource allocation among various tasks in a finite 
time resulting in quality service [1]. Scheduling and 
resource allocation are considered as NP hard problems. 
Population based metaheuristics are found to be effective for 
finding optimal or near optimal solutions. In this paper, 
various types metaheuristic techniques are discussed and 
various objective functions that researchers have worked on, 
using these techniques in different types of environments are 
discussed. 

A. Scheduling 
The method by which specified work is assigned to the 

resource by some means, to complete a particular task is 
called scheduling. Schedulers keep the resources busy by 
allowing multiple users to share the systems resources in an 
effective manner. It is due to scheduling that computers are 
able to multi-task within a single CPU. Distributed 
computing has grabbed much attention in the recent years as 
it is reliable, highly scalable and has low cost [1]. The 
complexity of scheduling increases due to heterogeneity of 
the processing and communication resources, which leads to 
NP-Hard problems. For such problems, there aren’t any 
algorithms that may produce optimal solutions. This brings 
us to metaheuristic algorithms that offer near optimal 
solutions within reasonable time. There are various types of  
metaheuristic algorithms namely Ant Colony Optimization 
(ACO), Firefly Algorithm, Particle Swarm Optimization 
(PSO), Genetic Algorithm (GA), Cuckoo Search, Simulated 
Annealing etc.  

 

B. Metaheuristics 
A metaheuristic is a procedure that helps to find or 

generate an algorithm that may help to generate optimal 
solutions. Metaheuristics are of various types based on 
search strategy, single solution based, nature inspired etc. 
Further are discussed various metaheuristic algorithms: 

1) Genetic Algorithm: It is an optimization method 
based on population and is based on Darwin’s theory of 
evolution [2]. In GA, each possible solution is represented 
by a chromosome. An initial population is taken randomly 
and it is used as a starting point. A fitness function is 
calculated for each chromosome so that it is known whether 
the chromosome is suitable or not. Crossover and mutation 
functions are performed on the selected chromosmes and 
offsprings for new population are created. This process is 
repeated until enough offsprings are created [3]. The basic 
steps for genetic algorithm are : 

• Intialisation 
• Selection 
• Crossover 
• Mutation 

 
 
 
 
 
 
 
 
 

                        
Figure 1. Pseudo code for GA 

 
2) Ant Colony Optimization: In ACO, a number of 

artificial ants help in building solution for optimization 
problems and via a communication scheme, they exchange 
the information. They find the shortest paths as the moving 
ants lay pheromone on the ground, so that when another ant 
encounters it, it can detect it and decide to follow the trail. 
As a result, the emerged collective behavior is an indication 
that if a number of ants choose a particular path, then the 
probability of other ants following the same path increases 
[4]. The main idea of ACO is to model a problem as the 
search of minimum cost path in a graph [5]. 

 

1. Pick an initial arbitrary population of individuals 
2.  Evaluate the fitness function of the individuals 
3. repeat 
4.  The best individuals should be selected 
5. Generate new individuals by applying       crossover  and 

mutation operators 
6. The fitness function for new individuals   should be  

examined 
7. The worst individuals are replaced with the           best 

ones  
8. until a stopping criteria is met 
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Figure 2. Pseudo code for ACO 
 

3) Artificial Bee Colony Algorithm: This is a popular 
approach for optimization that simulates the intelligent 
foraging nature of honeybees. İn this algorithm, there are 
three types of bees. The first ones being the employed bees. 
They search for food around the food source and also they 
share this information about the food source with the 
onlooker bees. They filter out the good food sources 
amongst those found by the employed bees. The high 
quality (fitness) food source is more likely to be selected. 
The employed bees which abandon the food source and 
search new ones are called scout bees [6]. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Pseudo code for ABC 
 

4) Firefly Algorithm: It is inspired from the flashing 
behavior of tropical fireflies. It has the following important 
features: 

• The fireflies are attracted to each other irrespective 
of their gender. 

• A firefly’s attractiveness increases with its flash’s 
brightness and attractiveness and brightness 
decrease with increase in distance. 

• The illumination or brightness of a firefly is 
afflicted by the landscape of objective function[7]. 

  

 
 

Figure 4. Pseudo code for firefly algorithm 
 

5) Cuckoo Search Algorithm: It is inspired by brood 
parasitism of some cuckooo species. They lay eggs in the 
nests of ther birds of different species. Below are the three 
basic rules for this algorithm:  

• One egg is laid at a given time and dumped in a 
randomly selected nest. 

