
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 189

ISSN No. 0976-5697

Dynamic Test Data Generation using Negative Selection Algorithm and Equivalence
Class Partitioning

Wasiur Rhmann
Babasaheb Bhimrao Ambedkar University,

Lucknow, India

Dr. Gufran Ahmad Ansari
Assistant Professor, Department of Information Technology,

College of Computer, Qassim University, Al-Qassim,
Kingdom of Saudi Arabia(KSA)

Abstract: Test data generation is challenging in software testing. Huge amount of generated test data is used to expose faults in the software.
Test data generated inefficiently leads extra efforts. In path testing different independent paths generated from Control Flow Graph (CFG) are
forced to traverse by test data. In the present paper, we proposed a novel technique to dynamically reduce test data based on Equivalence
partitioning of output domain. Paths which are functionally meaningful are considered for test data generation. Experiments are performed on
benchmark programs.

Keywords: Test data, Negative Selection Algorithm, Activity Diagram, Software Testing

I. INTRODUCTION

All Software testing is an important activity of the software
development process. It improves the quality of the software
and enhances the reliability. Testing is performed with the
intent to show presence of faults. Test data is generated to
check whether software is satisfying requirements. Due to
large input domain of the software. Generation of all possible
input data will be infeasible. Different coverage criteria are
proposed to determine the adequacy of test data. These
coverage criteria are based on program. Statement coverage
criteria are least criteria required for unit testing [1]. Branch
coverage exercise both true and false conditions of branch of
control flow graph of a program. Branch coverage is stronger
criteria than statement coverage. There are many other criteria
in literature and path coverage is strongest criteria. Path
coverage can not possible to achieve in the presence of loop.
Path testing is strongest criteria for generation of test data.
There may be infinite number of paths due to presence of
loops. So test data for independent paths is usually considered
for path testing. In path testing some paths may be infeasible
i.e. no test data is possible which can traverse these paths.
Presence of infeasible paths is problematic for test data
generation. So in the present work only functionally
meaningful paths are considered.
The rest of the paper is organized as follows: section 2 is
related work and section 3 is Negative Selection algorithm
section 4 described the proposed approach and section 5 is
empirical study of proposed approach and finally section 6
concluded the work.

II. . RELATED WORK

Yao et al. [2] established a constrained multi objective model
for test data generation. Authors considered better spatial
distribution by considering the statement coverage. Genetic
algorithm is used to solve the proposed model. Experimental
results showed that proposed model has better fault finding
ability. Zhang and Gong [3] presented a method based on
multiple paths for detection of faults. A multi objective
optimization problem with constrained is formulated based on

multiple paths and faults. Weighted genetic algorithm is used
to solve the proposed model. Yao and Gong[4] established a
test model for test data generation for multiple paths coverage.
Proposed model is solved using multi population genetic
algorithm using individual sharing. Authors measured the
performance of proposed approach theoretically and
experimentally. Shimin and Zhangang [5] proposed a genetic
algorithm based test data generation technique. Proposed
approach reduced the redundancy is generated test data. Gonga
et al. [6] proposed a technique of multiple test data generation.
Evolutionary algorithm is used for test data generation based
on grouping. Paths similarities are used to group similar paths
and each group is used to form as sub optimization problem.
These sub optimization algorithms are solved for test data
generation.

III. NEGATIVE SELECTION ALGORITHM

Artificial immune system is an active research which is
inspired from Biological immune system [7] [8]. Different
types of AIS methods are used in change detection, fault
detection and network intrusion detection [9] [10]. NSA,
Clonal selection and immune network model are some AIS
methods used extensively [11].
Human immune system protect from several infectious
diseases and helps in proper functioning of the body. Negative
selection algorithm is an Artificial Immune System (AIS)
method inspired from Natural Immune System. Complicated
computations are solved using immune based techniques.
Negative selection algorithm works as classification algorithm.
It classifies the data into self and non-self. In NSA a number
of detectors are generated from search space. Then new
generated data is classified as self or non-self-based detectors.
Generation and maturation of T-cells in thymus is termed as
Negative selection algorithm. T-cells that match self are
deleted before they release to body.
There are two stages in NSA

Wasiur Rhmann et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,189-192

© 2015-19, IJARCS All Rights Reserved 190

1. Generation stage(Training stage)

 Figure 1 Generation of detectors

In the first stage of Negative selection algorithm number

of detectors are generated randomly. If a generated data is
matched with already available detectors then generated
detector is discarded else it is added in detector set till the
desired number of detectors are achieved.

