
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 678

ISSN No. 0976-5697

SQL Injection Impact on Web Server and Their Risk Mitigation Policy
Implementation Techniques: An Ultimate solution to Prevent Computer Network from

Illegal Intrusion

Parveen Sadotra (CEH)
Research Scholar,Department of computer, Application,

 Career Point University,Kota, Rajasthan, India

Dr. Chandrakant Sharma
Assistant Professor,Department of computer Application,

 Career Point University,Kota, Rajasthan, India

Abstract: SQL Injection attacks pose a very serious security threat to Web applications and web servers. They allow attackers to obtain
unrestricted access to the databases underlying the applications and to the potentially sensitive and important information these databases
contain. Although researchers and security professionals have proposed various methods to address the SQL injection problem but current
approaches either fail to address the full scope of the problem or have limitations that prevent their use and adoption. Many researchers and
security professionals are familiar with only a subset of the wide range of techniques available to attackers who are trying to take advantage of
SQL injection vulnerabilities. As a result, many solutions proposed in the literature address only some of the issues related to SQL injection. To
address this problem, we are presenting an extensive review of the different types of SQL injection attacks known to date. Also for each type of
attack, we provide descriptions and examples of how attacks of that type could be performed. We also presented and analyze existing detection
and prevention techniques against SQL injection attacks.

Keywords:SQL injection attack, SQL queries, web application, DBMS, taxonomy, web application.

I. INTRODUCTION

There are many web attacks hacker follows to attack on
your web servers. SQL Injection is mostly used attack
mechanisms used by hackers to steal data from web server
or manipulate them. It is surely one of the most common
known application layer attack techniques used in present
time. It is the type of attack which takes advantage of
improper coding of your web applications that consequently
allows hacker to inject SQL commands into a login form
and allows them to gain access to the data held within the
database. [1]SQL Injection targets the web servers and web
applications that use a back-end database.

To understand better way here is a brief illustration.

II. NEED / IMPORTANCE OF THE STUDY

SQL injection is a very important to study now days, here
are some interesting facts for a few different reasons in SQL
injection: -

 It’s getting increasingly tougher to write vulnerable
codes due to frameworks that automatically
parameterize inputs while designing web applications
yet we still write bad code.

 You are not necessarily in the clear just because you
have used stored procedures or a shiny ORM (though
you are aware that

 It is very easy to detect remotely by automated tools
which can be orchestrated to crawl the web searching
for vulnerable websites yet you are still putting them
out there.

SQL Injection can still get through
these, alright...?) You still build vulnerable web
applications round these mitigations. [2]

III. IMPACT OF SQL INJECTION ON WEB

SERVER (RISK ASSOCIATED WITH SQL
INJECTION)

When an IT department noticed an enormous spike in
queries to its website and corresponding error messages,
they correctly suspected it was the subject of an SQL
injection attack. [3] In such case of attack, an attacker sends
intentionally malformed requests to a company’s website
hoping that the server will malfunction and either return
non-public data in response to the request or grant the
attacker deep, administrative access to the server.

Parveen Sadotraet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,678-686

© 2015-19, IJARCS All Rights Reserved 679

The risk factors associated with SQL injection are as below:
-
The platform affected with SQLIA can be as:
 Language: SQL
 Platform: Any (requires interaction with a SQL

database)

SQL Injection

 Confidentiality: Since SQL databases generally hold
sensitive data, loss of confidentiality is a frequent
problem with

has become a common issue with database-
driven web sites and web applications. The flaw is easily
detected, and easily exploited, and as such, any site or
software package with even a minimal user base is likely to
be subject to an attempted attack of this kind. Essentially the
attack is accomplished by placing a meta character into data
input to then place SQL commands in the control plane,
which did not exist there before. This flaw depends on the
fact that SQL makes no real distinction between the control
and data planes. The main impact of SQL Injection attacks
is as below:

 SQL Injection
 Authentication: If poor SQL commands are used to

check user names and passwords, it may be possible to
connect to a system as another user with no previous
knowledge of the password. [4]

vulnerabilities.