• Only the nest having the higher quality eggs are 
moved to the next generation. 

• The number of host nests is fixed and probability of 
discovering the egg laid by the cuckoo by the host 
bird is pa. The host can possibly discard the egg or it 
can abandon the nest and build a fresh one [7]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Pseudo code for cuckoo search 

 
6) Particle Swarm Optimization Algorithm: The idea of 

PSO emerged from the swarming behavior of flock of birds, 
swarm of bees, schools of fish etc. İt is applied to solve 
different function optimization problems. İn PSO, the 
solutions are named particles that travel in the problem 
space. They follow the present optimum particles. The co-
ordinates of each particle in the problem space are tracked 
by the particle. They are associated with the best solution 
achieved up to now and the value is known as pbest. 
Another best value, lbest, is the best value attained by any 
particle in the neighbourhood of the particle. Global best  
value, gbest, is obtained when a particle takes all the 
population as its neighbours [8]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Pseudo code for PSO 

1. Define objective function f(a), where a = (a1,...... ad)         
2. Produce an underlying population of fireflies 
3. Formulate the light intensity L 
4. Specify the absorption coefficient β 
5. While (t< Max_Gen) 
6. For i=1 to n (all n fireflies) 
7.     For j=1 to n (all n fireflies) 
8.    If ( Lj > Li ), move firefly i towards  firefly j 
9.          End if 
10.    Examine new solutions and update light 

intensity; 
11.     End for j 
12.   End for i 
13.   Rank the fireflies and find the current best 
14.   End while 

 

1. Begin 
2. Initialise pheromone trails; 
3. Produce an underlying population of a     

solutions(ants); 
4.    For every ant f ϵ a: calculate fitness function (f); 
5.    Determine the best position for each ant; 
6.    Determine the best global ant; 
7.    Update the pheromone ; 
8.  Determine if termination= true; 

  

 

1. Initialise a random population 
2. Evaluate its fitness function 
3. While (stopping criterion is not met) 
4.       Pick sites for neighbourhood search 
5. The bees for picked sites should be examined   and 

fitness function is calculated 
6.  From each patch, the fittest bee should be selected. 
7. Remaining bees are assigned to search randomly and 

evaluate their fitness 
8. End while 
 

 

1.   begin 
2.     Define objective function f(o)  
3.     Formulate the initial population of h host nest 
4. Eggs should be ranked after assessing the  fitness 
5. while (z>MaxGeneration) or stopping criteria is met 
6.      z= z+1 
7. Get a cuckoo arbitrarily or produce new solution by 

Levy flights 
8.      Assess fitness, Fi 
9.      Choose a nest j, randomly 
10.       if ( Fi > Fj ) 
11.           Replace j with the new solution 
12.       end if 
13. Abandon the worst net with probabilty Pa and a new 

nest is then built 
14. Assess fitness, rank the solutions and find the 

current best 
15.       end while 

    16:   end  
 

1.   For each particle 
2.        Initialise particle 
3.   End for 
4.   Do 
5.         For each particle 
6.             Evaluate the value of fitness 
7.          if the fitness value is better than the    

best value      
8.                     set current value as pbest 
9.             End 
10.      select the particle with best fitness value  as 

gbest 
11.          For each particle 
12.            evaluate particle velocity  
13.           update particle position 
14.        End 
15.   while maximum iterations or minimum error     

condition is not achieved. 
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7) Simulated Annealing: This technique is inspired from 
annealing in metallurgy. İt involves heating and then slow 
cooling of a material. This is used to remove/reduce the 
defects in a crystal. To accomplish this, the material is 
annealed i.e. it is heated to a specific temperature and then 
cooled slowly until the material freezes into the form of a 
good crystal [9]. The slow cooling implies to slow decrease 
in probablility of accepting worse solutions. İf the cooling is 
slow, it means that there is a higher chance of finding 
optimal or near-optimal solutions [10]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Pseudo code for simulated annealing 
 

The following table consists of the comparison of 
different nature-inspired metaheuristic algorithms. They are 
compared on the basis of their merits and demerits. 
 

Table I.     A Comparison Of Various Nature-Inspired    Metaheuristic 
Algorithms. 

 
Sr. 
No. 

Technique Pros Cons 

1.  Genetic 
 Algorithm 

Finds near optimal 
solution,  
Avoids being trapped 
in local optimal 
solutions. 