2. Detection stage(Testing stage)

 Figure 2 Detection stage

In detection stage detector set are used to classify the

input sample as self and non-self. If new data is matched with
any detectors is classified as a non-self.

IV. PROPOSED METHODOLOGY

Overview proposed technique of test data generation is given
in Fig. 3. There are two main steps in test data generation
process in first step Test data is generated randomly and
redundant data is removed. Generated test data works like
detectors of NSA algorithm. Test data is generated in binary
form for each variable of the program. When enough test data
are available from first step then, in the second step new test
data is generated and newly generated test data is matched

with the available test data from first step if newly generated
data is not matched then hamming distance from all available
test data is calculated. If hamming distance is greater than a
constant value determined by trial and errors then software
under test (SUT) is executed with newly generated test data.
After execution if output matches from available equivalence
classes then newly generated test data is added in the set of test
data and that equivalence class is removed from Output file of
equivalence classes.

 Figure 3 Overview of proposed approach

Input:
1- The program under test P and its input variable list X= (x1,
x2, …, xn)
Where x is data from search space of program;
2-Output Equivalence Classes of program P;
3- The parameters of the algorithm, Number of detectors max,
c;
Output:
1- Set of test data D=(d1, d2, …, dn) which satisfied the
functionally meaningful path coverage and output equivalence
classes;
Begin
Step 1: Initial test data is generated randomly;
Step 2: If initial test data reach to coverage then go to end
Step 3: Generate a new test data x from search space of
program;
Step 4: Calculate the similarity of x with every test data di in
D, which is the sum of hamming distance and could be
calculated as given below;

H=Sum of hamming distance of test data x with already
available test data di;
Step 5: Check the distance H

Program
Under
Test

 NSA Algorithm

Equivalence
classes of
program

Test data
which

covered all
Equivalence

classes

Initial test data
generation randomly

New test data generation
and check data from
equivalence classes

Wasiur Rhmann et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,189-192

© 2015-19, IJARCS All Rights Reserved 191

Step 6: if H<c then Remove the new test data x;
Where c is constant value determined by trial and errors;
Step 7: else if x from output Equivalence class then add s to D
and Remove that Equivalence class from output file of
Equivalence class;
Step 8: end if
Step 9: Repeat steps 3 to 8 until detector number >max or D
reach to full coverage of functionally meaningful paths U;
End

 Figure 4 Activity diagram of proposed algorithm

V. EMPIRICAL VALIDATION

Fig. 5 shows the sample java program for finding roots of
quadratic equation and Table 1 shows output equivalence

classes of the program.

import java.io.*;
import static java.lang.System.out;
importjava.util.Scanner;
public class JavaApplication121
{
public static void main(String[] args) throws
FileNotFoundException
 {

double root1, root2, d;

 Scanner scanner = new Scanner(new File("F:/input.txt"));
String [] b = new String[1000]; int [] a = new int[1000];
inti = 0; int count=0;

while(scanner.hasNext()){
b[i] = scanner.nextLine(); a[i] = Integer.parseInt(b[i],2);
i++;
}
 d = a[1] * a[1] - 4 * a[0] * a[2];
if(d > 0)
 {
System.out.println("Roots are real and unequal");
 root1 = (- a[1] + Math.sqrt(d))/(2*a[0]);
 root2 = (-a[1] - Math.sqrt(d))/(2*a[0]);
System.out.println("First root is:"+root1);
System.out.println("Second root is:"+root2);
 }
else if(d == 0)
 {
System.out.println("Roots are real and equal");
 root1 = (-a[1]+Math.sqrt(d))/(2*a[0]);
System.out.println("Root:"+root1);
 }
else
 {
System.out.println("Roots are imaginary");
 }
 }
}

