
��������	�
����	�������������

��� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������
�

© 2010, IJARCS All Rights Reserved 442

Understanding the Real Issues to Move towards a Systematic Reuse Based Approach

Kuljit Kaur* and Hardeep Singh

Deptt. of Computer Science and Engineering,

Guru Nanak Dev University,

Amritsar, India

kuljitchahal@yahoo.com

Abstract: The concept of reuse has been emphasized time and again. It was proposed as a solution to build large reliable systems in a controlled

and cost-effective way by Mcllroy in his seminal paper in the NATO conference in 1968. Recently, on the onset of the recession which hit the

global economy in 2008, the need has been again felt to make extensive use of the concept of reuse to improve the software cost structures.

However, despite this the reuse based approach to software development is still adhoc in nature. A systematic reuse based software development

approach is not followed. It may be due to the fact that tools and methods for successful implementation of software reuse are not available.

Even the terminology related to the reuse concept is not uniform. This paper attempts to put together and analyse different views related to a

popular reuse based software development paradigm – Component Based Software Engineering. It also discusses other issues that need to be

looked into for successful implementation of the concept of reuse in the context of component based software engineering.

Keywords: Software Reuse, Component Based Software Engineering, Software Cost, Component Characteristics.

I. INTRODUCTION

The recent recession, which hit the globe on 15th

September, 2008 (the day Lehman brothers filed for

bankruptcy), has seriously impacted the business houses

world-wide. In order to survive this worst recession,

companies are doing every bit to save money or to reduce

the costs. Software cost has been a major component of the

costs that a company has to incur. So the onus further lies on

the software companies to reduce the costs of their products.

Most software cost models are functions of five basic

parameters: size, process, personnel, environment (available

tools to automate the process), and required level of quality

[1]. Cost is likely to be more for a large sized product

(measured in LOC or function points). Keeping all other

parameters constant, a reduction in size can help to reduce

the cost of a product. Walker Royce defines size reduction

as “to reduce the number of human-generated source lines”

or “to reduce the amount of custom developed code” [1]. He

suggests reuse, object oriented technology, higher order

languages, and automatic code generators as some of the

mature size reduction technologies. Capers Jones, also

points out that a shift from custom development to reuse

based development can help to improve the software cost

structures [2].

Not only that, reuse based software development

reduces the development cost, it also shortens the

development cycle and thus the time to market. It increases

the productivity of programmers. Rather than spending time

and effort on mundane tasks, they can focus on more

challenging aspects of the application and hence improve its

level of quality [3.4]. In addition several other benefits of

reuse have been reported: reduction of project planning

overheads, improvements in support and maintenance, better

use of resources, and better tackling of system

complexity[5.6]. Mohageghi et al. review the industrial

studies that link software reuse to quality, productivity, and

economic benefits [7].

The idea of software reuse is not new. In 1968, Mcllroy

suggested software reuse as a means for overcoming

software crisis [8]. Software crisis is characterized by two

major phenomenon: Lack of ability to produce software

within budget and time constraints, and lack of quality in

produced software [9]. Mcllroy pointed towards the

effective use of reusable software libraries to build large

reliable software systems in a controlled and cost effective

way.

The concept of reuse has been emphasized time and

again. But there is lack of tools and methods for successful

implementation of reuse. Another issue is lack of uniformity

in referring to different terms of reuse. This paper attempts

to put together different views related to a popular reuse

based paradigm – Component Based Software Engineering.

Next section of the paper gives an overview of the reuse

technologies. Third section details out the component based

approach to software development. It presents different

points of view regarding component based software

development processes, the definition and characteristics of

a component - the building block of a component based

software system. Fourth section presents other issues and

challenges in building successful component based software

systems. Fifth section concludes the paper.

