
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 128

ISSN No. 0976-5697

Fault Tolerance and Message Passing Interface Programs
Dr. Mohammad Miyan

Associate Professor, Shia P. G. College, University of Lucknow
Sitapur Road, Lucknow, India

Abstract: In this paper we have mentioned the means that of fault tolerance as a program property that ensures survival of adequate state for
continuing the program. We’ve got surveyed of various researches, use cases and example programs what the MPI customary provides among
the approach of support for writing fault-tolerant programs. We’ve got thought of the many approaches to doing this, which we've incontestable
but one can write fault-tolerant MPI programs. We conclude that, inside bound constraints, MPI will offer a helpful context for writing
application programs that exhibit important degrees of fault tolerance.

Keywords: Checkpointing; Fault tolerance; Implementation; MPI, Process management.

I. INTRODUCTION

The fault tolerance is that the property that allows a system to
continue operational properly within the event of the failure of
(or one or a lot of faults within) a number of its parts. If its
operational quality decreases the least bit, the decrease is
proportional to the severity of the failure, as compared to a
naively designed system within which even a tiny low failure
will cause total breakdown. Fault tolerance is especially
wanted in high-availability or life-critical systems. The power
of maintaining practically once parts of a system break down
is observed as sleek degradation [1]. A fault-tolerant style
allows a system to continue its supposed operation,
presumably at a reduced level, instead of failing fully, once
some a part of the system fails. The term is most ordinarily
accustomed describe computer systems designed to continue a
lot of or less absolutely operational with, perhaps, a discount
in output discount in output or a rise in time interval within
the event of some partial failure. That is, the system as a full
isn't stopped because of issues either within the hardware or
the package software. Associate example in another field may
be a motorcar designed thus it'll still be drivable if one among
the tires is pierced. A structure is in a position to retain its
integrity within the presence of harm because of causes like
fatigue, corrosion, producing flaws, corrosion, producing
flaws, or impact [1].
Within the scope of a private system, fault tolerance will be
achieved by anticipating exceptional conditions and building
the system to address them, and, in general, aiming for self-
stabilization in order that the system converges towards
associate in nursing error-free state. However, if the
implications of a system failure are harmful, or the value of
creating it sufficiently reliable is incredibly high, a far better
resolution is also to use some sort of duplication. In any case,
if the consequence of a system failure is thus harmful, the
system should be able to use reversion to fall back to a secure
mode. This will be kind of like roll-back recovery however
can be somebody's action if humans exist within the loop.
Fault-tolerant computer systems are systems designed round
the ideas of fault tolerance. In essence, they need to be able to
continue operating to a level of satisfaction within the
presence of faults. Fault tolerance isn't simply a property of
individual machines; it's going to conjointly characterize the
principles by that they move. For instance, the Transmission
Control Protocol (TCP) is meant to permit reliable two-way

communication in a very packet-switched network, even
within the presence of communications links that are
imperfect or full. It wills this by requiring the endpoints of the
communication to expect packet loss, duplication, reordering,
and corruption in order that these conditions don't harm
knowledge integrity, and solely scale back output by a
proportional quantity [1], [2], [3], [4].
As trendy supercomputers scale to a whole bunch or perhaps
thousands of individual nodes, the Message Passing Interface
(MPI) remains a simple and effective thanks to program them.
At an equivalent time, the larger range of individual hardware
elements implies that hardware faults are additional doubtless
to occur throughout long running jobs. Users naturally wish
their programs to adapt to hardware faults and continue
running. This ideal is clearly unachievable normally e.g. if all
nodes fail, however users still can do a big degree of fault
tolerance for his or her MPI programs [5]. Most MPI
implementations incorporates a particular set of routines
directly due from C, C++, FORTRAN i.e., API and any
language able to interface with such libraries, together with C,
Java or Python. The benefits of MPI over older message
passing libraries are non-movable as MPI has been enforced
for all the distributed memory architecture; and speed since
every implementation is in theory optimized for the hardware
on that it runs. MPI uses Language Independent Specifications
(LIS) for calls and language bindings. The first MPI standard
specified ANSI C and FORTRAN-77, which bindings each
other with LIS. The draft was bestowed at Supercomputing
1994 and finalized before long thenceforth. Concerning 128
functions represent the MPI-1.3 standard that was output as
the final finish of the MPI-1 series in 2008 [5].
At present, the standard has many versions: version 1.3 i.e.,
said as MPI-1 that emphasizes message passing and
encompasses a static runtime setting, MPI-2.2 (MPI-2), which
has new options like parallel I/O, dynamic method
management and remote memory operations, and MPI-3.1
(MPI-3), which has extensions to the collective operations
with non-blocking versions and extensions to the one-sided
operations. MPI-2's LIS specifies over five hundred functions
and provides language bindings for ISO C, ISO C++, and
FORTRAN 90. Object ability was additionally additional to
permit easier mixed-language message passing programming.
A side-effect of standardizing MPI-2, completed in 1996, was
instructive the MPI-1 customary, making the MPI-1.2. MPI-2