 Authorization: If authorization information is held in a
SQL database, it is very much possible to change this
information through the successful exploitation of SQL
Injection vulnerability.

 Integrity: Just as it may be possible to read sensitive
information, it is also possible to make changes or even
delete this information with a SQL Injection

Classification of SQL Injection
Following table presents various types of SQL injection
attack and their vulnerabilities: -

attack.

Si
No Vulnerability A brief explanation

1 Bypassing Web
Application
Authentication

One of the most common usages
adopted by the cyber criminals to
bypass authentication pages, used
in web applications. In this
category of attack, an attacker
exploits an input field that is used
in a query’s 'where' condition part.

2 Getting
Knowledge of
Database
Fingerprinting

This attack is considered as pre-
attack preparation by the attackers.
This category of attack is
performed by entering some inputs
by which it generates an illegal or
the logically incorrect queries. The
error messages reveal the names of
the tables and the columns that
cause error. The attacker also
comes to know about the
application database used in the
backend server.

3 Injection with
UNION query

In such an attack, an attacker
extracts data from a table which is
different from the one that was
intended in the web application by
the developer. An attacker exploits
a vulnerable parameter to change
the data set returned for a given
query.

4 Damaging with
additional
injected query

The attack in this category of
attack is generally very harmful.
An attacker enters input such that
an additional injected query is
generated along with the original
query.

5 Remote
execution of
stored
procedures

This category of attack is
conducted by executing the
procedures, stored previously by
the web application developer.

IV. RESULTS AND DISCUSSION

In this section, we will provide a detailed analysis of our
results and findings. The complete audited results are
presented below. To understand better we have organized
the results according to following three headings:

 The scope of SQL injection threats
 Why the SQL injection threat remained pervasive so far
 SQL injection threat and behavioral analysis to combat

this threat

The scope of SQL injection threatsSQL attacks is
pervasive.

As shown in following table 63 percent of respondents said
that their organization experienced one or more SQL
injection attacks during last 12 month which evaded its
firewalls and other parametrical defense system. On an
average, it took approximately 3 months to detect the attack
also at the same time 40 percent of respondents said that it
took about six months or even more to detect the attack. So
approximately it took an average of 70 days to detect such
attacks.

Si
No

1 of more SQL injection Attack in
last 1 year

Reported
Response Percentage

1 Yes 63

2 No 31

3 Unable to
determine 6

Table: SQL Injection reported in last 12 months

Seriousness of SQL Injection Threat
52 % i.e. around half of respondents accepted that SQL
injection threat faced by their organization is absolutely

Parveen Sadotraet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,678-686

© 2015-19, IJARCS All Rights Reserved 680

important if we rate threat from number 1 to 10 then
seriousness of the treat is as responded is given in following
table

Si
Scale of

seriousness of
threat

Percentage

1 1 to 2 6

2 3 to 4 12

3 5 to 6 13

4 7 to 8 22

5 9 to 10 48

Table: Seriousness of SQL Injection Threat

Present state of SQL Injection threat
We can see the present state of SQL injection state as below:
-
o SQL injection attacks are increasing : 50 %:

o SQL injection attacks are decreasing : 30 %

o SQL injection attacks are staying at the same level:15

%
o Unable to determine :5 %

Does threat of SQL injection remain pervasive
There are many institutes and organizations which are not
familiar with the tricks and techniques used by cyber
attackers.in the following table, we can see about pervasive
of SQL injection threat and familiarity with Web
Application Firewall bypass: -

Si
Scale of

seriousness of
threat

Percentage

1 Very Familiar 15

2 Familiar 30

3 Not Familiar 45

4 No idea about it 10

Table: Familiarity with the bypass techniques used by
cyber criminals

Understanding the root causes of an SQL injection
attack more difficult.
Respondents’ perceptions about the SQL injection threat are
shown in table below.