II. REUSE TECHNOLOGIES

Software reuse can be implemented in 3 different forms

– Compositional reuse, Product Line Engineering (PLE),

and Generator based reuse [10]. Compositional reuse refers

to building an application by assembling already available

reusable software components. Component Based Software

Engineering (CBSE) paradigm adopts this form to produce

software applications. PLE refers to creating a common set

of core assets and then using them to create applications that

satisfy the requirements of a specific domain [11]. Generator

based development is applicable for more mature/narrow

application domains in which the application developer

specifies the variation through parameters and the generator

Kuljit Kaur et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,442-446

© 2010, IJARCS All Rights Reserved 443

generates the application according to these parameters. In

the generator based reuse, domain knowledge is encoded

into an application generator. For example, Lex and Yacc

are the application generators in the UNIX environment.

To achieve an ideal level of reuse, the desirable trend is

to move from compositional to generator based reuse.

III. COMPONENT BASED SOFTWARE ENINEERING

Component based software engineering is a systematic

approach to develop software applications using already

existing software components. The notion of ‘developing an

application program by writing code’ has been replaced by

‘building a software system with assembling and integrating

existing software components’. It involves use of

prefabricated pieces, perhaps developed at different times,

by different people, and possibly with different uses in mind

[12]. The components used in a component based software

system may be in-house components or off-the-shelf

components (which include open source components or

commercial components also known as COTS -Commercial

off the Shelf). Component developers develop software

components keeping in mind their reuse value across

product lines and organizations. These reusable components

are reused as is or are adapted to meet the requirements of a

different project in a context other than the one anticipated

during their development.

This approach is different from the traditional way of

software development. Here, the development process has

two sides: Development of software components for reuse

and development of software with reusable components as

the building blocks (Figure 1). Main steps in development

for reuse are [13]:

[a] Perform domain analysis

[b] Identify the components to be developed

[c] Develop the components

[d] Evaluate the components so that they can be added to

the library

[e] Package the components and add to the library.

Figure.1: CBSE Processes [14].

Main steps in development with reuse [13] are as

follows:

[a] Retrieve components from library (in house or third

party) according to some need of the application under

development,

[b] Evaluate the quality and appropriateness of the

components.

[c] Adapt a component, if it cannot be reused as-is.

[d] Assemble the application

[e] Test the integrated assembly

It can be observed in the above discussion that

component evaluation takes place at two stages: when

components are added to the library of reusable components

and when they are selected for use in an application. In the

latter case, context of use is also important for evaluation.

A. Defining a Component

Both the researchers and practitioners in component

based software engineering have not yet agreed upon the

definition of a component. Different people perceive the

concept of a component differently.

Hooper and Chester define a component simply as

“anything which is reusable” [15]. Bertrand Meyer adds

another dimension to it and separates a component user from

a component developer [16]. He defines a component as “a

software element that must be usable by developers who are

not personally known to the component’s author to build a

project that was not foreseen by the component’s author”.

Johannes Sametinger stresses on technical attributes of a

software component [13]. According to him, software

components are “Self-contained, clearly identifiable pieces

that describe and/or perform specific functions, have clear

interfaces, appropriate documentation, and a defined reuse

status”. Szyperski in his definition of a software component

takes into account context of component deployment as well

[17]. He defines a component as "a unit of composition with

contractually specified interfaces and explicit context

dependencies only. A software component can be deployed

independently and is subject to composition by third

parties".

Heinemann and Councill’s definition includes a

reference to the component infrastructure (middleware)

required for seamless integration of software components

[18] They define a software component as “a software

element that conforms to a component model and can be

independently deployed and composed without modification

according to a composition standard”.

In the context of object oriented paradigm, Valerio et al.

define a component as “a homogeneous set of objects that

collaborate to perform a feature or functionality and

exposing a component interface that allows to integrate it in

a system and make available to the external environment a

set of services” [19] However components are not the same

as classes or objects – the traditional object oriented

artifacts. Classes are conceptual entities which form a part

of the structure of a program. Once implemented as part of

the program, they are not required to be accessible from

outside. Components are the physical entities which are

accessible and pluggable as per the requirements. Both can

be assembled to build a new application, but the difference

is that components are plugged, and objects are wired.