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,128-135

© 2015-19, IJARCS All Rights Reserved 129

is generally a superset of MPI-1, though some functions are
deprecated. MPI-1.3 programs still work below MPI
implementations compliant with the MPI-2 customary. MPI-3
includes new FORTRAN 2008 bindings, whereas it removes
deprecated C++ bindings in addition as several deprecated
routines and MPI objects [6].
MPI is commonly compared with Parallel Virtual Machine
(PVM), that could be a widespread distributed surroundings
and message passing system developed in 1989, and that was
one among the systems that actuated the necessity for
traditional parallel message passing. Rib shared memory
programming models like as Pthreads and OpenMP; and
message passing programming i.e., MPI/PVM, is thought of
as complementary programming approaches, and might
sometimes be seen along in applications, e.g. in servers with
multiple massive shared-memory nodes [5]. The MPI
interface is supposed to produce essential virtual topology,
synchronization, and communication practicality between a
collection of processes that are mapped to nodes, servers and
computer instances; in a very language-independent manner,
with language-specific syntax and many language-specific
options. MPI programs forever work with processes; however
programmers usually sit down with the processes as
processors. Typically, for max performance, every processing
unit i.e., C.P.U. or any other unit or core in a very multi-core
machine are going to be appointed simply one process. This
assignment happens at runtime through the agent that starts
the MPI program, commonly referred to as mpirun or mpiexec
[7]. MPI library functions embody, however don't seem to be
restricted to, point-to-point rendezvous-type send/receive
operations, selecting between a Cartesian or graph-like logical
method topology, exchanging knowledge between method
pairs i.e., send/receive operations, combining partial results of
computations i.e., gather and cut back operations,
synchronizing nodes i.e., barrier operation moreover as
getting network-related data like the quantity of processes
within the computing session, current processor identity that a
process is mapped to, neighboring processes accessible in an
exceedingly network topology, and so on. Point-to-point
operations are available synchronous, asynchronous, buffered,
and prepared forms, to permit stronger and weaker linguistics
for the synchronization aspects of a rendezvous- send. Several
outstanding operations are doable in asynchronous mode, in
most implementations. MPI-1 and MPI-2 each engine
implementations that overlap communication and
computation, however apply and theory dissent. MPI
conjointly specifies thread safe interfaces, that have cohesion
and coupling methods that facilitate avoid hidden state inside
the interface. It’s comparatively simple to write down
multithreaded point-to-point MPI code, and a few
implementations support such code [5], [6], [7].

II. INTERFACE SPECIFICATION

 MPI primarily addresses the message-passing parallel
programming model: information is affected from the
address area of one method to it of
another method through cooperative operations
on every method.

 MPI may be a specification for the developers and users
of message passing libraries. By itself, it's NOT a library
- however rather the specification of what such a
library ought to be.

 Simply expressed, the goal of the Message Passing
Interface is to supply a wide used common place for
writing message passing programs. The interface tries to
be portable, practical, flexible and efficient.

 The MPI standards has well-versed variety of revisions,
with the foremost recent version being MPI-3.x.

 Actual MPI library implementations dissent during
which version and options of the MPI normal they
support. Developers and users ought to bear in mind of
this.

 Interface specifications are outlined for C and
FORTRAN90 language bindings. The MPI-
3 additionally provides support for FORTRAN 2003 and
2008 options and C++ bindings from MPI-
1 are diminished in MPI-3 [6].

III. PROGRAMMING MODEL

The programming model is as follows [6]:
 Originally, MPI was constructed for distributed memory

architectures that were changing into progressively
widespread at that point

(1980 - 1990) as shown in
figure 1.

Figure 1

 As design trends modified, shared memory SMPs were
combined over networks making

 MPI implementers

hybrid distributed
memory /shared memory systems.

 custom-made their libraries to
handle each sorts of underlying memory architectures
seamlessly. They additionally developed ways in
which of handling totally different

interconnects and
protocols as shown by figure 2.

Figure 2

 The programming model clearly remains a distributed
memory model but, notwithstanding the underlying
physical design of the machine. Today, MPI runs on just
about any hardware platform i.e., Distributed Memory,
Shared Memory and Hybrid.