Si
No Descriptions

Strongly
Agree

In %age

Agree
In

%age

1 Understanding the
root causes 34 37

strengthens my
organization’s
readiness to mitigate
future
attacks

2

Determining the root
causes is more
difficult because of
personally owned
mobile devices in the
workplace

28 30

3

Determining the root
causes is more
difficult because of
the sophistication of
cyber attackers

22 21

4

Technologies are in
place to quickly
detect a SQL
injection attack

16 20

5

IT security personnel
possess the skills,
knowledge and
expertise to quickly
detect a SQL
injection attack

12 19

Table: Understanding the root causes of an SQL

injection attack more difficult

If we see above table, we can see that Seventy one percent
of respondents believe understanding the root causes of SQL
injection attacks strengthens my organization’s readiness to
mitigate future attacks.

However, 56 percent of respondents say determining the
root causes of SQL injection is becoming more difficult
because of the trend for employees to use their personally
owned mobile devices in the workplace. Another challenge,
according to 42 percent of respondents, is increasing stealth
and/or sophistication of cyber attackers

Expertise & the correct technologies are critical while
preventing SQLIA
While respondents see the SQL threat as serious, only 33
percent say their organization’s IT security personnel
possess the skills, knowledge and expertise to quickly detect
a SQL injection attack and 36 percent agree that they have
the technologies and tools to quickly detect a SQL injection
attack.

Measures to prevent SQL injection attacks are also
lacking.
Despite concerns about the threat, 54 percent do not take
such precautions as testing and validating third
party software to ensure it is not vulnerable to SQL injection
attack, as we can see in above table.

Parveen Sadotraet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,678-686

© 2015-19, IJARCS All Rights Reserved 681

Is Third party software being tested and validated to
ensure it’s not vulnerable

As you can see the table below, 44 percent of respondents
say their organization make use of use of security
professional as penetration testers to identify
 vulnerabilities in their information systems but
only 37 percent of these organizations include testing for
SQL injection vulnerabilities.

Si
No

Software tested
or not Percentage

1 Yes, most third-
party software 13

2 Yes, some third-
party software 31

3 No 51

4 Not sure 5

Table: Is Third party software being tested and
validated to ensure it’s not vulnerable

Whether Professional testers employed to identify
vulnerabilities
As shown in above table below forty five percent of
respondents say their organization used professional
penetration testers to identify vulnerabilities in their
information systems but only 36 percent of these
organizations include testing for SQL injection
vulnerabilities. Results are as in following table: -

Si
No

Professional
testers employed

or not
Percentage

1 Yes 46

2 No 49

3 Not sure 05

Table: Whether Professional testers employed to identify

vulnerabilities

Frequency of Monitoring for active databases
See following table to response about monitoring for active
databases is needed

Si
No

Frequency of
monitoring Percentage

1 Continuously 21

2 Daily 14

3 Weekly 06

4 Monthly 04

5 Quarterly 03

6 Half Yearly 02

7 Yearly 07

8 Irregular Interval 24

9 Don’t Scan 19

Table: Frequency of Monitoring for active databases

Above table shows that one-third of respondents say they
either scan continuously or daily for active
databases. However, 24 percent scan irregularly and 19
percent do not scan at all.

Behavioral analysis solution to combat the SQL injection
threat
Here we define behavioral analysis technology for securing
database transactions as a technology that automatically
creates a model of proper SQL behavior. Each SQL
statement attempts to access and analyze the database is
being tested against the behavioral model. Any activity that
deviates from the established behavioral model is flagged as
a likely security event. Behavioral analysis provides
immediate protection against zero-day threats.

Si
No

opinion about
behavioral

analysis approach
for detecting SQL

Percentage

1 Very favorable 39

2 favorable 50

3 Not favorable 11

Table: Behavioral analysis solution to combat the SQL
injection threat

We can see here that Organizations are adopting behavioral
analysis. According to above Table, 89 percent of
respondents view behavioral analysis either very favorably
or favorably.

