
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

948© 2015-19, IJARCS All Rights Reserved 948

ISSN No. 0976-5697

Comparative Analysis of Job Scheduling Algorithms in Parallel and Distributed
Computing Environments

Navjot Kaur

Computer Engineering and Technology Department
Guru Nanak Dev University

Amritsar, India

Amit Chhabra
Computer Engineering and Technology Department

Guru Nanak Dev University
Amritsar, India

Abstract: Due to an unprecedented increase in the number of computing resources in different organizations, effective job scheduling algorithms
are required for efficient resource utilization. Job scheduling in considered as NP hard problem in parallel and distributed computing
environments such as cluster, grid and clouds. Metaheuristics such as Genetic Algorithms, Ant Colony Optimization, Artificial Bee Colony,
Cuckoo Search, Firefly Algorithm, Bat Algorithm etc. are used by researchers to get near optimal solutions to job scheduling problems. These
metaheuristic algorithms are used to schedule different types of jobs such as BSP, Workflow and DAG, Independent tasks and Bag-of-Tasks.
This paper is an attempt to provide comprehensive review of popular nature-inspired metaheuristic techniques which are used to schedule
different categories of jobs to achieve certain performance objectives.

Keywords: scheduling, metaheuristics, multi-criteria, metrics, BSP, workflow, independent tasks, bag-of-tasks

I. INTRODUCTION

Various researchers have shown a keen interest in
scheduling strategies due to exponential increase in number
of resources in different organizations. Scheduling allows
optimal resource allocation among various tasks in a finite
time resulting in quality service [1]. Scheduling and
resource allocation are considered as NP hard problems.
Population based metaheuristics are found to be effective for
finding optimal or near optimal solutions. In this paper,
various types metaheuristic techniques are discussed and
various objective functions that researchers have worked on,
using these techniques in different types of environments are
discussed.

A. Scheduling
The method by which specified work is assigned to the

resource by some means, to complete a particular task is
called scheduling. Schedulers keep the resources busy by
allowing multiple users to share the systems resources in an
effective manner. It is due to scheduling that computers are
able to multi-task within a single CPU. Distributed
computing has grabbed much attention in the recent years as
it is reliable, highly scalable and has low cost [1]. The
complexity of scheduling increases due to heterogeneity of
the processing and communication resources, which leads to
NP-Hard problems. For such problems, there aren’t any
algorithms that may produce optimal solutions. This brings
us to metaheuristic algorithms that offer near optimal
solutions within reasonable time. There are various types of
metaheuristic algorithms namely Ant Colony Optimization
(ACO), Firefly Algorithm, Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), Cuckoo Search, Simulated
Annealing etc.

B. Metaheuristics
A metaheuristic is a procedure that helps to find or

generate an algorithm that may help to generate optimal
solutions. Metaheuristics are of various types based on
search strategy, single solution based, nature inspired etc.
Further are discussed various metaheuristic algorithms:

1) Genetic Algorithm: It is an optimization method
based on population and is based on Darwin’s theory of
evolution [2]. In GA, each possible solution is represented
by a chromosome. An initial population is taken randomly
and it is used as a starting point. A fitness function is
calculated for each chromosome so that it is known whether
the chromosome is suitable or not. Crossover and mutation
functions are performed on the selected chromosmes and
offsprings for new population are created. This process is
repeated until enough offsprings are created [3]. The basic
steps for genetic algorithm are :

• Intialisation
• Selection
• Crossover
• Mutation

Figure 1. Pseudo code for GA

2) Ant Colony Optimization: In ACO, a number of

artificial ants help in building solution for optimization
problems and via a communication scheme, they exchange
the information. They find the shortest paths as the moving
ants lay pheromone on the ground, so that when another ant
encounters it, it can detect it and decide to follow the trail.
As a result, the emerged collective behavior is an indication
that if a number of ants choose a particular path, then the
probability of other ants following the same path increases
[4]. The main idea of ACO is to model a problem as the
search of minimum cost path in a graph [5].

1. Pick an initial arbitrary population of individuals
2. Evaluate the fitness function of the individuals
3. repeat
4. The best individuals should be selected
5. Generate new individuals by applying crossover and

mutation operators
6. The fitness function for new individuals should be

examined
7. The worst individuals are replaced with the best

ones
8. until a stopping criteria is met

Navjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 948-956

949© 2015-19, IJARCS All Rights Reserved 949

Figure 2. Pseudo code for ACO

3) Artificial Bee Colony Algorithm: This is a popular
approach for optimization that simulates the intelligent
foraging nature of honeybees. İn this algorithm, there are
three types of bees. The first ones being the employed bees.
They search for food around the food source and also they
share this information about the food source with the
onlooker bees. They filter out the good food sources
amongst those found by the employed bees. The high
quality (fitness) food source is more likely to be selected.
The employed bees which abandon the food source and
search new ones are called scout bees [6].

Figure 3. Pseudo code for ABC

4) Firefly Algorithm: It is inspired from the flashing
behavior of tropical fireflies. It has the following important
features:

• The fireflies are attracted to each other irrespective
of their gender.

• A firefly’s attractiveness increases with its flash’s
brightness and attractiveness and brightness
decrease with increase in distance.

• The illumination or brightness of a firefly is
afflicted by the landscape of objective function[7].

Figure 4. Pseudo code for firefly algorithm

5) Cuckoo Search Algorithm: It is inspired by brood
parasitism of some cuckooo species. They lay eggs in the
nests of ther birds of different species. Below are the three
basic rules for this algorithm:

• One egg is laid at a given time and dumped in a
randomly selected nest.

• Only the nest having the higher quality eggs are
moved to the next generation.

• The number of host nests is fixed and probability of
discovering the egg laid by the cuckoo by the host
bird is pa. The host can possibly discard the egg or it
can abandon the nest and build a fresh one [7].