No guarantee of finding 
global maxima,  
Convergence time is 
more. 

2.  Ant Colony Opt. 
Algorithm 

Inherent parallelism, 
Can be used in   
dynamic application. 

Time to convergence is 
uncertain. 

3.  Artificial Bee 
Colony 
Algorithm 

High Performance, 
Fewer control 
parameters,  Easily 
modified and 
hybridized with other 
metaheuristic 
algorithms. 

Risk of losing relevant 
information. 
Population of solution 
increases the 
computational cost. 

4.  Firefly Algorithm All advantages of 
swarm based 
algorithms, Precise 
and robust. 

Trapped in local 
minima, Slow 
convergence. 

5.  Cuckoo Search Global convergence, 
Global optimality. 

Doesn’t incorporate any 
type of local search to 
increase the 
convergence speed, 
Performance highly 
dependent on α i.e. step 
size. 

6.  Particle Swarm 
Opt. Algorithm 

Fast search speed,  
Calculation is simple. 

Tendency of premature 
convergence,  
Suffers from partial 
optimism. 

7.  Simulated 
Annealing 

Can deal with 
arbitrary systems and 
cost  functions, Gives 
a “good” solution. 

Few local minima, 
Slow.  

 

C. Multi-criteria 
Multi-criteria or multi-objective optimization is a type of 

decision making criteria. In this, two or more than two 
objective functions are optimized simultaneously. It comes 
in use when optimal decisions are required to be taken in 
presence of trade-offs between two or more contradictory 
functions. In mathematical terms, it can be written as:   

min(g1(x), g2(x),……ga(x)) 
s.t. x ϵ X 

where the integer a ≥ 2 and a is the number of objectives 
and X is the set of feasible decision vectors. This value of a 
indicates that minimum 2 objectives are required. 

In this work, various types of jobs, parallel or non-
parallel are studied and based on those, tables have been 
constructed. Main focus is on the objectives, type of job and 
environment. Mainly four types of jobs have been studied, 
namely: Bulk Synchronous Parallel (BSP), DAG & 
Workflow, Independent Jobs and Bag-of-Tasks.  

II. PERFORMANCE METRICS 

Before going further, below are some performance 
metrics that are desired by different types of users and 
providers: 

 
A. Makespan: Makespan refers to the total length of 

the schedule i.e. the finishing time of the last task. 
İt is the most popular optimization criterion and 
indicates the productivity of a system. Lesser the 
value of makespan, more efficient is the scheduler 
[11]. 

              Makespan= Maxkϵtasks (Tk), where Tk is the  
finishing time of task k. 

B. Flowtime: The sum of finalisation times of all 
tasks is called flowtime. 
 Flowtime=  ∑kϵtasks (Tk), where Tk is the finishing  
time of task k. 

C. Convergence Speed: The speed at which an 
iterative sequence converges to a point where it 
reaches an optimal or near optimal solution is 
called the speed of convergence. 

D. Response Time: Sum of waiting time and 
execution time is called the response time. 

E. Throughput: The number of jobs that complete 
their execution per unit time is termed as 
throughput. İn other words, it is the amount of work 
done by a system in given time. 

F. Speedup: It is a process of increasing the 
performance of a system. When there is any 
enhancement in the resources, speedup shows the 
effect on the performance of a system. 

G. Scalability: Generally, speedup declines when 
number of processors increase and size of problem 
is fixed. Scalabilty refers to the change in 
performance of a parallel system as the size of 
problem and computer size increase [11]. 

H. Fairness: Fairness means that every job should get 
equal share of CPU time and no job should face 
starvation. 

I. Energy Consumption: It is the amount of power or 
energy used by a system. It is preferable that a 
system uses less energy because it is more 
economical. 

