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Abstract: Playfair cipher is a multi letter, poly alphabetic, symmetric cipher having a 2 dimensional key matrix supporting the security of 26 
English alphabets. From the survey it is found that there are other variants which have key matrices with 3 and 4 dimensions. The main aim of 
this research is to provide the generalization for multidimensional Playfair cipher which includes choosing the dimension based on the number of 
values/characters supported by the Playfair cipher variant and the corresponding encryption and decryption processes. It is found from the 
dimensional analysis that more is the dimension for the fixed number of values/characters supported, stronger is the cipher against brute force 
attack with respect to possible number of groups. 
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I. INTRODUCTION 

Playfair cipher (Classical Playfair cipher or Wheatstone 
cipher) is one of the oldest conventional ciphers. It is found by 
Sir Charles Wheatstone in 1854. It is named after his friend 
Playfair who championed it at the British office. It has played 
a decisive role in World War I and World War II [1]. It works 
with digrams supporting 26 English letters, having X as filler 
letter and I and J treated as same. It uses a 2 dimensional key 
matrix of size 5 × 5 [2].  

There are proposals of new variations of 2 dimensional 
Playfair cipher supporting different character sets [3-7].  Kaur 
et al [8] proposed the 3 dimensional Playfair cipher supporting 
64 characters, working with trigrams and having the key 
matrix of size 4 × 4 × 4. There are articles [9-12] proposing 
the extensions of 3 dimensional Playfair cipher supporting the 
same character set but combined with Linear Feedback Shift 
Register. Bhat et al [13], [14] proposed the 4 dimensional 
Playfair cipher supporting 260 values, working with quartets 
and having the key matrix of size 2 × 2 × 13 × 5. 

The objective of this research is to find the general formula 
for encryption and decryption of D dimensional Playfair 
cipher where D is a natural number greater than 1 and to find 
the maximum dimension of a Playfair cipher variant based on 
the number of values/characters it supports.  

The organization of this article is as follows. Section II 
discusses the generalization. Section III gives an illustration of 
a 5 dimensional Playfair cipher variant using generalization. 
Section IV elaborates on the dimensional analysis. 

 

II. GENERALIZATION 

Choosing the dimension for the key matrix of a Playfair 
cipher variant depends on the number of values/characters 
supported by that variant. If N is the number of 
values/characters supported by the variant then the maximum 
dimension of the key matrix is the number of prime factors in 
the factorized form of N i.e. if N = F1 × F2 × … × FD-1 × FD 
where F1, F2, …, FD-1, FD are primes then the maximum 
dimension is D. For N = 32 = 2 × 2 × 2 × 2 × 2, the maximum 
dimension is 5. In order to have a 4 dimensional key matrix 
with N = 32, 32 is factored as 4 × 2 × 2 × 2. Since Playfair 
cipher is a multi letter cipher, minimum dimension of the key 
matrix is 2. 

In a key matrix with D dimensions, each element in the key 
matrix is represented using D co-ordinates (X1, X2… XD-1, 
XD). If N = 32 = 2 × 2 × 2 × 2 × 2 then D = 5 and X1, X2, X3, 
X4, X5

A. Encryption Process 

 = 0 or 1. The first and last cell elements in the key 
matrix are represented by the co-ordinates (0, 0, 0, 0, 0) and 
(1, 1, 1, 1, 1) respectively. 

 

A group having D elements is considered at once while 
encrypting. If E0, E1, …, ED-1 are the elements in the group 
according to the order they appear then each element Ei where 
0 ≤ i ≤ D-1 is substituted by the element with the co-ordinates: 
(E(i+2) mod D.X1, E(i+3) mod D.X2, …, E(i+D-2) mod D.XD-3, E(i+D-1) mod 

D.XD-2, Ei.XD-1, E(i+1) mod D.XD). Here, Ei.Xj represents the Xj 
co-ordinate value for the element Ei 

Dimension 

where 1 ≤ j ≤ D. 
Encryptional substitutions for dimensions 2 to 8 are shown in 
Table I.