 All similarity is explicit: the computer
programmer is accountable
for properly distinctive similarity and implementing
parallel algorithms victimization MPI constructs.

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,128-135

© 2015-19, IJARCS All Rights Reserved 130

IV. MPI USAGES

The MPI usages are as given [8]:
 Standardization - MPI is that the solely message

passing library that may be thought of a
customary. It’s supported on nearly all HPC
platforms. Much, it's replaced all previous message
passing libraries.

 Functionality - There are over 430 routines
outlined in MPI-3, which incorporates the bulk of
these in MPI-2 and MPI-1. Most MPI programs
are often written employing a dozen or less routines.

 Performance Opportunities -
merchant implementations ought to be able to exploit
native hardware options to optimize performance.
Any implementation is unengaged to develop
optimized algorithms.

 Availability - a spread of implementations are
obtainable, each merchant and property right.

V. RELATED RESEARCHES

G. E. Fagg et al., (2001) [9], have given an overview of the
FT-MPI semantics, design, applications, tools and the
performance. They also discussed about the experiment
HARNESS core implementation, which FT-MPI is built for
operation.
R. Batchu et al., (2001) [10], have presented a fault-tolerant
methodology leading to new MPI implementations, which
provides the support for successful completion of MPI
applications in the presence of random, transient faults,
recurring, induced extraneously.
G. E. Fagg et al., (2004) [11], have discussed the design and
uses of a fault-tolerant MPI, which handles the process
failures in a way beyond that of the original MPI static
process model. The FTMPI allows the semantics and related
modes of failures that were explicitly controlled by an
application through a modified functionality within standard
MPI 1.2 API.
R. Batchu et al., (2004) [12], have described the design and
implementation of MPI/FT, a high-performance MPI-1.2
implementation enhanced with low overhead functionality to
detect and recover from process failures.
P. Balaji et al., (2013) [13], have presented the one sided
communication and two sided communication models as
shown in figure-3 and figure-4 respectively [13].

Figure 3 One sided communication model

Figure 4 Two sided communication model

I. Lagunay et al., (2016) [14], have investigated a different
model for MPI fault tolerance i.e., a global-exception, roll-
back recovery model. In contrast to ULFM, the basic idea of
the model was that upon detecting a fail-stop failure, MPI
reinitializes itself, it returns MPI to its state prior to returning
from MPI_Init, and so that restarts application at an
application specified restart point.

VI. USE CASES AND EXAMPLES

The some common use cases and examples [15] are as
follows:

A. Transparent Checkpoint to NFS
This use case demonstrates the essential checkpoint/restart
practicality of Open MPI. Checkpoints are keeping on to a
globally mounted filing system in the/home/me/checkpoints/
directory. For this instance we have a tendency to assume
application without modifying and Open MPI victimization
the BLCR library for generating the local snapshots.
$HOME/.openmpi/mca-params.conf
Local snapshot directory (not used in this scenario)
crs_base_snapshot_dir was deprecated in r23587, and in
v1.5.1 and later releases.
crs_base_snapshot_dir=/home/me/tmp
sstore_stage_local_snapshot_dir=/home/me/tmp
Remote snapshot directory (globally mounted file system)
snapc_base_global_snapshot_dir was deprecated in
r23587, and in v1.5.1 and later releases.
snapc_base_global_snapshot_dir=/home/me/checkpoints
sstore_base_global_snapshot_dir=/home/me/checkpoints

a) Shell #1:
Start an MPI job enabling fault tolerance. (Assume that the
PID of mpirun is 1234).
shell$ mpirun -am ft-enable-cr my-app <args>
...

b) Shell #2:
Checkpoint the MPI job with mpirun PID 1234. The second
checkpoint, terminate the job.
shell$ ompi-checkpoint 1234
Snapshot Ref.: 0 ompi_global_snapshot_1234.ckpt
shell$ echo "wait for some time..."
shell$ ompi-checkpoint --term 1234
Snapshot Ref.: 1 ompi_global_snapshot_1234.ckpt
shell$

c) Shell #1:
Restart the job from the most recent checkpoint

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,128-135

© 2015-19, IJARCS All Rights Reserved 131

shell$ ompi-restart ompi_global_snapshot_1234.ckpt
...