How will behavioral analysis-based systems be used
See the Following table for behavioral analysis based
systems

Si
No

behavioral
analysis-based

systems
Percentage

1 On client systems 65

2 On the perimeter
network 55

3
For database
transaction
security

50

4
For web
application
security

35

5 Other 03

Table: How will behavioral analysis-based systems be
used

Parveen Sadotraet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,678-686

© 2015-19, IJARCS All Rights Reserved 682

Fifty nine percent of respondents say their organizations
have or will within the next two years replace its signature-
based IT security systems with behavioral analysis-based
systems, as shown in above table. Most will be used on
client systems (65 percent of respondents) followed by on
the perimeter network 55 percent of respondents.

With the help of above findings, we can see that SQL
injection attack is on increase. Though organizations are
becoming more aware concerned about this attack and they
are trying various measures to avoid these kinds of attack
still we can see these attacks are not stopping. Lack of
trained manpower is also one of main hindrance in this
regard.

V. NEW PROPOSED MITIGATION POLICY

Several papers in literatures have proposed ways to prevent
SQLIA in the application or database tier. Comprehensive
survey of SQLIA [5] detection and prevention techniques.
SQLIA countermeasures techniques are divided into three
main approaches: static, dynamic and hybrid approaches.
Static approaches are desirable during development and
testing phase of applications. Developers should follow
some techniques for SQL injection prevention. Static
approaches counteract the possibility of SQLIA at compile
time. [6] Whereas, dynamic approaches are useful for
analysis of dynamic SQL query, generated by web
application. This approach performs countering the
possibility of SQLIA at runtime. Both approaches may need
analysis or modification of application’s source code. In
hybrid approaches exploit a combination of static and
dynamic approaches. These approaches attempt to utilize
advantages of both approaches for preventing and detecting
SQLIA. [7] In the rest of this paper, some of the new and
popular existing static, dynamic and hybrid techniques are
presented.

A. Static Approach
Static Approach has following types of techniques: -

1) An algorithm of prepared statement replacement for
removing SQLIVs

Thomas et al. proposed a prepared statement replacement
(PSR) algorithm and corresponding automation for
removing SQLIA vulnerabilities from vulnerable SQL
statements by replacing them with secure prepared
statements. This method analysis source code containing
SQLIVs and generates a specific recommended code
structure containing prepared statements. An SQLIV exists
does not keep statement structure and input separate.

PSR-algorithm collects information from application’s
source code which possible including SQLIVs. Then
generates secure prepared statement code that maintains
functional integrity. Another algorithm which called
Prepared Statement Replacement Generator (PSR-
Generator) is created for automates the generation of the
prepared statement-based code in Java, which results from
the PSR-Algorithm. PSR-Algorithm is useful for developers
which have source code contains SQLIVs and need to be

removed. Authors claim that their proposed method is
remove SQLIVs with minimal manual intervention. Note
that PSR-Algorithm is used to remove only SQLIV and
 does not have to be integrated into the runtime
environment.

2) MUSIC: mutation-based SQL injection vulnerability
checking

Shahriar and Zulkernine, proposed a Mutation-based SQL
Injection Vulnerabilities Checking (testing) tool (MUSIC)
that automatically generates mutants for the applications
written in Java Server Pages (JSP) and performs mutation
analysis. Mutation is the act of intentionally modifying a
program’s code, then re-running a suite of valid unit tests
against the mutated program. Mutation testing is a method
of fault-based software testing, which involves modifying
programs' source code or byte code in small ways.
Mutation testing is done by selecting a set of mutation
operators and then applying them to the source program one
at a time for each applicable piece of the source code. [8]
The result of applying one mutation operator to the program
is called a mutant. These mutants are killed by a test case if
it is causes different end output or different intermediate
state between the original program and a mutant. Otherwise
the mutant is remaining alive. Additional test cases should
be generated for killing live mutants. Authors proposed nine
mutation operators to inject SQLIV in source code of
application which four of them inject faults into generated
SQL queries and remaining five of operators inject faults
into the API method calls. However, MUSIC is very simple
and effective way for testing SQL queries having simple
form, but it cannot address the SQLIV of stored procedures.