Components generally provide complex functionality, where

as objects provide limited functionality. Components offer

explicit interfaces: required interfaces, and provided

-Domain/

Requirements

Analyst

-Designer

-Implementer

-Specifier

-Designer

-Integrator

-Maintainer

 -Composer

-Component

Librarian

-Component

Vendor

-Component
Broker

-Local

Certifier

-External

Certifier

CBSE Processes

Development with

Reuse

Component

Procurement

Component

Repository

Component

Certification

Development for

Reuse

Kuljit Kaur et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,442-446

© 2010, IJARCS All Rights Reserved 444

interfaces. But objects explicitly mention only their

provided interfaces (set of public methods), their required

interfaces are hidden in implementation.

B. Component Characteristics

Several attempts have been made to characterize the

components in order to better understand and classify them

which can further help in efficient component storage and

retrieval, and component selection as well.

Szyperski identifies 4-tiers at which there are different

reasons to use components in different forms [20]. In tier 1,

organizations choose software components for economic

reasons. Components at this level are the source components

which include architectural, design, and source code

artifacts. Tier 2 focuses on use of partial design and

implementation information across multiple products of the

same domain i.e. product lines. These components are

known as build time components. In third tier, components

are not consumed during development-time but during run-

time. Such components are called deployable components.

The fourth tier deals with the use of components to handle

changes in the engineered solution in an open environment.

Components are dynamically available as services at

distributed remote locations which can be obtained on-

demand, installed and integrated with the existing solution.

Bertrand Meyer characterizes components on the basis

of four viewpoints: level of software process task, level of

abstraction, level of execution, and level of accessibility

[21]. At different levels of software life cycle, components

exist in different forms. It may be a software requirements

specification document in the analysis phase, a design

pattern in the design phase, or an executable piece of code at

implementation level. It may represent an abstraction of a

function, or data with fine granularity as a class or coarse

granularity as a cluster of classes or a complete system. A

component is static if it is integrated into a system at

compile/link time, and has to be recompiled after every

modification. It is replaceable if it is static but its variants

can be substituted dynamically. A component in the

dynamic category can be integrated into the system at the

time of execution. No source code is available mostly for

components in the commercial category. Level of

accessibility criteria distinguishes components, with source

code available to component users, from components whose

source code is not available or is available on demand only.

Components in the former category are available in the open

market and are called Open Source Software Components.

Open source components are available free of cost under

different types of licenses such as GNU, PDS (Public

Domain Software) etc. Components in the latter category are

available in the commercial market and are acquired for a

fee. Such components are known as Commercial off the

Shelf (COTS).

Other criteria to classify components can be age (level

of maturity), level of reuse, context (application domain),

technology/ infrastructure support, ability to plug and play

with other components as well as with the underlying

platform, role (active or passive- GUI v/s database

component) [22].

Sametinger identifies component characteristics by

means of different types of interfaces a component uses to

communicate with the user, other components, or with the

environment [13]. They include: type of user interface

(command line or graphical), data interface (textual, file, or

data base I/O), program interface (functional composition,

object oriented composition, or open platform composition),

and component platform (hardware, OS, and programming

environment).

Morisio and Torchiano characterize software

components on the basis of source (origin, cost, and

property), customization (required modification, possible

modification, and interface), bundle (packaging – static or

dynamic, partial or total delivery, size), and role

(functionality, and architectural level- support or core) [23].

The component characterization framework suggested

by Sassi et al. groups characteristics into: general (cost, date

of first release, and change frequency), structural (name and

number of services), behavioral (pre/post-conditions and

state-transition diagrams), architectural (component type

and architectural style), quality of service (nonfunctional

properties and possible modification), technical

(conformance to standards), and usage (similar components

and use cases) [24].