B. Transparent Checkpoint to Local Disk

This use case demonstrates the basic checkpoint/restart
functionality of Open MPI. Checkpoints are stored directly
to a globally mounted file system in the/home/ me
/checkpoints/ directory. For this example we assume an
unmodified application and Open MPI using the BLCR
library for generating local snapshots.
1) $HOME/.openmpi/mca-params.conf

Transfer the files from the local snapshot directory to the
global snapshot
directory
snapc_base_store_in_place was deprecated in r23587, and
in v1.5.1 and later releases.
snapc_base_store_in_place=0
sstore=stage
Local snapshot directory (locally mounted file system)
crs_base_snapshot_dir was deprecated in r23587, and in
v1.5.1 and later releases.
crs_base_snapshot_dir=/tmp/me/local
sstore_stage_local_snapshot_dir=/tmp/me/local
Remote snapshot directory (locally mounted file system))
snapc_base_global_snapshot_dir was deprecated in
r23587, and in v1.5.1 and later releases.
snapc_base_global_snapshot_dir=/tmp/me/global
sstore_base_global_snapshot_dir=/tmp/me/global

a) Shell #1:
Start an MPI job enabling fault tolerance. (Assume that the
PID of mpirun is 1234).
shell$ mpirun -am ft-enable-cr my-app <args>
...

b) Shell #2:
Checkpoint the MPI job with mpirun PID 1234. The second
checkpoint, terminate the job.
shell$ ompi-checkpoint 1234
Snapshot Ref.: 0 ompi_global_snapshot_1234.ckpt
shell$ echo "wait for some time..."
shell$ ompi-checkpoint --term 1234
Snapshot Ref.: 1 ompi_global_snapshot_1234.ckpt
shell$

c) Shell #1:
Restart the job from most recent checkpoint. Make sure to
pass the --preload option, so the checkpoint files are
transferred to the remote system during startup.
shell$ ompi-restart --preload
ompi_global_snapshot_1234.ckpt
...

C. Checkpointing and SIGSTOP/SIGCONT
This use case demonstrates the way to stop associate degreed
instantly send SIGSTOP to an Open MPI application. The
applying will then be continued through SIGCONT. Instead
the applying may be terminated, and restarted at a later
purpose in time from the generated checkpoint. This
practicality is helpful in an exceedingly gang regular
atmosphere wherever a running application could also be
stopped and command in memory whereas another application
uses the machines. The new application will safely kill the
stopped application if it desires additional memory, since the
stopped application is restarted from a stop. Instead if

additional resources become accessible the stopped
application is

a) Shell #1:
terminated and restarted on the free resources.

Start an MPI job enabling fault tolerance. (Assume that the
PID of mpirun is 1234).
shell$ mpirun -am ft-enable-cr my-app <args>
...

b) Shell #2:
Checkpoint the MPI job with mpirun PID 1234 passing the --
stop option to send SIGSTOP to application just after the
checkpointing. The checkpoint generated can be used as
usual. If restarting the SIGCONT signal is automatically
forwarded to the restarted processes.
shell$ ompi-checkpoint --stop -v 1234
[localhost:001300] [0.00 / 0.20] Requested - ...
[localhost:001300] [0.00 / 0.20] Pending - ...
[localhost:001300] [0.01 / 0.21] Running - ...
[localhost:001300] [1.01 / 1.22] Stopped -
ompi_global_snapshot_1234.ckpt
Snapshot Ref.: 0 ompi_global_snapshot_1234.ckpt
shell$ echo "Application is now stopped"
shell$

c) Shell #2:
To resume the job just send the SIGCONT signal to mpirun.
That will forward the signal to all of the processes in the
application.
shell$ kill -CONT 1234
shell$ echo "Application resumes computation"

D. SELF Checkpoint/Restart System
The SELF component can invoke the user-defined functions
to avoid wasting and restore checkpoints. It’s merely a
mechanism for a user-defined operates to be invoked at Open
MPI's stop, Continue, and Restart phases. Hence, the sole
information that’s saved throughout the stop is what's written
within the users stop operate - no MPI library state is saved in
any respect. As such, the model for the SELF-component is
slightly completely different than, as an example, the BLCR
part. Specifically, the Restart operate isn't invoked within the
same method image of the method that was check pointed.
The Restart part is invoked throughout MPI_INIT of a brand
new instance of the applying i.e., it starts over from main().
Below is associate example of associate application that takes
advantage of the SELF Checkpoint/Restart System. Stopping
and restarting of the MPI job happens specifically as within
the clear Checkpoint Use Cases.

a) Compiling
mpicc my-app.c -export -export-dynamic -o my-app

b) Running
shell$ mpirun -np 2 -am ft-enable-cr my-app

shell$ mpirun -np 2 -am ft-enable-cr -mca crs_self_prefix
my_personal my-app

c) my-app.c:
/*
 * Example Open PAL CRS self program
 * Author: Joshua Hursey
 */
#include <mpi.h>
#include <stdio.h>
#include <signal.h>
#include <string.h>
#define LIMIT 100