Figure 5 Java program to find roots of quadratic equations

There are 3 equivalence classes of output domain of the

program.
Table 1. Equivalence classes of program in Fig. 5

Name of Equivalence

Class
Condition

Roots are real and unequal d>0
Roots are real and equal d=0

Roots are imaginary d<0

Table 2. and Table 3. Shows the test data for quadratic
equation program which is generated from generation step of
NSA algorithm.

Table 2. Test data1

Test data1
a[0] a[1] a[2]
1110 0111 1011

11100111101

Wasiur Rhmann et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,189-192

© 2015-19, IJARCS All Rights Reserved 192

Table 3. Test data2

Test data2

a[0] a[1] a[2]
1110 0101 1001

111001011001

Table 4. shows the hamming distance calculated from test
data1 and test data2

 Table 4. Hamming distance calculation

Test data1 Test data2 Hamming distance

11100111101 11100111101 2

For experimental purpose java programming is used and
proposed algorithm is implemented in Net beans using java.
Test data is generated for program given in Table 5.

Table 5. Test data generated for sample programs
Program Number of

generations
Test data

Quadratic
equations

2 53

Triangle
classification

5 115

VI. CONCLUSIONS

In the present work a NSA based dynamic test data generation
algorithm is proposed. Generated test data covered output
domain with less number of data. Different search based
techniques are used by researchers while proposed technique
discarded the redundant data. Data redundancy is also

removed by equivalence class partitioning of the output
domain. Consideration of functionally meaningful paths saves
efforts in test data generation.

VII. REFERENCES

[1] B. Beizer, Software Testing Techniques, Second Edition,
Dreamtech Press, 2011.

[2] X. Yao, D. Gong, G. Zhang, “Constrained multi-objective test
data generation based on set evolution”, IET Software, Vol. 9,
no. 4, pp. 103-108.

[3] Y. Zhang and D. Gong,”Generating test data for both coverage
and faults detection using genetic algorithms: multi-path case”,
Front. Comput. Sci., Vol. 8, No. 5, pp. 726-740.

[4] X. Yao and D. Gong, “Genetic Algorithm-Based Test Data
Generation for Multiple Paths via Individual Sharing”,
Computational Intelligence and Neuroscience, 2014, Article ID
591294, pp. 1-12.

[5] L. Shimin and W. Zhangang, “ Genetic Algorithm and its
Application in the path-oriented test data automatic generation”,
Procedia Engineering, 2011, Vol. 15, pp. 1186-1190.

[6] D. Gonga, W. Zhang, X. Yao, “Evolutionary generation of test
data for many paths coverage based on grouping”,The Journal of
Systems and Software, 2011, Vol. 84, pp. 2222– 2233.

[7] J. Kim, P. J. Bentley, U. Aickelin, “Immune system approaches
to intrusion detection-a review”, Nat. Compt., 2007, Vol. 6, No.
4, pp. 413-466.

[8] D. Dasgupta, “Advances in artificial immune systems”, IEEE
Comput. Intel Mag., 2006, Vol. 1, No. 4, pp. 40-49.

[9] T. Li, “An Immunity based network security risk estimation”,
Sci Chin Ser F, 2005, Vol. 48, No. 5, pp. 798-816.

[10] J. Timmis, P. Andrews, N. Owens, “An interdisciplinary
perspective on artificial immune systems”, Evol. Intel, 2008,
Vol. 1, pp. 5-26.

[11] Li T, Computer immunology, Beijing Publishing House of
Electronics Industry, 2004.

	Introduction
	. related work
	negative selection algorithm
	Proposed Methodology
	Empirical validation
	ConclusionS
	References