 
 

Table I. Encryptional substitutions for dimensions 2 to 8 
Substitution 

2 (Ei.X1, E(i+1) mod 2 .X2) 
3 (E(i+2) mod 3 .X1,  Ei.X2, E(i+1) mod 3 .X3
4 

) 
(E(i+2) mod 4 .X1,  E(i+3) mod 4 .X2, Ei.X3, E(i+1) mod 4 .X4

5 
) 

(E(i+2) mod 5 .X1,  E(i+3) mod 5 .X2, E(i+4) mod 5 .X3, Ei.X4, E(i+1) mod 5 .X5
6 

) 
(E(i+2) mod 6 .X1,  E(i+3) mod 6 .X2, E(i+4) mod 6 .X3, E(i+5) mod 6 .X4, Ei.X5, E(i+1) mod 6 .X6

7 
) 

(E(i+2) mod 7 .X1,  E(i+3) mod 7 .X2, E(i+4) mod 7 .X3, E(i+5) mod 7 .X4, E(i+6) mod 7 .X5, Ei.X6, E(i+1) mod 7 .X7
8 

) 
(E(i+2) mod 8 .X1,  E(i+3) mod 8 .X2, E(i+4) mod 8 .X3, E(i+5) mod 8 .X4, E(i+6) mod 8 .X5, E(i+7) mod 8 .X6, Ei.X7, E(i+1) mod 8 .X8) 
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B. Decryption Process 
During decryption, each element Ei in the group is 

substituted by the element with the co-ordinates: (E(i+D-2) mod 

D.X1, E(i+D-3) mod D.X2, …, E(i+2) mod D.XD-3, E(i+1) mod D.XD-2, 
Ei.XD-1, E(i+D-1) mod D.XD

Dimension 

). Decryptional substitutions for 
dimensions 2 to 8 are shown in Table II.

 
 

Table II. Decryptional substitutions for dimensions 2 to 8 
Substitution 

2 (Ei.X1, E(i+1) mod 2 .X2) 
3 (E(i+1) mod 3 .X1, Ei.X2, E(i+2) mod 3 .X3
4 

) 
(E(i+2) mod 4 .X1, E(i+1) mod 4 .X2, Ei.X3, E(i+3) mod 4 .X4

5 
) 

(E(i+3) mod 5 .X1, E(i+2) mod 5 .X2, E(i+1) mod 5 .X3, Ei.X4, E(i+4) mod 5 .X5
6 

) 
(E(i+4) mod 6 .X1, E(i+3) mod 6 .X2, E(i+2) mod 6 .X3, E(i+1) mod 6 .X4, Ei.X5, E(i+5) mod 6 .X6

7 
) 

(E(i+5) mod 7 .X1, E(i+4) mod 7 .X2, E(i+3) mod 7 .X3, E(i+2) mod 7 .X4, E(i+1) mod 7 .X5, Ei.X6, E(i+6) mod 7 .X7
8 

) 
(E(i+6) mod 8 .X1, E(i+5) mod 8 .X2, E(i+4) mod 8 .X3, E(i+3) mod 8 .X4, E(i+2) mod 8 .X5, E(i+1) mod 8 .X6, Ei.X7, E(i+7) mod 8 .X8) 

 

III. AN ILLUSTRATION OF 5 DIMENSIONAL 
PLAYFAIR CIPHER 

A 5 dimensional Playfair cipher variant is considered 
supporting 32 characters among which 26 are English 
alphabets (A to Z) and 6 are symbols (!, @, #, $, ^, &). The 
key matrix formation is similar to that of Classical Playfair 
cipher. The key matrix for the key KRISHNA is shown in 
Table III. 