Kienle et al. present taxonomy to characterize software

components as well as component based systems [25]. They

use the following criteria to characterize software

components: origin, distribution form, customization

mechanisms, interoperability mechanisms, and packaging.

Origin of the component specifies the source of the

component i.e. in-house or off the shelf component.

Distribution form is based on the availability and

modifiability of source code – Black box (no source code

available, no modification possible), white box (source code

available, modifications possible), glass box (source code

visible but no modifications possible). Sametinger specifies

another distribution form i.e. Gray box in which limited

source code is visible, and only that portion is modifiable

[20]. Customization mechanisms are available at two levels:

non-programmable and programmable. Non-programmable

customization allows using command line switches,

configuration files, or check boxes to customize a software

component. In programmable customization, application

programming interface (API) or scripting languages are used

to modify or extend the behaviour of a component. Another

characteristic of a component is its ability to interoperate

with other components in the application. There may be no

interoperability information available for a component or it

may have programmable interfaces to enable

interoperability with other components. Components may be

packaged differently as standalone or non-standalone.

Standalone components can be directly executed without

any prior customization or integration. Whereas a non-

standalone component has to be customized or integrated

before it is executed.

IV. OTHER ISSUES AND CHALLENGES

CBSD is still not a very popular paradigm of

development with the software developers. There are several

obstacles to successful adoption of the CBSD in software

development organizations. Kunda et al. have studied the

human, social, and organizational factors responsible for

making the CBSD application difficult in organizations [26].

Neumann elaborates on the risks of predictable

compositions of software components. There are several

problems related to composability of components including

scalability, certification, quality assurance, incompatible

policy matters, inadequate requirements specifications, poor

Kuljit Kaur et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,442-446

© 2010, IJARCS All Rights Reserved 445

software engineering practices etc. [27]. Voas has identified

and analyzed five sources of headaches in dealing with

library components [28]. Apart from technical risks,

Hasselbring et al. talk about liability risks of using third

party components [29]. From judicial point of view (in the

European Union), the vendor providing a component based

software solution to his customers is to be held legally

responsible for malfunctioning in any component of the

solution. The customer is not bound to localize the defect to

a particular component of the solution. Application vendor

has to pay the claims. The vendor can, in turn, ask for

damages from the specific component supplier but for that

he has to establish the fact that the supplier’s component is

problematic.

Component based software development brings with it

its own issues and challenges. Several technical as well non-

technical issues need to be addressed in order to have

successful implementation of this paradigm [30]. Some of

the issues are outlined below:

A. Creating tools, techniques, and well defined processes

to support essential component activities such as

component specification, component certification,

component search and retrieval, component selection,

component composition, component integration, and

component version management.

B. Component repository management - A rich repository

of reusable components is essential for successful

implementation of component based development.

Further the component users should be able to locate

needed components easily and quickly. So there is need

to design efficient algorithms for storing and retrieving

components from a repository.

C. Risk analysis and management – Components acquired

from external sources carry the risks of unpredictable

quality, architectural mismatch, and uncertainty of

future support from component suppliers [31]. In

addition to this there are legal risks involved. So it is

necessary to identify the risks, and manage them in

advance so as to facilitate seamless integration of

software components.

D. Support for evolving third party components –

Successful software requires modification from time to

time to accommodate changes in domain as well as in

technology. As software components evolve, problems

arise due to inadequate support from the component

vendor, delay in identification of modification

requirements and their implementation, conflicts

between needs and priorities of different component

users. So there is need to manage component evolution

otherwise it may result in higher maintenance burden

and lead to other quality issues such as reliability.

E. Establishing Trust in third party components – There is

a need to define mechanisms to establish trust in third

party software components. A component user has

every reason to not to believe the component

developer/supplier regarding component quality

attributes till sufficient documentary proof is not made

available.