3) Sania: syntactic and semantic analysis for automated
testing against SQL injection

Sania, is a technique for detecting SQLIV in web
applications in development and debugging phase which
using the following procedures.

1) Sania intercepts the SQLqueries between a web

application and a database. Then, collects normal SQL
queries between client and web applications and
between the web application and database, and analysis
the vulnerabilities.

2) It automatically generates elaborate attacks according to
the syntax and semantics of the potentially vulnerable
spots in the SQL queries.

3) After attacking with the generated code, it collects the
SQL queries generated from the attack. [9]

4) Sania compares the parse trees of the intended SQL
query and those resulting after an attack to assess the
safety of these spots.

5) Finally, it determines whether the attack
succeeded or not. By analyzing the syntax in the parse
tree of SQL queries, it is possible to generate precise
pinpoint attack requests. [10]

B. Dynamic Approach

We discuss three different popular dynamic approaches for
countering to SQLIA.

Parveen Sadotraet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,678-686

© 2015-19, IJARCS All Rights Reserved 683

1) AIIDA-SQL

This method suggests a hybrid approach based on Adaptive
Intelligent Intrusion Detection (AIIDA-SQL) for detection
of SQLIA. AIIDA-SQL combines the advantages of Case-
Based Reasoning (CBR) systems, such as learning and
adaptation, with the predictive capabilities of a combination
of Artificial Neural Network (ANN) and Support Vector
Machine (SVM). Through these mechanisms, [11] their take
advantages of both strategies in order to trustworthy
classifying the SQL queries. In final manner, in order
 to classify SQL queries as distrustful, utilized a
virtualization mechanism, which combines clustering
techniques and unsupervised neural models to reduce
dimensionality of the data.

2) A query tokenization based method

This is a technique based query tokenization is proposed for
detect and prevent SQL injection attacks. This method
checks user inputs whether their cause changes query’s
intended result. At the next step, this method tokenizing
original query and malicious injected query, separately.
After tokenizing, two arrays are created by all
 tokens. Finally, the lengths of obtained arrays are
compared. If their length be different, an injection attack is
detected.

3) A learning based approach

Bertino et al. have proposed a framework based on anomaly
detection techniques to detect malicious behavior of
database application programs. The approach is as follows.
At first step, a fingerprint of an application program based
on SQL queries is created. Then, take advantages of
association rule mining techniques to extract useful rules
from these fingerprints. These rules depict normal behavior
of the database application. Finally, dynamic queries check
against these rules to detect injection attacks that not
conform to these rules.

C. Hybrid Approach

1) A method based on removing SQL query attribute
values
Lee et al. proposed a simple and efficient method for
detecting SQLIA. Their method utilizes static and dynamic
phases for finding vulnerabilities in web application. This
method removes the attribute values of SQL queries at
runtime (dynamic method) and compares them with the
SQL queries analyzed in advance (static method). [12] It
detects attacks by comparing the structure and the grammar
of the queries. If a dynamically generated query has a
different structure or uses a different grammar from that of a
static query, it is detected. Authors shown that their
proposed method has time complexity and can implement
on any type of DBMS.

2) Obfuscation-based Analysis of SQL Injection Attacks

Halder and Cortesi proposes the obfuscation and de-
obfuscation based technique to detect the presence of

possible SQLIA in a query before submitting it to a DBMS.
In the static phase, the queries in the application are replaced
by queries in obfuscated form. Now the Obfuscated code is
a source code that has been made difficult for human. [13]
In obfuscation approach the possible attack injection are
verified at atomic formula level and only those atomic
formulas which are tagged as vulnerable, also this approach
avoids the root cause of SQL injection attacks in dynamic
query generation. Authors show that their proposed
algorithm could detect SQLIA with negligible runtime
overhead and do not dependent on specific application.

Here are the ways you can help prevent or mitigate SQL
injection attacks in your organization and save your
websites and web applications.

1. Trust no-one:

This first rule to assume all user-submitted data is evil and
validate and sanitize everything.