Figure 5. Pseudo code for cuckoo search

6) Particle Swarm Optimization Algorithm: The idea of

PSO emerged from the swarming behavior of flock of birds,
swarm of bees, schools of fish etc. İt is applied to solve
different function optimization problems. İn PSO, the
solutions are named particles that travel in the problem
space. They follow the present optimum particles. The co-
ordinates of each particle in the problem space are tracked
by the particle. They are associated with the best solution
achieved up to now and the value is known as pbest.
Another best value, lbest, is the best value attained by any
particle in the neighbourhood of the particle. Global best
value, gbest, is obtained when a particle takes all the
population as its neighbours [8].

Figure 6. Pseudo code for PSO

1. Define objective function f(a), where a = (a1,...... ad)
2. Produce an underlying population of fireflies
3. Formulate the light intensity L
4. Specify the absorption coefficient β
5. While (t< Max_Gen)
6. For i=1 to n (all n fireflies)
7. For j=1 to n (all n fireflies)
8. If (Lj > Li), move firefly i towards firefly j
9. End if
10. Examine new solutions and update light

intensity;
11. End for j
12. End for i
13. Rank the fireflies and find the current best
14. End while

1. Begin
2. Initialise pheromone trails;
3. Produce an underlying population of a

solutions(ants);
4. For every ant f ϵ a: calculate fitness function (f);
5. Determine the best position for each ant;
6. Determine the best global ant;
7. Update the pheromone ;
8. Determine if termination= true;

1. Initialise a random population
2. Evaluate its fitness function
3. While (stopping criterion is not met)
4. Pick sites for neighbourhood search
5. The bees for picked sites should be examined and

fitness function is calculated
6. From each patch, the fittest bee should be selected.
7. Remaining bees are assigned to search randomly and

evaluate their fitness
8. End while

1. begin
2. Define objective function f(o)
3. Formulate the initial population of h host nest
4. Eggs should be ranked after assessing the fitness
5. while (z>MaxGeneration) or stopping criteria is met
6. z= z+1
7. Get a cuckoo arbitrarily or produce new solution by

Levy flights
8. Assess fitness, Fi
9. Choose a nest j, randomly
10. if (Fi > Fj)
11. Replace j with the new solution
12. end if
13. Abandon the worst net with probabilty Pa and a new

nest is then built
14. Assess fitness, rank the solutions and find the

current best
15. end while

 16: end

1. For each particle
2. Initialise particle
3. End for
4. Do
5. For each particle
6. Evaluate the value of fitness
7. if the fitness value is better than the

best value
8. set current value as pbest
9. End
10. select the particle with best fitness value as

gbest
11. For each particle
12. evaluate particle velocity
13. update particle position
14. End
15. while maximum iterations or minimum error

condition is not achieved.

Navjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 948-956

950© 2015-19, IJARCS All Rights Reserved 950

7) Simulated Annealing: This technique is inspired from
annealing in metallurgy. İt involves heating and then slow
cooling of a material. This is used to remove/reduce the
defects in a crystal. To accomplish this, the material is
annealed i.e. it is heated to a specific temperature and then
cooled slowly until the material freezes into the form of a
good crystal [9]. The slow cooling implies to slow decrease
in probablility of accepting worse solutions. İf the cooling is
slow, it means that there is a higher chance of finding
optimal or near-optimal solutions [10].

Figure 7. Pseudo code for simulated annealing

The following table consists of the comparison of
different nature-inspired metaheuristic algorithms. They are
compared on the basis of their merits and demerits.

Table I. A Comparison Of Various Nature-Inspired Metaheuristic
Algorithms.

Sr.
No.

Technique Pros Cons

1. Genetic
 Algorithm

Finds near optimal
solution,
Avoids being trapped
in local optimal
solutions.

No guarantee of finding
global maxima,
Convergence time is
more.

2. Ant Colony Opt.
Algorithm

Inherent parallelism,
Can be used in
dynamic application.

Time to convergence is
uncertain.

3. Artificial Bee
Colony
Algorithm

High Performance,
Fewer control
parameters, Easily
modified and
hybridized with other
metaheuristic
algorithms.

Risk of losing relevant
information.
Population of solution
increases the
computational cost.

4. Firefly Algorithm All advantages of
swarm based
algorithms, Precise
and robust.

Trapped in local
minima, Slow
convergence.

5. Cuckoo Search Global convergence,
Global optimality.

Doesn’t incorporate any
type of local search to
increase the
convergence speed,
Performance highly
dependent on α i.e. step
size.

6. Particle Swarm
Opt. Algorithm

Fast search speed,
Calculation is simple.

Tendency of premature
convergence,
Suffers from partial
optimism.

7. Simulated
Annealing

Can deal with
arbitrary systems and
cost functions, Gives
a “good” solution.

Few local minima,
Slow.

C. Multi-criteria
Multi-criteria or multi-objective optimization is a type of

decision making criteria. In this, two or more than two
objective functions are optimized simultaneously. It comes
in use when optimal decisions are required to be taken in
presence of trade-offs between two or more contradictory
functions. In mathematical terms, it can be written as:

min(g1(x), g2(x),……ga(x))
s.t. x ϵ X

where the integer a ≥ 2 and a is the number of objectives
and X is the set of feasible decision vectors. This value of a
indicates that minimum 2 objectives are required.

In this work, various types of jobs, parallel or non-
parallel are studied and based on those, tables have been
constructed. Main focus is on the objectives, type of job and
environment. Mainly four types of jobs have been studied,
namely: Bulk Synchronous Parallel (BSP), DAG &
Workflow, Independent Jobs and Bag-of-Tasks.

II. PERFORMANCE METRICS

Before going further, below are some performance
metrics that are desired by different types of users and
providers:

A. Makespan: Makespan refers to the total length of

the schedule i.e. the finishing time of the last task.
İt is the most popular optimization criterion and
indicates the productivity of a system. Lesser the
value of makespan, more efficient is the scheduler
[11].

 Makespan= Maxkϵtasks (Tk), where Tk is the
finishing time of task k.