J. Budget Constraint: It represents the total cost 
restriction for executing all jobs. 

  

1.   S0 = GenerateSolution() 
2.   Temp = START_TEMP 
3.   K = 0 // iteration count 
4.   while 
5.       S1 = Neighbour (S0) 
6.       if (Fitness (S1) < Fitness (S0)) 
7.               S0 = S1 
8.    else if (rand() < tempFunc (S0, S1, Temp,  K)) 
9.              S0 = S1 
10.       end if 
11.       AnnealingSchedule (S0, Temp, K) 
12.       K = K+1 
13.   end while 

 



Navjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 948-956 

951© 2015-19, IJARCS All Rights Reserved                     951 

III. BULK SYNCHRONOUS PARALLEL (BSP) MODEL BASED 
JOBS 

A Bulk Synchronous Parallel (BSP) computer comprises 
of a collection of processors. Each processor has its own 
memory i.e. it is a distributed-memory computer. It has 
mainly three components: processor/memory pair, 

communication network and synchronisation barrier [12]. 
This model is used for parallel jobs. The jobs in BSP 
comprise of a fixed number of tasks which have almost 
identical requirements and each task constitutes various 
iterations. Below is the table for comparison of BSP based 
jobs in different environments. 

 

TABLE II.  Comparison of Various BSP Based Algorithms

Ref. No. Technique Year MO*/SO** Environment Remarks 

[12]    MaMR   2017 MO(Speedup,   
Scalability) 

Cloud MaMR model supports map & reduce function; 
new merge phase is added to MapReduce. 

[13] MigPF (Migration   Model)   2016 SO(Load 
Balancing) 

Heterogeneous 
Environment 

MigBSP is redesigned to propose MigPF. 

[14]   Genetic Algorithm   2016 MO(Energy 
Consumption, 
Makespan, 
Convergence 
Speed) 

Heterogeneous 
Environment 

Multi-objective genetic algorithm based on 
weighted blacklist. 

[15] Multi-memory BSP (MBSP)   2015 MO(Cost, 
Communication 
Time, Memory 
Access Time) 

Parallel   
Computing 

An extension to BSP model, MBSP  is proposed. 

[16]  Genetic Algorithm   2015 MO(Makespan, 
Flowtime) 

Multi-cluster GA based scheduling metaheuristic for large 
scale multi-cluster environments; applying co-
allocation. 

[17]  BSP-based Model   2015 MO(Execution 
Time, Solution 
Accuracy) 

GPU Simple BSP model for performance prediction. 

[18]  Genetic Algorithm   2014 MO(Solution 
Accuracy, 
Execution Time) 

Hadoop Improving population diversity in GA using 
migration technique. 

[19] Parallel Processing of Graphs   2014 MO(Computation 
Time, Scalability) 

Cloud Comparison of MR (MapReduce), MR2 
(extension of MR) & BSP. 

[20]  Distributed-memory and Shared-
memory Model 

  2013 MO(Speedup, 
Scalability, 
Performance 
Prediction) 

Cloud Proposing BSPCloud- hybrid of distributed 
memory and shared memoryodel. 

[21]  Parallel GPU Model   2012 SO(Degree of 
Optimality) 

GPU Parallel GPU model for GPU algorithm 
development. 

*multi-objective  **single-objective 

 
Figure 8. BSP model 

 
Weipeng and Danyu [12] presented a new programming 

model named MaMR for cloud applications. It supports 
multiple map and reduce functions that run in parallel. It 
makes use of a hybrid shared-memory BSP model. The 
simulation results show that the presented model shows 
effective improvement in performance compared to the 
previous work. Rodrigo et al. [13] proposed a migration 
model,    MigPF,    for  BSP   programs    in   heterogeneous 
environments. A prototype was developed with the AMPI  

library and was tested against other built-in AMPI 
rescheduling policies. Experimental results showed 41% 
performance gain and the overhead limited to 5%.         
Gabaldon et al. [14] presented a multi-objective Genetic 
Algorithm that is based on a weighted blacklist. The authors 
have worked on reducing makespan and also towards energy 
conservation. An extension to the BSP model called MBSP, 
for multi-memory BSP, in the presence of multiple 
heirarchies and cores was proposed in [15]. Gabaldon [16] 
worked towards the scheduling in multi-cluster 
environments using a metaheuristic technique i.e. Genetic 
Algorithm. The multi-objective function optimises 
makespan as well as the flowtime.  Marcos et al. [17] 
proposed a simple BSP-based model for predicting 
execution times for CUDA applications on GPUs . The 
model predictions were 0.8 to 1.2 times the measured 
execution times which shows that the model is good enough 
for generalising predictions for different problem sizes and 
GPU configurations. The population diversity in Genetic 
Algorithm is improved in [18]. The main focus is on 
migration. Three techniques for parallelisation were used 
which were : MapReduce, BSP and MPI. The proposed 
method was compared with existing methods and results 
showed improvement in solution accuracy. Three 
approaches for graph processing namely MapReduce, BSP 
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and MR2 were compared by Tomasz [19]. The experiments 
were conducted on four large graph datasets. Xiaodong and 
Weikin [20] proposed an integration of distributed-memory 
and shared-memory BSP model named BSPCloud. The 
BSPCloud can make full utilisation of multi-core clusters. 
The performance predictability and speedup were evaluated. 
J. Steven and Ovidiu [21] presented a parallel GPU model 
which helps the parallel GPU algorithm designers to design 
and implement optimal algorithms. Results show that 
algorithms designed based on the model’s principles give 
significant increase in performance.   