2. Don't use dynamic SQL when it can be avoided:

Don't use dynamic SQL when it can be avoided

3.

 used
prepared statements, parameterized queries or stored
procedures instead whenever it is possible.

Automate SQL injection testing

In the early days of SQL injection attacks, manual testing
was the only way to determine if systems, databases or web
applications were vulnerable to the SQL injection threat.
Manual testing sifting through error messages and database
structure information is a long and tedious process, [14]and
even then, is no guarantee that you will find every
vulnerability. So, you must follow automatic SQL testing
system.

4.

You can say thanks to new several automated tools available
to carry out simulated SQL injection attacks on your own
databases to see how susceptible your systems and
applications are to threats. Here you can also learn more
about how ethical hacking tools can help detect
vulnerabilities before they are exploited and how to perform
automated tests for all vulnerabilities, including SQL
injections, to stop attacks before they start.

Updating and patching the systems

Vulnerabilities in applications and databases that hackers
can exploit using SQL injection are regularly discovered so
it's very important to apply patches and updates as soon as
practical and possible.

:

5. Implementation of Web Application Firewall:

Never forget firewall. Always Consider a web application
firewall (WAF) either software or hardware based which
will help to filter out malicious data. Good ones will have a
comprehensive set of default rules, [15] and make it easy to
add new ones whenever necessary. A WAF can be
particularly useful to provide some security protection

Parveen Sadotraet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,678-686

© 2015-19, IJARCS All Rights Reserved 684

against a particular new vulnerability before a patch is
available.

6. Reduce your attack surface:

Get rid of any database functionality that you don't need to
prevent a hacker taking advantage of it. For example, the
xp_cmdshell extended stored procedure in MS SQL spawns
a Windows command shell and passes in a string for
execution, which could be very useful indeed for a hacker.
The Windows process spawned by

xp_cmdshell

7. Implement Host Intrusion Prevention System (HIPS)
Rules

 has the
same security privileges as the SQL Server service account.

A foundational goal in computer and system security is
maintaining the health or integrity of individual hosts a
HIPS is a valuable component used to defend computer host
integrity. In enterprise deployments, Host Intrusion
Prevention Systems are centrally managed, and SAs push
policies and rules down to the individual hosts. Alerts of
malicious or abnormal activity on the hosts are pushed back
up to the management system where they can be correlated
and acted upon.

8. Control Administrative Privileges

Administrative privileges on a computer system allow
access to resources that are unavailable to most users and
permit the execution of actions that would otherwise be
restricted. When such privileges are administered
improperly, granted widely, and not closely audited,
attackers are able to exploit them and move effortlessly
through a network. Gaining administrative privileges is
commonly achieved through a technique known as privilege
escalation. Privilege escalation is defined as the act of
exploiting a bug, design flaw, or configuration oversight in
an operating system or software [16] application to gain
access to resources that are unavailable to normal users.
Poorly managed administrative privileges make executing
this technique much easier.

It is very much important that on an SQL server, appropriate
controls be put in place to prevent a hacker from “breaking
out” of the database itself. If you are using SQL Server,
ensure that you have disabled xp_cmdshell and that the web
user’s permissions are as limited as possible. Ensure that the
database user account is NOT given system privileges as
this is one of the main methods for attackers to break out of
the database.

9. Use appropriate privileges:

Don't connect to your database using an account with
admin-level privileges unless there is some compelling and
concrete reason to do so. Using a limited access account is
always safer and can limit to manifold what a hacker is can
do.

10. Secrets is secret:

Secret is Secret so keep it secret only. Assume that your
application is not secure and act accordingly by encrypting
or hashing passwords and other confidential data including
connection strings then never people let it know about it.

11.

Use a Web Vulnerability Scanner to Find and Fix
Vulnerabilities

Network owners and operators should remain constantly
vigilant in knowing at all times the state of their network. It
is important that System Administrators (SAs) implement a
plan to scan their public-facing web-server for common
vulnerabilities, [17] using one of any number of very good
commercial scanners. As vulnerabilities are found, they
should be fixed or patched. This is especially crucial for
networks that have older web applications; as sites get older,
more vulnerabilities are discovered and exposed.