B. Flowtime: The sum of finalisation times of all
tasks is called flowtime.
 Flowtime= ∑kϵtasks (Tk), where Tk is the finishing
time of task k.

C. Convergence Speed: The speed at which an
iterative sequence converges to a point where it
reaches an optimal or near optimal solution is
called the speed of convergence.

D. Response Time: Sum of waiting time and
execution time is called the response time.

E. Throughput: The number of jobs that complete
their execution per unit time is termed as
throughput. İn other words, it is the amount of work
done by a system in given time.

F. Speedup: It is a process of increasing the
performance of a system. When there is any
enhancement in the resources, speedup shows the
effect on the performance of a system.

G. Scalability: Generally, speedup declines when
number of processors increase and size of problem
is fixed. Scalabilty refers to the change in
performance of a parallel system as the size of
problem and computer size increase [11].

H. Fairness: Fairness means that every job should get
equal share of CPU time and no job should face
starvation.

I. Energy Consumption: It is the amount of power or
energy used by a system. It is preferable that a
system uses less energy because it is more
economical.

J. Budget Constraint: It represents the total cost
restriction for executing all jobs.

1. S0 = GenerateSolution()
2. Temp = START_TEMP
3. K = 0 // iteration count
4. while
5. S1 = Neighbour (S0)
6. if (Fitness (S1) < Fitness (S0))
7. S0 = S1
8. else if (rand() < tempFunc (S0, S1, Temp, K))
9. S0 = S1
10. end if
11. AnnealingSchedule (S0, Temp, K)
12. K = K+1
13. end while

Navjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 948-956

951© 2015-19, IJARCS All Rights Reserved 951

III. BULK SYNCHRONOUS PARALLEL (BSP) MODEL BASED
JOBS

A Bulk Synchronous Parallel (BSP) computer comprises
of a collection of processors. Each processor has its own
memory i.e. it is a distributed-memory computer. It has
mainly three components: processor/memory pair,

communication network and synchronisation barrier [12].
This model is used for parallel jobs. The jobs in BSP
comprise of a fixed number of tasks which have almost
identical requirements and each task constitutes various
iterations. Below is the table for comparison of BSP based
jobs in different environments.

TABLE II. Comparison of Various BSP Based Algorithms

Ref. No. Technique Year MO*/SO** Environment Remarks

[12] MaMR 2017 MO(Speedup,
Scalability)

Cloud MaMR model supports map & reduce function;
new merge phase is added to MapReduce.

[13] MigPF (Migration Model) 2016 SO(Load
Balancing)

Heterogeneous
Environment

MigBSP is redesigned to propose MigPF.

[14] Genetic Algorithm 2016 MO(Energy
Consumption,
Makespan,
Convergence
Speed)

Heterogeneous
Environment

Multi-objective genetic algorithm based on
weighted blacklist.

[15] Multi-memory BSP (MBSP) 2015 MO(Cost,
Communication
Time, Memory
Access Time)

Parallel
Computing

An extension to BSP model, MBSP is proposed.

[16] Genetic Algorithm 2015 MO(Makespan,
Flowtime)

Multi-cluster GA based scheduling metaheuristic for large
scale multi-cluster environments; applying co-
allocation.

[17] BSP-based Model 2015 MO(Execution
Time, Solution
Accuracy)

GPU Simple BSP model for performance prediction.

[18] Genetic Algorithm 2014 MO(Solution
Accuracy,
Execution Time)

Hadoop Improving population diversity in GA using
migration technique.

[19] Parallel Processing of Graphs 2014 MO(Computation
Time, Scalability)

Cloud Comparison of MR (MapReduce), MR2
(extension of MR) & BSP.

[20] Distributed-memory and Shared-
memory Model

 2013 MO(Speedup,
Scalability,
Performance
Prediction)

Cloud Proposing BSPCloud- hybrid of distributed
memory and shared memoryodel.

[21] Parallel GPU Model 2012 SO(Degree of
Optimality)

GPU Parallel GPU model for GPU algorithm
development.

*multi-objective **single-objective

Figure 8. BSP model

Weipeng and Danyu [12] presented a new programming

model named MaMR for cloud applications. It supports
multiple map and reduce functions that run in parallel. It
makes use of a hybrid shared-memory BSP model. The
simulation results show that the presented model shows
effective improvement in performance compared to the
previous work. Rodrigo et al. [13] proposed a migration
model, MigPF, for BSP programs in heterogeneous
environments. A prototype was developed with the AMPI

library and was tested against other built-in AMPI
rescheduling policies. Experimental results showed 41%
performance gain and the overhead limited to 5%.
Gabaldon et al. [14] presented a multi-objective Genetic
Algorithm that is based on a weighted blacklist. The authors
have worked on reducing makespan and also towards energy
conservation. An extension to the BSP model called MBSP,
for multi-memory BSP, in the presence of multiple
heirarchies and cores was proposed in [15]. Gabaldon [16]
worked towards the scheduling in multi-cluster
environments using a metaheuristic technique i.e. Genetic
Algorithm. The multi-objective function optimises
makespan as well as the flowtime. Marcos et al. [17]
proposed a simple BSP-based model for predicting
execution times for CUDA applications on GPUs . The
model predictions were 0.8 to 1.2 times the measured
execution times which shows that the model is good enough
for generalising predictions for different problem sizes and
GPU configurations. The population diversity in Genetic
Algorithm is improved in [18]. The main focus is on
migration. Three techniques for parallelisation were used
which were : MapReduce, BSP and MPI. The proposed
method was compared with existing methods and results
showed improvement in solution accuracy. Three
approaches for graph processing namely MapReduce, BSP

Communication
Network

P

M

P

M

P

M

P

M

Navjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 948-956

952© 2015-19, IJARCS All Rights Reserved 952

and MR2 were compared by Tomasz [19]. The experiments
were conducted on four large graph datasets. Xiaodong and
Weikin [20] proposed an integration of distributed-memory
and shared-memory BSP model named BSPCloud. The
BSPCloud can make full utilisation of multi-core clusters.
The performance predictability and speedup were evaluated.
J. Steven and Ovidiu [21] presented a parallel GPU model
which helps the parallel GPU algorithm designers to design
and implement optimal algorithms. Results show that
algorithms designed based on the model’s principles give
significant increase in performance.