F. Component quality assessment- Quality of existing

components in general and of third party components in

particular has been an issue of great concern. Bertrand

Meyer suggests that foremost importance should be

given to quality of software components especially

acquired from third parties [16]. He stresses that quality

of a component based application is equal to the quality

of its worst component. Here issues that need to be

explored include: component characterization,

component documentation, availability of component

related information, component testing, component

certification, component quality models, and

predictable assembly of components.

G. Software reuse metrics and models – Software metrics

in the reuse context may be divided into five categories-

[a] Metrics which measure the extent of reuse within a

software application,

[b] Metrics which measure the consequences (economic

benefits) of reuse in an application,

[c] Reuse library (repository) metrics

[d] Metrics which measure the ability to use a software

component in a context other than that for which it was

originally developed, also known as reusability metrics.

[e] Metrics which measure the quality of a reuse based

application.

There is need to define metrics based on the formal

specifications so that they can be theoretically as well as

empirically validated.

V. CONCLUSIONS

The idea of reuse is almost half a century old. But it is

not yet a mature technology. One of the major reasons could

be the non-availability of tools and processes to implement

the concept in its true spirit. Another important issue is the

lack of good quality reusable components in the market.

Even the terminology related to the concept is not uniform

across various design/implementation methodologies or

among the researchers and practitioners. This paper details

out different views on some of the important concepts of a

reusable program in the context of a composition based

reuse approach i.e. component based software engineering.

It has been observed that there are several issues that need to

be looked into for successful implementation of the reuse

based approach for software development.

VI. REFERENCES

[1]. Royce, W. (1998). Software Project Management: A

Unified Framework. Pearson Education.

[2]. Jones, C. (2009) Software Engineering Best Practices:

Lessons from Successful Projects in the Top

Companies, McGraw-Hill Osborne Media, 1st Edition,

2009.

[3]. Jacobson, I., Griss, M. and Johnsson, P. (1997).

Software Reuse, Architecture, Process, and

Organization for Business Success. Addison-Wesley.

[4]. Tracz. W. (1988). Sofware Reuse: Motivations and

Inhibitors. Software Reuse: Emerging Technology. pp.

62-67. IEEE Computer Society Press.

[5]. Almeida, E., Alvaro, A., Garcia, V., Mascena, J.,

Burégio, V., Nascimento, L., Lucrédio, D. and Meira, S.

(2007). Component Reuse in Software Engineering

(C.R.u.i.S.E.). Reuse in Software Engineering (RiSE)

Group, available at http://cruise.cesar.org.br/index.html

last accessed on 18/12/09.

[6]. Llorens, J., Fuentes, J., Prieto-Diaz, R. and Astudillo,

H. (2006). Incremental Software Reuse. Proceedings of

9th International Conference on Software Reuse

Kuljit Kaur et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,442-446

© 2010, IJARCS All Rights Reserved 446

(ICSR2006), LNCS 4039, pp 386 – 389. Springer

Berlin / Heidelberg.

[7]. Mohagheghi, P. and Conradi, R. (2007). Quality,

productivity and economic benefits of software reuse: a

review of industrial studies. Empirical Software

Engineering 12: 471–516.

[8]. Mcllroy, D. (1968). Mass-Produced Software

Components. Proceedings of the 1st International

Conference on Software Engineering. pp 138–155.

Garmisch, Germany.

[9]. Kim, H. and Boldyreff, C.(1996). An Approach to

Increasing Software Component Reusability in Ada,

Reliable software Technologies –Ada-Europe’96. pp.

89-100. Lecture Notes in Computer Science, Springer

Berlin/ Heidelberg.

[10] Mili, H., Mili, A., Yacoub, S. and Addy, E. (2002).

Reuse Based Software Engineering – Techniques,

Organization, and Measurement, John Wiley & Sons.

[11] Pohl et al., 2005 Pohl, K., Linden, F. and Bockle, G.

(2005). Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer.