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,128-135

© 2015-19, IJARCS All Rights Reserved 132

/************************
 * Function Declarations
 ************************/
void signal_handler(int sig);
/* Default OPAL crs self callback functions */
int opal_crs_self_user_checkpoint(char **restart_cmd);
int opal_crs_self_user_continue(void);
int opal_crs_self_user_restart(void);
/* OPAL crs self callback functions */
int my_personal_checkpoint(char **restart_cmd);
int my_personal_continue(void);
int my_personal_restart(void);
/*******************
 * Global Variables
 *******************/
int am_done = 1;
int current_step = 0;
char ckpt_file[128] = "my-personal-cr-file.ckpt";
char restart_path[128] = "/full/path/to/personal-cr";
/*********
 * Main
 *********/
int main(int argc, char *argv[]) {
 int rank, size;
 current_step = 0;
 MPI_Init(&argc, &argv);
 /* So we can exit cleanly */
 signal(SIGINT, signal_handler);
 signal(SIGTERM, signal_handler);
 for(; current_step < LIMIT; current_step += 1) {
 printf("%d) Step %d\n", getpid(), current_step);
 sleep(1);
 if(0 == am_done) {
 break;
 }
 }
 MPI_Finalize();
 return 0;
}
void signal_handler(int sig) {
 printf("Received Signal %d\n", sig);
 am_done = 0;
}
/* OPAL crs self callbacks for checkpoint */
int opal_crs_self_user_checkpoint(char **restart_cmd) {
 printf("opal_crs_self_user_checkpoint callback...\n");
 my_personal_checkpoint(restart_cmd);
 return 0;
}
int opal_crs_self_user_continue(void) {
 printf("opal_crs_self_user_continue callback...\n");
 my_personal_continue();
 return 0;
}
int opal_crs_self_user_restart(void) {
 printf("opal_crs_self_user_restart callback...\n");
 my_personal_restart();
 return 0;
}
/* OPAL crs self callback for checkpoint */
int my_personal_checkpoint(char **restart_cmd) {
 FILE *fp;
 *restart_cmd = NULL;

 printf("my_personal_checkpoint callback...\n");
 /*
 * Open our checkpoint file
 */
 if(NULL == (fp = fopen(ckpt_file, "w"))) {
 fprintf(stderr, "Error: Unable to open file (%s)\n",
ckpt_file);
 return;
 }
 /*
 * Save the process state
 */
 fprintf(fp, "%d\n", current_step);
 /*
 * Close the checkpoint file
 */
 fclose(fp);
 /*
 * Figure out the restart command
 */
 asprintf(restart_cmd, "%s", strdup(restart_path));
 return 0;
}
int my_personal_continue() {
 printf("my_personal_continue callback...\n");
 /* Don't need to do anything here since we are in the
 * state that we want to be in already.
 */
 return 0;
}
int my_personal_restart() {
 FILE *fp;
 printf("my_personal_restart callback...\n");
 /*
 * Open our checkpoint file
 */
 if(NULL == (fp = fopen(ckpt_file, "r"))) {
 fprintf(stderr, "Error: Unable to open file (%s)\n",
ckpt_file);
 return;
 }
 /*
 * Access the process state that we saved and
 * update the current step variable.
 */
 fscanf(fp, "%d", ¤t_step);

 fclose(fp);
 printf("my_personal_restart: Restarting from step
%d\n", current_step);
 return 0;
}
Here could also be a "Hello World" program in MPI
written in C [16]. During this example, there is tending
to tend to send a "hello" message to each processor,
manipulate it trivially, results to