IV. WORKFLOW AND DAG BASED JOBS

Workflow scheduling can be called as a general form of
task scheduling. Here, the applications are modelled as
Directed Acyclic Graphs (DAG). DAG is a popular
representation of workflow applications. Workflow
scheduling can broadly be classified into two categories:

A. Static Workflow Scheduling: Static scheduling can
search from the solution space globally at workflow
level. But its limitation is that it assumes that
accurate task communication and execution time
could be obtained before scheduling which can not
necessarily always be true [22].

B. Dynamic Workflow Scheduling: It is helpful when
scheduling information is unavailable or when there
is resource contention with other system’s load [23].

 Cuicui et al. [24] proposed a new bacterial foraging
optimization algorithm, named BFO-CC. It is a very
competitive algorithm that measures basis-vector, non-
uniform step-size and conjugation strategies. Simulation
results show an improvement in convergence, solution
quality and computational efficiency. Neetesh and Deo [25]
proposed a hybrid PSO-GA metaheuristic for DAG
scheduling. İts main aim is to improve the solution obtained
by PSO using GA. The hybrid is tested for two linear
algebra problems namely LU decomposition and Gauss-
Jordan elimination. Dzmitry et al. [26] address the
performance issues of resource allocation in cloud. A
communication-aware model called CA-DAG is proposed
for making separate resource allocation decisions. Fengyu et
al. [27] present a workflow task scheduling algorithm based
on fuzzy clustering of resources called FCBWTS.
Comparisons show that the algorithm is better than HEFT
and DLS algorithms both in makespan as well as time
consumed. A new evolutionary algorithm named CSA based
on Cuckoo Search is proposed in [28]. It is based on Levy
flight behavior and obilgate blood behavior of some cuckoo
species. The results of experimental evaluation show that
when Pa value is less, speed and coverage of the algorithm
become very high. Yuming et al. [29] developed an
improved Chemical Reaction Optimization (CRO) called
HCRO (hybrid CRO).

TABLE III. Comparison of DAG and Workflow Based Jobs

Ref. No. Technique Year MO/SO Type of
Parallel Job

 Environment Remarks

 [24] Bacterial
Foraging
Optimization
Algorithm

 2016 MO(Solution Quality,
Computational
Efficiency)

Workflow Parallel
Computing

 A new designed chemotaxis and conjugation strategy
for BFO named BFO-CC.

 [25] Particle Swarm
Opt. & Genetic
Algorithm

2016 MO(Solution Quality,
Scalability,
Makespan)

DAG Multiprocessor
System

Hybrid of GA and PSO for scheduling DAG.

 [26] Communication
Aware Modeling

2016 MO(Approximation
Factor, Efficiency of
Produced Schedule)

DAG Cloud CA-DAG allows making separate resource allocation
decisions.

 [27] Workflow Task
Scheduling

2015 MO(Makespan,
Speedup)

DAG Cloud FCBWTS algorithm to minimise makespan and
comparing it with HEFT and DLS algorithms.

 [28] Cuckoo Search 2015 MO(Fitness Fucntion,
Flowtime, Speed
&Coverage of
algorithm)

Workflow Cloud Simple cuckoo search.

 [29] Chemical
Reaction
Optimisation

2014 MO(Makespan, Speed
of Convergence)

DAG Heterogeneous
Computing
Systems

Hybrid chemical reaction optimisation (HCRO) is
proposed along with a new selection strategy.

 [30] Firefly Algorithm 2014 MO(CPU Utility
Rate, Memory Usage
Rate, Load Balancing)

Workflow Cloud Load balancing by dealing with a set of requests &
servers; servers are hence assocciated with nodes and
each node has some attributes.

 [31] Particle Swarm
Opt & Genetic
Algorithm

2013 MO(Makespan,
Flowtime)

DAG Heterogeneous
Distributed
Systems

 PSO–based GA; solutions initialised using some
effective list scheduling strategy, evolved using
crossover and mutation operator; PSO used for
guiding the search effectively.

 [32] Ant Colony
Optimization,
Cuckoo Search

2012 SO(Makespan) Workflow Parallel
Computing

 Hybrid proposed by combining the merits of ACO
and Cuckoo Search.

 [33] Energy Aware
Genetic
Algorithm

2011 MO(Makespan,
Energy Consumption)

DAG Cloud Bi-objective GA based on Dynamic Voltage Scaling
(DVS).

Navjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 948-956

953© 2015-19, IJARCS All Rights Reserved 953

Simulations show that the presented algorithm is better than
existing algorithms at scheduling DAG tasks and gives
lesser makespan and better speed of convergence. A. Paulin
[30] focussed on load balancing using firefly algorithm in
cloud computing environments. The simulation gave
expected results thus proving the proposed approach to be
PSO-based hybrid with GA for task scheduling in DAGs is
presented in [31]. Babukartik and Dhavachelvan [32]
proposed a hybrid by combining the merits of ACO and
Cuckoo search. The simulation results show that with the
increase in number of tasks, task creation time and results
retrieval is also increased. Mezmaz et al. [33] explored the
problem of scheduling precedence-constrained parallel
applications. A parallel bi-objective genetic algorithm was
proposed that considers both makespan and energy
consumption. A comparison of DAG and workflow based
jobs is shown in Table III.