[12] Clemente et al., 2008 Clemente, P. J., Herandez, J. and

Sanchez, F.(2008). Extending Component Composition

Using Model Driven and Aspect-Oriented Techniques,

Journal of Software 3(1): 74-86. Academy Publishers.

[13] Sametinger, J. (1997). Software Engineering with

Reusable Components, Springer, -Verlag New York,

Inc., USA.

[14] Hutchinson, J. and Kotonya, G. (2006). A Review of

Negotiation Techniques in Component Based Software

Engineering, Proceedings of the 32nd EUROMICRO

Conference on Software Engineering and Advanced

Applications (EUROMICRO-SEAA'06), pp 152-159.

Cavtat/Dubrovnik, Croatia.

[15] Hooper, J. W. and Chester, R. O. (1991). Software

reuse: Guidelines and Methods. Plenum Press, New

York, 1991.

[16] Meyer, B. (1999). On To Components. IEEE Computer

32(1): 139–143.

[17] Szyperski, C. (1999). Component Software - Beyond

Object-Oriented Programming, 2nd Edition. Addison-

Wesley.

[18] Heineman, G.T. and Councill,W.T. (2001). Component-

Based Software Engineering: Putting the Pieces

Together, Addison-Wesley Professional.

[19] Valerio, A., Cardino, G. and Leo, V.(2001). Improving

software development practices through components,

Proceeding of the 27th Euromicro Conference 2001: A

Net Odyssey (Euromicro01), pp 97-103. Warsaw,

Poland.

[20] Szyperski, C. (2003). Component technology: what,

where, and how? Proceedings of 25th International

Conference on Software Engineering. pp 684–

693.Oregon, USA.

[21] Meyer, B. (2003). The Grand challenge of Trusted

Components. Proceedings of the 25th International

Conference on Software Engineering, pp. 660-667.

IEEE Computer Society. Portland, Oregon.

[22] Yacoub, S., Ammar, H. and Mili, Ali. (1999).

Characterizing a Software Component, Proceedings of

International Workshop on Component-Based Software

Engineering, May 1999.

[23] Morisio, M., Ezran, M. and Tully, C. (2002). Success

and Failure Factors in Software Reuse. IEEE

Transactions on Software Engineering 28(4): 340-357.

[24] Sassi, S., Jilani, L. and Ghezala, H. (2003). COTS

Characterization Model in a COTS-Based Development

Environment. Proceedings of the 10th IEEE Asia-

Pacific Software Engineering Conference (APSEC’03).

pp. 352–361. Chiang Mai, Thailand.

[25] Kienle, H., Holger, M. and Muller, H. (2007). A

Lightweight Taxonomy to Characterize Component-

Based Systems, Proceedings of Sixth International

IEEE Conference on Commercial-off-the-Shelf

(COTS)-Based Software Systems (ICCBSS'07). pp 192-

204. Alberta, Canada.

[26] Kunda D. and Brooks, L. (2000). Assessing

Organizational Obstacles to Component-Based

Development: A Case Study Approach. Information

and Software Technology 42: 715–725.

[27] Neumann, P. (2006). Risks Relating to System

Compositions. Communications of the ACM 49(7):

128.

[28] Voas, J.(1998b). The challenges of using COTS

Software in Component-Based Development. IEEE

Computer 31(6):44-45.

[29] Hasselbring, W., Rohr, M., Taeger, J. and Winteler, D.

(2006). Liability Risks in Reusing Third-Party

Software, Communications of the ACM 49(12): 144-

145.

[30] Kalagiakos, P. (2003). The Non-Technical Factors of

Reusability, Proceedings of the 29th EUROMICRO

Conference “New Waves in System Architecture”

(EUROMICRO’03). Pp 124. Belek-Antalya, Turkey

[31] Vitharana, P. (2003). Risks and Challenges of

Component-Based Software Development. Communi

cations of the ACM 46(8): 67-72.