  
 

Table III. Key matrix for the key KRISHNA 
K R I S 
H N A B 
C D E F 
G J L M 
O P Q T 
U V W X 
Y Z ! @ 
# $ ^ & 

 
Table IV shows the co-ordinates representing each element of 
the key matrix shown in Table III.

Table IV. Co-ordinates representation of elements of the key matrix shown in Table III 
Element X X1 X2 X3 X4 

 

5 Element X X1 X2 X3 X4 5 
K 0 0 0 0 0 O 1 0 0 0 0 
R 0 0 0 0 1 P 1 0 0 0 1 
I 0 0 0 1 0 Q 1 0 0 1 0 
S 0 0 0 1 1 T 1 0 0 1 1 
H 0 0 1 0 0 U 1 0 1 0 0 
N 0 0 1 0 1 V 1 0 1 0 1 
A 0 0 1 1 0 W 1 0 1 1 0 
B 0 0 1 1 1 X 1 0 1 1 1 
C 0 1 0 0 0 Y 1 1 0 0 0 
D 0 1 0 0 1 Z 1 1 0 0 1 
E 0 1 0 1 0 ! 1 1 0 1 0 
F 0 1 0 1 1 @ 1 1 0 1 1 
G 0 1 1 0 0 # 1 1 1 0 0 
J 0 1 1 0 1 $ 1 1 1 0 1 
L 0 1 1 1 0 ^ 1 1 1 1 0 
M 0 1 1 1 1 & 1 1 1 1 1 

 
Encryption and decryption of a plain message KITTA of 

length 5 and its cipher message respectively are discussed in 
following subsections. 

 

A. Encryption 
Using Table IV as reference, Table V shows the 

substitution done for each character in the plain message. The 

substitution formula is taken from Table I corresponding to 
dimension 5. K is substituted by U which has the X1 co-
ordinate value as that of T, X2 co-ordinate value as that of T, 
X3 co-ordinate value as that of A, X4 co-ordinate value as that 
of K and  X5

Plain 
message 

 co-ordinate value as that of I. In a similar way, 
other characters are substituted. The cipher message formed is 
UTSII.

 
Table V. Encryptional substitutions for plain message KITTA 

X X1 X2 X3 X4 
Cipher 

message 5 

K 1 0 1 0 0 U 
I 1 0 0 1 1 T 
T 0 0 0 1 1 S 
T 0 0 0 1 0 I 
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A 0 0 0 1 0 I 

 

B. Decryption 
Using Table IV as reference, Table VI shows the substitution 
done for each character in the cipher message. The substitution 
formula is taken from Table II corresponding to dimension 5. 
U is substituted by K which has the X1 co-ordinate value as 

that of I, X2 co-ordinate value as that of S, X3 co-ordinate 
value as that of T, X4 co-ordinate value as that of U and X5

 

 
co-ordinate value as that of I. Likewise, other characters are 
substituted. The decrypted message formed is KITTA. 

Table VI. Decryptional substitutions for cipher message UTSII 
Cipher 

message X X1 X2 X3 X4 
Decrypted 

5 message 
U 0 0 0 0 0 K 
T 0 0 0 1 0 I 
S 1 0 0 1 1 T 
I 1 0 0 1 1 T 
I 0 0 1 1 0 A 

 

IV. DIMENSIONAL ANALYSIS 

In the above illustration, possible number of groups of 
size 5 for N = 32 is 325. If the dimension was 4 for the 
same N then possible number of groups is 324. In general, 
if D is the dimension and N is the number of elements in 
the key matrix then possible number of groups is ND

V. CONCLUSION 

. In 
order to be strong against brute force attack with respect to 
possible number of groups, dimension chosen must be the 
maximum. 

 

Generalization for multidimensional Playfair cipher 
can be used to find the maximum dimension of the key 
matrix having a set of characters/values supported by a 
Playfair cipher variant and its encryption and decryption 
procedures and to make the brute force attack hard with 
respect to possible number of groups. 
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