V. INDEPENDENT JOBS

 Independent jobs are those in which the tasks do not
directly communicate with each other. All tasks perform
same or similar function and it is not necessary for them to
run simultaneously.
 Medhat et al. [34] compared a cloud task scheduling
algorithm based on Ant Colony Optimization (ACO) with
FCFS and RR scheduling algorithm. The main motive is to
minimize the makespan. The simulation in CloudSim
showed that the ACO based cloud task scheduling performs
better than FCFS and RR algorithms. Rajni et al. [35]
proposed a PSO-based hyper-heuristic resource scheduling

algorithm for job scheduling in Grid environments. The
PSOHH gave better results than existing hyper-heuristic
scheduling algorithms as far as cost, time and makespan are
concerned. A hybrid PSO and BAT algorithm is presented
in [36]. The hybrid combines the features of both PSO and
BAT algorithm. Results give faster convergence speed, less
parameters to tune and easy searching in large spaces. An
improved version of Ant Colony Optimization algorithm is
presented in [37]. This work considers SLA violation,
energy consumption and load balancing. Ch. Srinivasa [38]
proposed a fuzzy differential evolution for scheduling on
computational grids. The performance of fuzzy DE was
compared with other existing evolutionary algorithms.
Experimental results show that the proposed algorithm
produced more optimal solutions compared to other
algorithms. Rajni [39] proposed a novel bacterial foraging
based hyper heuristic scheduling algorithm for scheduling
resources in grid environment. The simulation results give
better makespan and minimized cost. Susmita et al. [40]
present a resource broker architecture for GA in
computational grids. There are multiple users that submit the
jobs and multiple providers that are selected by the broker.
As a result, the total completion time (TCT) is minimized.
Jinn-Tsong et al. [41] proposed an improved differential
evolution algorithm (IDEA) for task scheduling and
resource allocation in cloud computing environment. The
proposed algorithm integrates the Taguchi method and
Differential Evolution Algorithm. Results give smaller
makespan and cost. Dasgupta et al. [42] focussed on load
balancing using genetic algorithm while scheduling tasks in
cloud.

TABLE IV. Comparison of Algorithms Based on Independent Jobs

Ref No. Technique Year MO/SO Environment Remarks

[34] Ant Colony Opt. 2015 SO(Makespan) Cloud Task scheduling based on ACO is compared with FCFS
and RR with main goal being makespan minimisation.

[35] Particle Swarm Opt. 2015 MO(Makespan, Cost
Reduction of Job
Execution)

 Grid PSO based hyper heuristic is compared with existing
common heuristic scheduling algorithms.

[36] Particle Swarm Opt. and BAT
Algorithm

2015 MO(Convergence
Speed, Energy
Conservation)

 Cloud Hybrid of PSO-MOBA; M/M/m queuing model for
managing queues of job and average execution time.

[37] Ant Colony Opt. 2014 MO(Load Balancing,
SLA Violation,
Energy Consumption)

 Cloud SALB for load balancing by finding overloaded nodes in
minimum time.

[38] Fuzzy Differential Evolution 2014 SO(Makespan) Grid Fuzzy based DE algorithm compared with GA, SA, DE
and fuzzy PSO.

[39] Bacterial Foraging
Optimization Algorithm

2013 MO(Cost of the
executing job,
Makespan)

 Grid Hyper heuristic BFO; performance is analysed by
varying both number of jobs and resources.

[40] Genetic Algorithm 2013 SO(Total Completion
Time of all jobs)

 Grid GA based resource broker with multiple users and
resource providers.

 [41] Differential Evolution 2013 MO(Resource Renting
Cost, Makespan)

 Cloud Taguchi Method and DE combined to propose Improved
Differential Evolution Algorithm (IDEA) for finding
potential offsprings.

 [42] Genetic Algorithm 2013 MO(Load Balancing,
Makespan)

 Cloud Basic GA.

 [43] Artificial Bee Colony
Algorithm

2013 MO(Makespan,
Convergence Speed)

 Grid Binary ABC, BABC, is proposed for binary integer job
scheduling problems; further an extension of BABC is
also proposed.

 [44] Genetic Algorithm and
Variable Neighbouhood Search

2012 MO(Execution Cost,
Makespan)

 Grid GA is main algorithm, VNS is for improving individuals
in population.

Navjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 948-956

954© 2015-19, IJARCS All Rights Reserved 954

The algorithm is compared with FCFS, RR and SHC and
results show that the proposed algorithm shows a decrease
in response time. Kim et al. [43] proposed a Binary
Artificial Bee Colony (BABC) algorithm for binary integer
job scheduling in grid environment. Further an extension to
BABC is proposed that makes use of a flexible ranking
strategy (FRS) to generate and use solutions. Sara et al. [44]
proposed a hybrid genetic algorithm and variable
neighbourhood search as a hope of reducing the oevrall
execution cost without much increase in makespan.
Experiments show that the hybrid performs well in case of
execution cost. In the worst case, increase in makespan was
less than 17% which is tolerable.

VI. BAG-OF-TASKS

Bag-of-Tasks constitute of many independent tasks that
can be excuted in parallel. BoT find their use in many field
like image processing data mining etc. In these fields,
applications consist of several steps instead of a single step.
These steps could be sequential, parallel or hybrid of both.
Each step processes a BoT [45]. The tasks of BoT
applications are independent of each other and may have
different computational requirements. They also do not need
to communicate with each other during execution [46]. BoT

execution usually requires costly investments in
infrastructure, the reason being high consumption of
resources and parallel nature of BoTs [49].
 Zhicheng et al. [45] focus on fulfilling the workflow
deadline by using a dynamic cloud resource provisioning
and scheduling algorithm. The VMs are rented dynamically
and main motive is to minimize the resource renting cost.
George and Helen [46] proposed power-aware scheduling
policies by extending the Min-Min and Max-Min policies
for homogeneous clusters. They proposed two types of
policies namely greedy and conservative. The greedy
policies achieved upto 20.6% energy consumption which
was more than conservative policies. The execution of BoTs
and high-priority tasks wasn’t greatly affected. Ioannis [47]
worked towards scheduling of bag-of-tasks applications in
heterogeneous cloud with the use of metaheuristic
techniques. Two algorithms, Simulated Annealing and Tabu
search have been applied . Simulation results for both the
algorithms show that there were benefits in both cost and
performance. Javier [48] proposed a decentralised model for
scheduling policy whose sole objective is fairness.
Simulation results prove this policy to be scalable and
effective. The proposed policy performed only 11% worse
than centralised implementations. A new cloud BoT

TABLE V. Comparison of Bag-of-Tasks Based Algorithms

Ref No. Technique Year MO/SO Environment Remarks

 [45] Delay-based
Dynamic
Scheduling

2017 MO(Resource Renting
Cost, Meeting
Workflow Deadline)

Cloud Using ElasticSim and VM’s are rented dynamically.