 "Hello World" MPI Test Program

the fore most technique,
and print the messages.
/*

*/
#include <assert.h>
#include <stdio.h>
#include <string.h>

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,128-135

© 2015-19, IJARCS All Rights Reserved 133

#include <mpi.h>
int main(int argc, char **argv)
{
 char buf[256];
 int my_rank, num_procs;
 /* Initialize the infrastructure necessary for
communication */
 MPI_Init(&argc, &argv);
 /* Identify this process */
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 /* Find out how many total processes are active */
 MPI_Comm_size(MPI_COMM_WORLD,
&num_procs);
 /* Until this point, all programs have been doing
exactly the same.
 Here, we check the rank to distinguish the roles of
the programs */
 if (my_rank == 0) {
 int other_rank;
 printf("We have %i processes.\n", num_procs);
 /* Send messages to all other processes */
 for (other_rank = 1; other_rank < num_procs;
other_rank++)
 {
 sprintf(buf, "Hello %i!", other_rank);
 MPI_Send(buf, sizeof(buf), MPI_CHAR,
other_rank,
 0, MPI_COMM_WORLD);
 }
 /* Receive messages from all other process */
 for (other_rank = 1; other_rank < num_procs;
other_rank++)
 {
 MPI_Recv(buf, sizeof(buf), MPI_CHAR,
other_rank,
 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
 printf("%s\n", buf);
 }
 } else {
 /* Receive message from process #0 */
 MPI_Recv(buf, sizeof(buf), MPI_CHAR, 0,
 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
 assert(memcmp(buf, "Hello ", 6) == 0),
 /* Send message to process #0 */
 sprintf(buf, "Process %i reporting for duty.",
my_rank);
 MPI_Send(buf, sizeof(buf), MPI_CHAR, 0,
 0, MPI_COMM_WORLD);
 }
 /* Tear down the communication infrastructure */
 MPI_Finalize();
 return 0;
}
When the program is running with 4 processes, it will
give the output:
$ mpicc example.c && mpiexec -n 4 ./a.out
There are 4 processes i.e., process 1 reporting for duty,
process 2 reporting for duty, process 3 reporting for duty.
Here, mpiexec could also be a command accustomed
execute the instance program with four processes, each of
that's associate degree freelance instance of the program

at the run time and assigned ranks i.e., numeric 0, 1, 2,
and 3. The name mpiexec is sometimes counseled by the
MPI customary, though some implementations provide a
regular command below the name mpirun. The
MPI_COMM_WORLD is that the mortal that relates to
any or all the processes [16].

VII. CHECKPOINTING

Checkpointing could be a technique to feature fault tolerance
into computing systems. It primarily consists of saving an
exposure of the application's state, so it will restart from that
time just in case of failure. This can be notably necessary for
long-running applications that are dead in failure-prone
computing systems. In distributed computing, checkpointing
could be a technique that helps tolerate failures that otherwise
would force long-running application to restart from the start.
The foremost basic thanks to implement checkpointing is to
prevent the appliance, copy all the desired information from
the memory to reliable storage e.g., parallel file system; and
so continue with the execution. Within the case of failure,
once the appliance restarts, it doesn't have to be compelled to
begin from scratch. Rather, it'll scan the most recent state "the
checkpoint" from the stable storage and execute from that.
There are two important approaches for checkpointing in such
systems i.e., coordinated checkpointing and uncoordinated
checkpointing. Within the coordinated checkpointing
approach, processes should make sure that their checkpoints
square measure consistent. This can be sometimes achieved
by some reasonably two-phase commit protocol algorithmic
rule. In uncoordinated checkpointing, every method
checkpoints is its own state independently. It should be
stressed that merely forcing processes to stop their state at
fastened time intervals isn't spare to make sure world
consistency. The requirement for establishing a standardized
state i.e., no missing messages or duplicated messages might
force alternative processes to roll back to their checkpoints,
that successively might cause alternative processes to roll
back to even earlier checkpoints, that within the most extreme
case might mean that the sole consistent state found is that the
initial state i.e., the alleged domino effect [17].

VIII. APPLICATION IMPLEMENTATIONS

A. Save State

One of the initial and currently commonest means that of
application checkpointing was a "save state" feature in
interactive applications, during which the user of the applying
may save the state of all variables and different information to
a data-storage medium at the time they were victimization it
and either continue operating, or exist the applying and at a
later time, restart the applying and restore the saved state. This
was enforced through a "save" command or menu choice
within the application. In several cases, it became common
place apply to raise the user if that they had cursed work once
exiting the applying if they wished to save lots of their work
before doing therefore. This sort of practicality became very
vital for usability in applications wherever the actual work
couldn't be completed in one sitting such as taking part in a
computer game expected to require dozens of hours, or
writing a book or long document amounting to a whole lot or
thousands of pages or wherever the work was being done over
an extended amount of your time like information entry into a

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,128-135

© 2015-19, IJARCS All Rights Reserved 134

document like rows in an exceedingly computer program. The
problem with save state is it needs the operator of a program
to request the save. For non-interactive programs, together
with machine-controlled or batch processed workloads, the
flexibility to stop such applications conjointly had to be
machine-controlled [17].