IV. WORKFLOW AND DAG BASED JOBS 

Workflow scheduling can be called as a general form of 
task scheduling. Here, the applications are modelled as 
Directed Acyclic Graphs (DAG). DAG is a popular 
representation of workflow applications. Workflow 
scheduling can broadly be classified into two categories: 

A. Static Workflow Scheduling: Static scheduling can 
search from the solution space globally at workflow 
level. But its limitation is that it assumes that 
accurate task communication and execution time 
could be obtained before scheduling which can not 
necessarily always be true [22]. 

B. Dynamic Workflow Scheduling: It is helpful when 
scheduling information is unavailable or when there 
is resource contention with other system’s load [23].  

    Cuicui et al. [24] proposed a new bacterial foraging 
optimization algorithm, named BFO-CC. It is a very 
competitive algorithm that measures basis-vector, non- 
uniform step-size and conjugation strategies.   Simulation 
results show an improvement in convergence, solution 
quality and computational efficiency. Neetesh and Deo [25] 
proposed a hybrid PSO-GA metaheuristic for DAG 
scheduling. İts main aim is to improve the solution obtained 
by PSO using GA. The hybrid is tested for two linear 
algebra problems namely LU decomposition and Gauss-
Jordan elimination. Dzmitry et al. [26] address the 
performance issues of resource allocation in cloud. A 
communication-aware model called CA-DAG is proposed 
for making separate resource allocation decisions. Fengyu et 
al. [27] present a workflow task scheduling algorithm based 
on fuzzy clustering of resources called FCBWTS. 
Comparisons show that the algorithm is better than HEFT 
and DLS algorithms both in makespan as well as time 
consumed. A new evolutionary algorithm named CSA based 
on Cuckoo Search is proposed in [28]. It is based on Levy 
flight behavior and obilgate blood behavior of some cuckoo 
species. The results of experimental evaluation show that 
when Pa value is less, speed and coverage of the algorithm 
become very high. Yuming et al. [29] developed an 
improved Chemical Reaction Optimization (CRO) called 
HCRO (hybrid CRO).  

   
 

TABLE III. Comparison of DAG and Workflow Based Jobs 

Ref.   No.   Technique Year MO/SO Type of 
Parallel Job 

 Environment Remarks 

 [24] Bacterial 
Foraging 
Optimization 
Algorithm 

   2016 MO(Solution Quality, 
Computational 
Efficiency) 

Workflow Parallel 
Computing 

 A new designed chemotaxis and conjugation  strategy 
for BFO named BFO-CC. 

 [25] Particle Swarm 
Opt. & Genetic 
Algorithm 

2016 MO(Solution Quality, 
Scalability, 
Makespan) 

DAG Multiprocessor 
System 

Hybrid of GA and PSO for scheduling DAG. 

 [26] Communication 
Aware Modeling 

2016 MO(Approximation 
Factor, Efficiency of 
Produced Schedule) 

DAG    Cloud  CA-DAG allows making separate resource  allocation 
decisions. 

 [27] Workflow Task 
Scheduling 

2015 MO(Makespan, 
Speedup) 

DAG    Cloud FCBWTS algorithm to minimise makespan and 
comparing it with HEFT and DLS algorithms. 

 [28] Cuckoo Search 2015 MO(Fitness Fucntion, 
Flowtime, Speed 
&Coverage of 
algorithm) 

Workflow Cloud Simple cuckoo search. 

 [29] Chemical 
Reaction 
Optimisation 

2014 MO(Makespan, Speed 
of Convergence) 

DAG Heterogeneous 
Computing 
Systems 

Hybrid chemical reaction optimisation (HCRO) is 
proposed along with a new selection strategy. 