 [46] Power Aware
Scheduling

2016 MO(Energy
Conservation,
Minimising Finishing
Time)

Heterogeneous Cluster Min-Min and Max-Min scheduling policies are extended &
proposing power aware centralised scheduling policies.

[47] Tabu Search &
Simulated
Annealing

2015 MO(Makespan,
Utilisation,Total Trace
Cost, Cost
Performance
Efficiency)

Cloud Multiple job arrival levels are supported.

 [48] Fair Share
Policy

2015 MO(Scalability,
Maximum Stretch)

Large-scale
Platform

Tries to provide same share to each application; amount of
computation required by each user is considered.

 [49] Multiagent
Systems

2015 MO(Chargeable
Allocation Time,
Concurrent
executions)

Cloud Consumers can reduce costs by adopting CNP; using CloudAgents
can execute BoTs in concurrent manner.

 [50] Automatic
Tuning

2015 MO(Overhead,
Speedup)

Aplug The automatic tuning framework adapts degree of parallelism;
enables users to utilise CPU resources efficiently.

 [51] Simulated
Annealing

2015 MO(Makespan,
Normalised Schedule
Length , Total Trace
Cost)

Cloud Two SA algorithms’ performance is evaluated taking virtual
machines’ heterogeneity into account.

 [52] Energy
Efficient
Scheduling

2014 SO(Energy
Conservation)

Cloud Intelligent scheduling combined with Dynamic Voltage &
Frequency Scaling (DVFS).

 [53] Genetic
Algorithm

2012 MO(Budget
Constraint, Deadline
Constraint)

Cloud GA for selecting sub-optimal sets of resources.

 [54] Rescheduling 2012 MO(Response Time,
Slowdown Reduction)

Multi-provider Handling inaccurate run-time estimates.

 [55] Scheduling and
Task
Partitioning

2011 SO(Scalability) Heterogeneous
Platforms

Multi-node systems.

Navjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 948-956

955© 2015-19, IJARCS All Rights Reserved 955

execution tool, CloudAgent is proposed in [49] which can
handle concurrent BoT executions and bear low execution
costs. Majed [50] proposed a framework for automatic
tuning named APlug that collects sample execution times
and builds a model. Experiments were run on 16,384 CPUs,
480 cores on Linux cluster and 80 cores on Amazon EC2.
The results showed that APlug is very accurate with
minimal overhead. Ioannis [51] evaluated the use of
simulated annealing and thermodynamic simulated
annealing for scheduling in multi-cloud system along with
virtual machines. The heuristics consider multiple objectives
while scheduling and try to optimize both cost and
performance. Calheiros and Buyya [52] target the issue of
enery-efficient execution of urgent , CPU-intensive Bag-of-
Tasks applications. A cloud-aware scheduling algorithm was
proposed that applies DVFS for enabling deadlines and thus
reducing energy consumption. J. Octavio and Kwang [53]
proposed a genetic algorithm for both budget and deadline
constrained execution of BoT applications. Marco [54] in
this work handle inaccurate run-time estimates by proposing
a coordinated rescheduling algorithm. Experiments were
performed using Grid’5000. The results showed 5%
reduction in response time and 10% for slowdown metrics.
Silva [55] studied the scalability of BoT applications
running on multi-node systems. Table V. includes the
comparison of various Bag-of-Tasks based algorithms.

VII. CONCLUSION

This paper gives a wide review of different types of
metaheuristic techniques which are used by researcher to
obtain near optimal solutions of four different types of jobs
namely BSP, Workflow and DAG, Independent tasks and
Bag-of-Tasks. The various issues and problems found in the
individual metaheuristics can be overcome by using the
hybridization of two or more metaheuristic techniques. In
this paper, an attempt has been made to provide the review
and comparison of different metaheuristic algorithms which
are used to schedule individual type of jobs.

VIII. REFERENCES

[1] Kalra, Mala, and Sarbjeet Singh. "A review of metaheuristic
scheduling techniques in cloud computing." Egyptian
informatics journal 16.3 (2015): 275-295.

[2] Roberge, Vincent, Mohammed Tarbouchi, and Gilles Labonté.
"Comparison of parallel genetic algorithm and particle swarm
optimization for real-time UAV path planning." IEEE
Transactions on Industrial Informatics 9.1 (2013): 132-141.

[3] Garg, Richa, and Saurabh Mittal. "Optimization by genetic
algorithm." International Journal of Advanced Research in
Computer Science and Software Engineering 4.4 (2014): 587-
589.

[4] Yaseen, Saad Ghaleb, and Nada MA Al-Slamy. "Ant colony
optimization." IJCSNS 8.6 (2008): 351.

[5] Selvi, V., and Dr R. Umarani. "Comparative analysis of ant
colony and particle swarm optimization
techniques." International Journal of Computer Applications
(0975–8887) 5.4 (2010).

[6] Yunfeng Xu, Ping Fan, and Ling Yuan, “A Simple and
Efficient Artificial Bee Colony Algorithm,” Mathematical
Problems in Engineering, vol. 2013, Article ID 526315, 9
pages, 2013. doi:10.1155/2013/526315

[7] Kaur, Navneet, and Amit Chhabra. "Analytical review of three
latest nature inspired algorithms for scheduling in
clouds." Electrical, Electronics, and Optimization Techniques
(ICEEOT), International Conference on. IEEE, 2016.