 As batch applications began to handle tens to many
B. Checkpoint/ Restart

Thousands of group actions wherever every transaction
would possibly method one record from one against file many
totally different files the necessity for the applying to be
restart at some purpose while not the necessity to rerun the
whole job from scratch became imperative. So the
"checkpoint/restart" capability was born, during which when
variety of transactions had been processed, a "snapshot" or
"checkpoint" of the state of the applying may be taken, at that
purpose if the applying failing before future stop it may be
restarted by giving it the stop data and therefore the last place
within the detail file wherever a group action had with success
completed. The applying might then restart at that time.
Checkpointing would tend to be dearly-won, therefore it
absolutely was typically not finished each record, however at
some affordable compromise between the checkpoint and the
value of the computer time required to utilize a batch of
records. So the quantity of records processed for every stop
would possibly vary from twenty five to two hundred,
counting on cost factors and therefore the relative quality of
the applying and therefore the resources required to with
success restart the applying [17].

C. Fault Tolerance Interface (FTI)
FTI may be a library that aims to produce machine scientists
with simple thanks to perform checkpoint/restart in a very
ascendible fashion. FTI leverages native storage and multiple
replications and erasures techniques to produce many levels of
responsibility and performance. FTI provides application-
level checkpointing that enables users to pick that information
has to be protected, so as to boost potency and avoid house,
time and energy waste. It offers an instantaneous information
interface in order that users don't have to cope with files
and/or directory names. All information is managed by FTI in
a very clear fashion for the user. If desired, users will dedicate
one method per node to overlap fault tolerance work and
scientific computation, in order that post-checkpoint tasks are
executed asynchronously [17]

D. Berkeley Lab Checkpoint/Restart (BLCR)

.

The Future Technologies cluster at the Lawrence National
Laboratories is developing a hybrid kernel/user
implementation of checkpoint/restart referred to as BLCR.
Their goal is to produce a strong, production quality
implementation that checkpoints a good vary of
applications, while not requiring changes to be created to
application code. BLCR focuses on checkpointing parallel
applications that communicate through MPI, and on
compatibility with the computer software created by the
SciDAC scalable computer program ISIC. Its work
is lessened into four main areas: Checkpoint/Restart for UNIX
operating system (CR), Checkpoint able MPI Libraries,
Resource Management Interface to Checkpoint/Restart and
Development of method

Management Interfaces [17].

E. DMTCP
DMTCP (Distributed Multithreaded Checkpointing) may be a
tool for transparently checkpointing the state of discretionary
cluster of programs unfold across several machines and
connected by sockets. It doesn't modify the user's program or
the software system. Among the applications supported by
DMTCP are Open MPI, Python, Perl, and plenty of
programming languages and shell scripting languages. With
the employment of TightVNC, it may also stop and restart X
Window applications, as long as they are doing not use
extensions e.g. any OpenGL or video. Among the UNIX
operating system options supported by DMTCP are open file
descriptors, pipes, sockets, signal handlers, method id and
thread id virtualization i.e., ensure recent pids and tids still
work upon restart, ptys, fifos, method cluster ids, session ids,
terminal attributes, and mmap/mprotect including mmap-
based shared memory. DMTCP supports the OFED API for
Infini Band on experimental basis [17].

F. Collaborative Checkpointing

Some recent protocols perform cooperative stopping by
storing fragments of the checkpoint in close nodes. This can
be useful as a result of it avoids the price of storing to a
parallel filing system, which often becomes a bottleneck for
large-scale systems and it uses storage that's nearer. This has
found use notably in large-scale supercomputing clusters. The
challenge is to confirm that once the stop is required once sick
from a failure, the close nodes with fragments of the
checkpoints are

G. Docker

on the market [17].

Docker and therefore the underlying technology contain
a stop and restore mechanism.

H. CRIU

CRIU could be a user area checkpoint

IX. EMBEDDED AND ASIC DEVICES
IMPLEMENTATIONS

library.

A. Mementos

Mementos could be a code that remodels all-purpose tasks
into interruptible program for platforms with frequent power
outages. It’s been designed for battery less embedded devices
like RFID tags and good cards that have confidence harvest
home energy from close background. Mementos like senses
the on the market energy within the system, and decides to
stop the program or continue the computation. Just in case of
checkpointing, information is hold on in an exceedingly non-
volatile memory. Once the energy become adequate for
revive, the info are retrieved from the memory, and therefore
the program continues from the hold on state. Mementos have
been enforced on the MSP430 family of microcontrollers.
Souvenirs are called once patron saint Nolan's Memento.