Recommendations to scan for following vulnerabilities:
• SQL Injection
• Local File Inclusion
• Cross-Site Scripting

12.

• General Coding and Input Errors

Don't divulge more information than you need to:

Don't divulge more information than you need to

13. Harden Web Applications

 hackers
can learn a great deal about database architecture from error
messages so ensure that they display minimal information as
possible. Use the "Remote Only" custom Errors mode to
display verbose error messages on the local machine while
ensuring that an external hacker gets nothing more than the
fact that his actions resulted in an unhandled error.

It’s

i) Ensure the SA account has a very strong password

the most effective way to prevent attacks. The
unsecured purchasing site played a crucial role in the
adversary’s attack, essentially serving as an unlocked door
to the back-end database. Hardening these web applications
is a vital step in preventing intrusions, and should be part of
every enterprise service’s overall operation and mitigation
strategy.

For MS-SQL Server

ii) Remove the SQL guest user account
iii) Remove the BUILTIN\Administrators server login
iv) Do not grant permissions to the public role

Many hackers will use SQL injection to obtain dumps of the
database user’s credentials in order to use them to SSH or
telnet into the system. Ensure that database user accounts
have a different password from any privileged account on
the system to prevent this from happening. Ensure that all
passwords meet recommended complexity requirements and
ensure that you have changed all of the default passwords on
your database accounts. Many times, people don’t change
even default passwords. [18] If your database is not
encrypting, salting, or hashing user’s passwords, this must
be fixed immediately. Regardless of which database you are

Parveen Sadotraet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,678-686

© 2015-19, IJARCS All Rights Reserved 685

using, the user account associated with the web application
should have the minimum privileges possible.

14. Never forget the basics:

Never forget the basics like

15.

 changing the passwords of
application accounts into the database regularly. This is
common sense, but in practice these passwords often stay
unchanged for months or sometimes even for years.

New defenses for automated SQL injection attacks

In the recent time attackers, have used SQL injection attack
methods to quickly find and exploit website vulnerabilities
and effectively spread malware. So, in this scenario in order
to prevent SQL injections, enterprise security teams must go
above and beyond the old SQL defense of testing and
patching Web application code.

16.

Companies must not only build defenses and practice secure
coding best practices, but also develop an in-depth
understanding of how SQL injection attacks work and how
the threat has evolved the earlier SQL injection attacks
didn't have the vulnerability detection capabilities of
contemporary attacks -- as well as learn how to find, [19]
isolate and address websites infected with malware on a
website. In this tip a security expert Michael Cobb explains
how the SQL injection threat has evolved, what types of
defenses, such as toolkits and vendor products, are available
today to help thwart the threat and best practices for
protection from SQL injection attacks of the future.

Buy better software:

Make code writers responsible for checking the code and for
fixing security flaws in custom applications before the
software is delivered. [20] SANS also suggests you
incorporate terms from this sample contracting to your
agreement with any software vendor.

VI. CONCLUSIONS

SQL injection attack is not new this attack poses a serious
security threat over the Internet or over web application
from the day we started DBMS. In SQL injection attacks,
hackers can take advantage of poorly coded Web application
software to introduce malicious code into the organization's
systems and network. The vulnerability exists when a Web
application do not properly filter or validate the entered data
by a user on a Web page. Large Web applications have
hundreds of places where users can input data, each of
which can provide a SQL injection attack opportunity. [21]
Attackers/hackers can steal/edit/delete confidential and
critical data of the organization with these attacks resulting
loss of market value of the organization. This paper
presented an effective survey of SQL Injection attack,
detection and prevention techniques. We also analyzed some
existing techniques to detect attack and mitigate risk
associated with these attacks.