[8] Aote, Shailendra S., M. M. Raghuwanshi, and Latesh Malik.
"A brief review on particle swarm optimization: limitations &
future directions." International Journal of Computer Science
Engineering (IJCSE) 14.1 (2013): 196-200..

[9] Rutenbar, Rob A. "Simulated annealing algorithms: An
overview." IEEE Circuits and Devices Magazine 5.1 (1989):
19-26.

[10] Xinchao, Zhao. "Simulated annealing algorithm with adaptive
neighborhood." Applied Soft Computing 11.2 (2011): 1827-
1836.

[11] Xhafa, Fatos, and Ajith Abraham. "Computational models and
heuristic methods for Grid scheduling problems." Future
generation computer systems 26.4 (2010): 608-621.

[12] Jing, Weipeng, et al. "MaMR: High-performance MapReduce
programming model for material cloud
applications." Computer Physics Communications 211 (2017):
79-87.

[13] da Rosa Righi, Rodrigo, et al. "MigPF: Towards on self-
organizing process rescheduling of Bulk-Synchronous Parallel
applications." Future Generation Computer Systems (2016).

[14] Gabaldon, Eloi, et al. "Blacklist muti-objective genetic
algorithm for energy saving in heterogeneous
environments." The Journal of Supercomputing (2016): 1-16.

[15] Gerbessiotis, Alexandros V. "Extending the BSP model for
multi-core and out-of-core computing: MBSP." Parallel
Computing 41 (2015): 90-102.

[16] Gabaldon, E., et al. "Multi-criteria genetic algorithm applied
to scheduling in multi-cluster environments." Journal of
Simulation 9.4 (2015): 287-295.

[17] Amaris, Marcos, et al. "A simple bsp-based model to predict
execution time in gpu applications." High Performance
Computing (HiPC), 2015 IEEE 22nd International
Conference on. IEEE, 2015.

[18] Enomoto, Takuto, and Masaomi Kimura. "Improving
Population Diversity in Parallelization of a Real-Coded
Genetic Algorithm Using MapReduce."

[19] Kajdanowicz, Tomasz, Przemyslaw Kazienko, and Wojciech
Indyk. "Parallel processing of large graphs." Future
Generation Computer Systems 32 (2014): 324-337.

[20] Liu, Xiaodong, et al. "BSPCloud: A hybrid distributed-
memory and shared-memory programming
model." International Journal of Grid and Distributed
Computing 6.1 (2013): 87-97.

[21] Kirtzic, J. Steven, Ovidiu Daescu, and T. X. Richardson. "A
parallel algorithm development model for the GPU
architecture." Proc. of Int’l Conf. on Parallel and Distributed
Processing Techniques and Applications. 2012.

[22] Wu, Fuhui, Qingbo Wu, and Yusong Tan. "Workflow
scheduling in cloud: a survey." The Journal of
Supercomputing 71.9 (2015): 3373-3418.

[23] Sonmez, Ozan, et al. "Performance analysis of dynamic
workflow scheduling in multicluster grids." Proceedings of
the 19th ACM International Symposium on High Performance
Distributed Computing. ACM, 2010.

[24] Yang, Cuicui, et al. "Bacterial foraging optimization using
novel chemotaxis and conjugation strategies." Information
Sciences 363 (2016): 72-95.

[25] Kumar, Neetesh, and Deo Prakash Vidyarthi. "A novel hybrid
PSO–GA meta-heuristic for scheduling of DAG with
communication on multiprocessor systems." Engineering with
Computers 32.1 (2016): 35-47.

[26] Kliazovich, Dzmitry, et al. "CA-DAG: Modeling
communication-aware applications for scheduling in cloud
computing." Journal of Grid Computing 14.1 (2016): 23-39.

[27] Guo, Fengyu, et al. "A workflow task scheduling algorithm
based on the resources' fuzzy clustering in cloud computing
environment." International Journal of Communication
Systems 28.6 (2015): 1053-1067.

[28] Navimipour, Nima Jafari, and Farnaz Sharifi Milani. "Task
scheduling in the cloud computing based on the cuckoo search
algorithm." International Journal of Modeling and
Optimization 5.1 (2015): 44.

Navjot Kaur et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017, 948-956

956© 2015-19, IJARCS All Rights Reserved 956

[29] Xu, Yuming, et al. "A hybrid chemical reaction optimization
scheme for task scheduling on heterogeneous computing
systems." IEEE Transactions on parallel and distributed
systems 26.12 (2015): 3208-3222.

[30] COMPUTING, FIREFLY ALGORITHM IN CLOUD. "A
load balancing model using firefly algorithm in cloud
computing." Journal of Computer Science 10.7 (2014): 1156-
1165.

[31] Kang, Yan, He Lu, and Jing He. "A PSO-based Genetic
Algorithm for Scheduling of Tasks in a Heterogeneous
Distributed System." JSW 8.6 (2013): 1443-1450.

[32] Babukartik, R. G., and P. Dhavachelvan. "Hybrid Algorithm
using the advantage of ACO and Cuckoo Search for Job
Scheduling." International Journal of Information Technology
Convergence and Services 2.4 (2012): 25.

[33] Mezmaz, Mohand, et al. "A parallel bi-objective hybrid
metaheuristic for energy-aware scheduling for cloud
computing systems." Journal of Parallel and Distributed
Computing 71.11 (2011): 1497-1508.

[34] Tawfeek, Medhat A., et al. "Cloud task scheduling based on
ant colony optimization." Int. Arab J. Inf. Technol. 12.2
(2015): 129-137.

[35] Aron, Rajni, Inderveer Chana, and Ajith Abraham. "A hyper-
heuristic approach for resource provisioning-based scheduling
in grid environment." The Journal of Supercomputing 71.4
(2015): 1427-1450.