 [30] Firefly Algorithm  2014 MO(CPU Utility 
Rate, Memory Usage 
Rate, Load Balancing) 

Workflow  Cloud  Load balancing by dealing with a set of requests & 
servers; servers are hence assocciated with nodes and 
each node has some attributes. 

  [31] Particle Swarm 
Opt & Genetic 
Algorithm 

2013 MO(Makespan, 
Flowtime) 

DAG Heterogeneous 
Distributed 
Systems 

 PSO–based GA; solutions initialised using some 
effective list scheduling strategy,  evolved using 
crossover and mutation operator; PSO used for 
guiding the search effectively. 

 [32] Ant Colony 
Optimization, 
Cuckoo Search 

2012 SO(Makespan) Workflow Parallel 
Computing 

 Hybrid proposed by combining the merits of  ACO 
and Cuckoo Search. 

 [33] Energy Aware 
Genetic 
Algorithm 

2011 MO(Makespan, 
Energy Consumption) 

DAG Cloud  Bi-objective GA based on Dynamic Voltage  Scaling 
(DVS). 
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Simulations show that the presented algorithm is better than 
existing algorithms at scheduling DAG tasks and gives 
lesser makespan and better speed of convergence. A. Paulin 
[30] focussed on load balancing using firefly algorithm in 
cloud computing environments. The simulation gave  
expected results thus proving the proposed approach to be 
PSO-based hybrid with GA for task scheduling in DAGs is 
presented in [31]. Babukartik and Dhavachelvan [32] 
proposed a hybrid by combining the merits of ACO and 
Cuckoo search. The simulation results show that with the 
increase in number of tasks, task creation time and results 
retrieval is also increased. Mezmaz et al. [33] explored the 
problem of scheduling precedence-constrained parallel 
applications. A parallel bi-objective genetic algorithm was 
proposed that considers both makespan and energy 
consumption. A comparison of DAG and workflow based 
jobs is shown in Table III.  
 

V. INDEPENDENT JOBS 

    Independent jobs are those in which the tasks do not 
directly communicate with each other. All tasks perform 
same or similar function and it is not necessary for them to 
run simultaneously. 
    Medhat et al. [34] compared a cloud task scheduling 
algorithm based on Ant Colony Optimization (ACO) with 
FCFS and RR scheduling algorithm. The main motive is to 
minimize the makespan. The simulation in CloudSim 
showed that the ACO based cloud task scheduling performs 
better than FCFS and RR algorithms. Rajni et al. [35] 
proposed a PSO-based hyper-heuristic resource scheduling 

algorithm for job scheduling in Grid environments. The 
PSOHH gave better results than existing hyper-heuristic 
scheduling algorithms as far as cost, time and makespan are 
concerned. A hybrid PSO and BAT algorithm is presented 
in [36]. The hybrid combines the features of both PSO and 
BAT algorithm. Results give faster convergence speed, less 
parameters to tune and easy searching in large spaces. An 
improved version of Ant Colony Optimization algorithm is 
presented in [37]. This work considers SLA violation, 
energy consumption and load balancing. Ch. Srinivasa [38] 
proposed a fuzzy differential evolution for scheduling on 
computational grids. The performance of fuzzy DE was 
compared with other existing evolutionary algorithms. 
Experimental results show that the proposed algorithm 
produced more optimal solutions compared to other 
algorithms. Rajni [39] proposed a novel bacterial foraging 
based hyper heuristic scheduling algorithm for scheduling 
resources in grid environment. The simulation results give 
better makespan and minimized cost. Susmita et al. [40] 
present a resource broker architecture for GA in 
computational grids. There are multiple users that submit the 
jobs and multiple providers that are selected by the broker. 
As a result, the total completion time (TCT) is minimized. 
Jinn-Tsong et al. [41] proposed an improved differential 
evolution algorithm (IDEA) for task scheduling and 
resource allocation in cloud computing environment. The 
proposed algorithm integrates the Taguchi method and 
Differential Evolution Algorithm. Results give smaller 
makespan and cost. Dasgupta et al. [42] focussed on load 
balancing using genetic algorithm while scheduling tasks in 
cloud. 

TABLE IV.  Comparison of  Algorithms Based on Independent Jobs 
 
Ref  No. Technique  Year        MO/SO Environment Remarks 

[34]       Ant Colony Opt. 2015 SO(Makespan)   Cloud Task scheduling based on ACO is compared with FCFS 
and RR with main goal being makespan minimisation. 