We presented a system for preventing SQL injection attacks
against web servers. The main intuition is that by using a
randomized SQL query language, specific to a particular

CGI application, it is possible to detect and abort queries
that include injected code. By using a proxy for the de-
randomization process, we achieve portability and security
gains: the same proxy can be used with various DBMS
back-end, and it can ensure that no information that would
expose the randomization process can leak from the
database itself. Naturally, care must be taken by the CGI
implementer to avoid exposing randomized queries (as is
occasionally done in the case of errors). We showed that this
approach does not sacrifice performance: the latency
overhead imposed on each query was at most 6.5
milliseconds.

With the help of this paper we tried to provide taxonomy of
methods for prevent and detect SQL injection attacks. We
first define vulnerabilities in web application and how these
vulnerabilities may cause SQL injection attacks. Then, we
present a classification of SQLIA based on vulnerability.
Afterwards, divide the SQL injection and prevention
methods to three different categories: static, dynamic and
hybrid approaches. These approaches different in the time
which are counteracting to possibility of SQLIA. The paper
discusses different SQL detection and prevention techniques
for a given attack which recently been proposed.
Furthermore, we evaluated these techniques, with respect to
deployment requirements. For all the negative impact of
SQL injection vulnerability, the countermeasures are
surprisingly simple to enact. The first rule, which applies to
all Web development, is to validate user-supplied data. SQL
injection payloads require a limited set of characters to fully
exploit vulnerability. Web sites should match the data
received from a user against the type (for example, integer,
string, date) and content (for example, e-mail address, first
name, telephone number) expected. We believe that each
detection or prevention technique cannot provide complete
protection against SQLIA, [13] but a combination of the
presented mechanisms will cover a wide range of SQL
injection attacks which will culminate in a more secure and
reliable database which is protected against SQL Injection
Attacks.

VII. REFERENCES

[1] https://www.acunetix.com/websitesecurity/sql-
injection/

[2] http://cis1.towson.edu/~cssecinj/modules/other-
modules/database/sql-injection-introduction/

[3] http://www.ijcce.org/papers/244-E091.pdf
[4] https://www.cs.columbia.edu/~angelos/Papers/sqlran

d.pdf
[5] Parveen Sadotra (CEH), “Hashing Technique - SQL

Injection Attack Detection & Prevention”
International Journal of Innovative Research in
Computer and Communication Engineering, Vol. 3,
Issue 5, May 2015 pg. 4356 – 4365.

[6] https://www.uscert.gov/sites/default/files/publications
/sql200901.pdf

[7] http://www.cisco.com/web/about/security/intelligence
/sql_injection.html

[8] https://www.defcon.org/images/defcon-10/dc-10-
presentations/dc10-spett-sqlinjection/dc10-spett-
sqlinjection.pdf

[9] https://blog.udemy.com/sql-injection-tutorial/

Parveen Sadotraet al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,678-686

© 2015-19, IJARCS All Rights Reserved 686

[10] http://www.dbnetworks.com/form/Ponemon_SQL_In
jection_Threat_Survey.htm

[11] http://www.ponemon.org/local/upload/file/DB%20Ne
tworks%20Research%20Report%20FINAL5.pdf

[12] http://research.ijcaonline.org/volume114/number17/p
xc3902007.pdf

[13] Parveen et al., “A New Proposed Method for
Detection and Prevention of SQLIA (SQL Injection
Attack)”International Journal of Advance Research in
Computer Science and Management Studies, Volume
3, Issue 5, May 2015 pg. 68-75.

[14] http://www.w3schools.com/sql/sql_injection.asp
[15] https://blog.udemy.com/sql-injection-tutorial/

[16] http://www.sqlinjection.net/risks/
[17] https://www.owasp.org/index.php/SQL_Injection
[18] http://www.owasp.org/index.php/Main_Page
[19] http://www.enterprisenetworkingplanet.com/netsecur/

article.php/3866756/10-Ways-to-Prevent-or-Mitigate-
SQL-Injection-Attacks.htm

[20] http://searchsecurity.techtarget.com/tutorial/SQL-
injection-protection-A-guide-on-how-to-prevent-and-
stop-attacks

[21] https://www.owasp.org/index.php/SQL_Injection_Pre
vention_Cheat_Sheet