[36] George, Salu. "Hybrid PSO-MOBA for Profit Maximization
in Cloud Computing." INTERNATIONAL JOURNAL OF
ADVANCED COMPUTER SCIENCE AND
APPLICATIONS 6.2 (2015): 159-163.

[37] Khan, Shagufta, and Niresh Sharma. "Effective scheduling
algorithm for load balancing (SALB) using ant colony
optimization in cloud computing." International Journal of
Advanced Research in Computer Science and Software
Engineering 4 (2014).

[38] Rao, Ch, and B. Raveendra Babu. "A Fuzzy Differential
Evolution Algorithm for Job Scheduling on Computational
Grids." arXiv preprint arXiv:1407.6317 (2014).

[39] Chana, Inderveer. "Bacterial foraging based hyper-heuristic
for resource scheduling in grid computing." Future
Generation Computer Systems 29.3 (2013): 751-762.

[40] Singh, Susmita, et al. "Genetic algorithm based resource
broker for computational Grid." Procedia Technology 10
(2013): 572-580.

[41] Tsai, Jinn-Tsong, Jia-Cen Fang, and Jyh-Horng Chou.
"Optimized task scheduling and resource allocation on cloud
computing environment using improved differential evolution
algorithm." Computers & Operations Research 40.12 (2013):
3045-3055.

[42] Dasgupta, Kousik, et al. "A genetic algorithm (ga) based load
balancing strategy for cloud computing." Procedia
Technology 10 (2013): 340-347.

[43] Kim, Sung-Soo, et al. "Optimal job scheduling in grid
computing using efficient binary artificial bee colony
optimization." soft computing 17.5 (2013): 867-882.

[44] Kardani-Moghaddam, Sara, et al. "A hybrid genetic algorithm
and variable neighborhood search for task scheduling problem
in grid environment." Procedia Engineering 29 (2012): 3808-
3814.

[45] Cai, Zhicheng, et al. "A delay-based dynamic scheduling
algorithm for bag-of-task workflows with stochastic task
execution times in clouds." Future Generation Computer
Systems (2017).

[46] Terzopoulos, George, and Helen D. Karatza. "Power-aware
Bag-of-Tasks scheduling on heterogeneous
platforms." Cluster Computing 19.2 (2016): 615-631.

[47] Moschakis, Ioannis A., and Helen D. Karatza. "A meta-
heuristic optimization approach to the scheduling of Bag-of-
Tasks applications on heterogeneous Clouds with multi-level
arrivals and critical jobs." Simulation Modelling Practice and
Theory 57 (2015): 1-25.

[48] Celaya, Javier, and Unai Arronategui. "Fair scheduling of bag-
of-tasks applications on large-scale platforms." Future
Generation Computer Systems 49 (2015): 28-44.

[49] Gutierrez-Garcia, J. Octavio, and Kwang Mong Sim. "Agent-
based Cloud bag-of-tasks execution." Journal of Systems and
Software 104 (2015): 17-31.

[50] Sahli, Majed, et al. "Automatic tuning of bag-of-tasks
applications." Data Engineering (ICDE), 2015 IEEE 31st
International Conference on. IEEE, 2015.

[51] Moschakis, Ioannis A., and Helen D. Karatza. "Multi-criteria
scheduling of Bag-of-Tasks applications on heterogeneous
interlinked clouds with simulated annealing." Journal of
Systems and Software 101 (2015): 1-14.

[52] Calheiros, Rodrigo N., and Rajkumar Buyya. "Energy-
efficient scheduling of urgent bag-of-tasks applications in
clouds through DVFS." Cloud Computing Technology and
Science (CloudCom), 2014 IEEE 6th International
Conference on. IEEE, 2014.

[53] Gutierrez-Garcia, J. Octavio, and Kwang Mong Sim. "GA-
based cloud resource estimation for agent-based execution of
bag-of-tasks applications." Information Systems
Frontiers 14.4 (2012): 925-951.

[54] Netto, Marco AS, and Rajkumar Buyya. "Coordinated
rescheduling of Bag‐of‐Tasks for executions on multiple
resource providers." Concurrency and Computation: Practice
and Experience 24.12 (2012): 1362-1376.

[55] da Silva, Fabricio AB, and Hermes Senger. "Scalability limits
of Bag-of-Tasks applications running on hierarchical
platforms." Journal of Parallel and Distributed
Computing 71.6 (2011): 788-801.

	Introduction
	Scheduling
	Metaheuristics
	Genetic Algorithm: It is an optimization method based on population and is based on Darwin’s theory of evolution [2]. In GA, each possible solution is represented by a chromosome. An initial population is taken randomly and it is used as a starting po...
	Ant Colony Optimization: In ACO, a number of artificial ants help in building solution for optimization problems and via a communication scheme, they exchange the information. They find the shortest paths as the moving ants lay pheromone on the ground...
	Artificial Bee Colony Algorithm: This is a popular approach for optimization that simulates the intelligent foraging nature of honeybees. İn this algorithm, there are three types of bees. The first ones being the employed bees. They search for food ar...
	Firefly Algorithm: It is inspired from the flashing behavior of tropical fireflies. It has the following important features:
	Cuckoo Search Algorithm: It is inspired by brood parasitism of some cuckooo species. They lay eggs in the nests of ther birds of different species. Below are the three basic rules for this algorithm:
	Particle Swarm Optimization Algorithm: The idea of PSO emerged from the swarming behavior of flock of birds, swarm of bees, schools of fish etc. İt is applied to solve different function optimization problems. İn PSO, the solutions are named particles...
	Simulated Annealing: This technique is inspired from annealing in metallurgy. İt involves heating and then slow cooling of a material. This is used to remove/reduce the defects in a crystal. To accomplish this, the material is annealed i.e. it is heat...

	Multi-criteria

	Performance Metrics
	Bulk Synchronous Parallel (BSP) Model based jobs
	Workflow and Dag Based Jobs
	Independent Jobs
	Bag-of-tasks
	Conclusion
	References