[35]     Particle Swarm Opt. 2015 MO(Makespan, Cost 
Reduction of Job 
Execution) 

    Grid PSO based hyper heuristic is compared with existing 
common heuristic scheduling algorithms. 

[36]    Particle Swarm Opt. and  BAT 
Algorithm 

2015 MO(Convergence 
Speed, Energy 
Conservation) 

  Cloud Hybrid of PSO-MOBA; M/M/m queuing model for 
managing queues of job and average execution time. 

[37]       Ant Colony Opt. 2014 MO(Load Balancing, 
SLA Violation, 
Energy Consumption) 

  Cloud SALB for load balancing by finding overloaded nodes in 
minimum time. 

[38] Fuzzy Differential   Evolution 2014 SO(Makespan)    Grid Fuzzy based DE algorithm compared with GA, SA, DE 
and fuzzy PSO. 

[39] Bacterial Foraging 
Optimization Algorithm 

2013 MO(Cost of the 
executing job, 
Makespan) 

   Grid Hyper heuristic BFO; performance is analysed by 
varying both number of jobs and resources. 

[40] Genetic Algorithm 2013 SO(Total Completion 
Time of all jobs) 

   Grid GA based resource broker with multiple users and 
resource providers. 

  [41] Differential Evolution 2013 MO(Resource Renting 
Cost, Makespan) 

  Cloud Taguchi Method and DE combined to propose Improved 
Differential Evolution Algorithm (IDEA) for finding 
potential offsprings. 

 [42]     Genetic  Algorithm 2013 MO(Load Balancing, 
Makespan) 

  Cloud Basic GA. 

 [43]  Artificial Bee Colony  
Algorithm 

2013 MO(Makespan, 
Convergence Speed) 

   Grid Binary ABC, BABC, is proposed for binary integer job 
scheduling problems; further an extension of BABC is 
also proposed. 

     [44]  Genetic Algorithm and 
Variable Neighbouhood Search 

2012 MO(Execution Cost, 
Makespan) 

   Grid GA is main algorithm, VNS is for improving individuals 
in population. 
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The  algorithm is compared with FCFS, RR and SHC and 
results show that the proposed algorithm shows a decrease 
in response time. Kim et al. [43] proposed a Binary 
Artificial Bee Colony (BABC) algorithm for binary integer 
job scheduling in grid environment. Further an extension to 
BABC is proposed that makes use of a flexible ranking 
strategy (FRS) to generate and use solutions. Sara et al. [44] 
proposed a hybrid genetic algorithm and variable 
neighbourhood search as a hope of reducing the oevrall 
execution cost without much increase in makespan. 
Experiments show that the hybrid performs well in case of 
execution cost. In the worst case, increase in makespan was 
less than 17% which is tolerable.  

VI.   BAG-OF-TASKS 

Bag-of-Tasks constitute of many independent tasks that 
can be excuted in parallel. BoT find their use in many field 
like image processing data mining etc. In these fields, 
applications consist of several steps instead of a single step. 
These steps could be sequential, parallel or hybrid of both. 
Each step processes a BoT [45]. The tasks of BoT 
applications are independent of each other and may have 
different computational requirements. They also do not need 
to communicate with each other during execution [46]. BoT 

execution usually requires costly investments in 
infrastructure, the reason being high consumption of 
resources and parallel nature of BoTs [49].  
    Zhicheng et al. [45] focus on fulfilling the workflow 
deadline by using a dynamic cloud resource provisioning 
and scheduling algorithm. The VMs are rented dynamically 
and main motive is to minimize the resource renting cost. 
George and Helen [46] proposed power-aware scheduling 
policies by extending the Min-Min and Max-Min policies 
for homogeneous clusters. They proposed two types of  
policies namely greedy and conservative. The greedy 
policies achieved upto 20.6% energy consumption which 
was more than conservative policies. The execution of BoTs 
and high-priority tasks wasn’t greatly affected. Ioannis [47] 
worked towards scheduling of bag-of-tasks applications in 
heterogeneous cloud with the use of metaheuristic 
techniques. Two algorithms, Simulated Annealing and Tabu 
search have  been applied . Simulation results for both the 
algorithms show that there were  benefits in both cost and 
performance. Javier [48] proposed a decentralised model for 
scheduling policy whose sole objective is fairness. 
Simulation results prove this policy to be scalable and 
effective. The proposed policy performed only 11% worse 
than centralised implementations. A new cloud BoT

 
TABLE V. Comparison of Bag-of-Tasks Based Algorithms 

 
Ref No. Technique    Year MO/SO Environment Remarks 

   [45] Delay-based 
Dynamic 
Scheduling 

2017   MO(Resource Renting 
Cost, Meeting 
Workflow Deadline) 

Cloud Using ElasticSim and VM’s are rented dynamically. 

   [46] Power Aware 
Scheduling 

2016 MO(Energy 
Conservation, 
Minimising Finishing 
Time) 

Heterogeneous Cluster Min-Min and Max-Min scheduling policies are extended & 
proposing power aware centralised scheduling policies. 

[47] Tabu Search & 
Simulated 
Annealing 

2015 MO(Makespan, 
Utilisation,Total Trace 
Cost, Cost 
Performance 
Efficiency) 

Cloud Multiple job arrival levels are supported. 

 [48] Fair Share 
Policy 

2015 MO(Scalability, 
Maximum Stretch) 

Large-scale 
Platform 

Tries to provide same share to each application; amount of 
computation required by each user is considered. 

 [49] Multiagent 
Systems 

2015 MO(Chargeable 
Allocation Time, 
Concurrent 
executions) 

Cloud Consumers can reduce costs by adopting CNP; using CloudAgents 
can execute BoTs in concurrent manner. 

 [50] Automatic 
Tuning 

2015 MO(Overhead, 
Speedup) 

Aplug The automatic tuning framework adapts degree of parallelism; 
enables users to utilise CPU resources efficiently. 

 [51] Simulated 
Annealing 

2015 MO(Makespan, 
Normalised Schedule 
Length , Total Trace 
Cost) 

Cloud Two SA algorithms’ performance is evaluated taking virtual 
machines’ heterogeneity into account. 

   [52] Energy 
Efficient 
Scheduling 

2014 SO(Energy 
Conservation) 

Cloud Intelligent scheduling combined with Dynamic Voltage & 
Frequency Scaling (DVFS). 

   [53] Genetic 
Algorithm 

2012 MO(Budget 
Constraint, Deadline 
Constraint) 

Cloud GA for selecting sub-optimal sets of resources. 

   [54] Rescheduling 2012 MO(Response Time, 
Slowdown Reduction) 

Multi-provider Handling inaccurate run-time estimates. 

   [55] Scheduling and 
Task 
Partitioning 

2011 SO(Scalability) Heterogeneous 
Platforms 

Multi-node systems.  
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execution tool, CloudAgent is proposed in [49] which can 
handle concurrent BoT executions and bear low execution 
costs. Majed [50] proposed a framework for automatic 
tuning named APlug that collects sample execution times 
and builds a model. Experiments were run on 16,384 CPUs, 
480 cores on Linux cluster and 80 cores on Amazon EC2. 
The results showed that APlug is very accurate with 
minimal overhead. Ioannis [51] evaluated the use of 
simulated annealing and thermodynamic simulated 
annealing for scheduling in multi-cloud system along with 
virtual machines. The heuristics consider multiple objectives 
while scheduling and try to optimize both cost and 
performance. Calheiros and Buyya [52] target the issue of 
enery-efficient execution of urgent , CPU-intensive Bag-of-
Tasks applications. A cloud-aware scheduling algorithm was 
proposed that applies DVFS for enabling deadlines and thus 
reducing energy consumption. J. Octavio and Kwang [53] 
proposed a genetic algorithm for both budget and deadline 
constrained execution of BoT applications. Marco [54] in 
this work handle inaccurate run-time estimates by proposing 
a coordinated rescheduling algorithm. Experiments were 
performed using Grid’5000. The results showed 5% 
reduction in response time and 10%  for slowdown metrics. 
Silva [55] studied the scalability of BoT applications 
running on multi-node systems. Table V. includes the 
comparison of various Bag-of-Tasks based algorithms. 
 

VII. CONCLUSION 

This paper gives a wide review of different types of 
metaheuristic techniques which are used by researcher to 
obtain near optimal solutions of four different types of jobs 
namely BSP, Workflow and DAG, Independent tasks and 
Bag-of-Tasks. The various issues and problems found in the 
individual metaheuristics can be overcome by using the 
hybridization of two or more metaheuristic techniques. In 
this paper, an attempt has been made to provide the review 
and comparison of different metaheuristic algorithms which 
are used to schedule individual type of jobs. 
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