B. Idetic

Idetic could be a set of automatic tools that helps Application-
specific computer circuit (ASIC) developers to mechanically
enter checkpoints in their styles. It targets high-level synthesis
tools and adds the checkpoints at the register-transfer level
i.e., Verilog code. It uses a dynamic programming approach to
find low overhead points within the state machine of the
planning. Since the checkpointing in hardware level involves

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,128-135

© 2015-19, IJARCS All Rights Reserved 135

causing the info of dependent registers to a non-volatile
memory, the optimum points are it needed to own minimum
variety of registers to store. Idetic is deployed and evaluated
on energy harvest home RFID tag device [17].

X. CONCLUSIONS

In this paper we've got mentioned the means of fault tolerance
as a program property that ensures survival of adequate state
for continued the program. We’ve got surveyed what the
MPI customary provides within the approach of support for
writing fault-tolerant programs. We’ve got thought
of many approaches to doing this, and that
we have incontestable however one will

[1] Wikipedea, Free encyclopidea on Fault Tolerance, 2017.

write fault-tolerant
MPI programs.

XI. REFERENCES

https://en.wikipedia.org/wiki/Fault_tolerance.
[2] B. W. Johnson, "Fault-Tolerant Microprocessor-Based

Systems", IEEE Micro, vol. 4, no. 6, 1984, pp. 6-21
[3] D. K. Pradhan, “Fault-tolerant computer system design

book contents,” ISBN 0-13-057887-8, pp. 135 - 235,
1996.

[4] J. Vytopil, “Formal Techniques in Real-Time and Fault-
Tolerant Systems,” Second International Symposium,
Nijmegen, the Netherlands, January 8–10, 1992,
Proceedings Published by Springer, 1991, ISBN 3-540-
55092-5, 978-3-540-55092-1.

[5] Wikipedia, Free Encyclopedia on Message Passing
Interface, 2017.
https://en.wikipedia.org/wiki/Message_Passing_Interface

[6] G. William, L. Ewing and S. Anthony, “Using MPI, 2nd
Edition: Portable Parallel Programming with the Message
Passing Interface,” Cambridge, MA, USA: MIT Press
Scientific and Engineering Computation Series, 1999(a),
ISBN 978-0-262-57132-6.

[7] G. William, L. Ewing and S. Anthony, “Using MPI-2:
Advanced Features of the Message Passing Interface,”
MIT Press, 1999(b). ISBN 0-262-57133-1.

[8] B. Barney, “Tutorials onMessage Passing Interface
(MPI),” Lawrence Livermore National Laboratory, 2017.
https://computing.llnl.gov/tutorials/mpi/

[9] G. E Fagg, A Bukovsky and J. J. Dongarra, “HARNESS
and fault tolerent MPI,” Parallel Commputing, 27, 2001
pp. 1479-1495.

[10] R. Batchu et al., “MPI/FTTM: Architecture and
Taxonomies for Fault-Tolerant, Message-Passing
Middleware for Performance-Portable Parallel
Computing,”Work performed in part with support from
NASA under subcontract, 1219475, from the Jet
Propulsion Laboratory, 2001, California Institute of
Technology.

[11] G. E. Fagg and J. J. Dongarra, “Building and Using a
Fault-Tolerant MPI Implementation,” International
Journal of High Performance Computing Applications,
2004, 18: 353. DOI: 10.1177/1094342004046052

[12] R. Batchu and Y. S. Dandass, “MPI/FT: A Model-Based
Approach to Low-Overhead Fault Tolerant Message-
Passing Middleware,” Cluster Computing 7, 303–315,
2004.

[13] P. Balaji and T. Hoefler, “Advanced Parallel
Programming with MPI-1, MPI-2, and MPI-3,” PPoPP,
Argonne National Lab., Shenzhen, China, 2013.

[14] I. Lagunay et al., “A Global Exception Fault Tolerance
Model for MPI,” Lawrence Livermore National
Laboratory, Los Alamos National Laboratory, New
Mexico Institute of Mining and Technology, 2016.

[15] Fault Tolerance Research @ Open Systems Laboratory,
2017. http://www.crest.iu.edu/research/ft/ompi-
cr/examples.php

[16] Wikipedia, Message Passing Interface, (free
encyclopedia), 2017.
https://en.wikipedia.org/wiki/Message_Passing_Interface

[17] Wikipedia, Application Checkpointing, (free
encyclopedia), 2017.
https://en.wikipedia.org/wiki/Application_checkpointing

https://en.wikipedia.org/wiki/Fault_tolerance�
https://en.wikipedia.org/wiki/Message_Passing_Interface�
https://computing.llnl.gov/tutorials/mpi/�
http://www.crest.iu.edu/research/ft/�
http://www.crest.iu.edu/research/ft/ompi-cr/examples.php�
http://www.crest.iu.edu/research/ft/ompi-cr/examples.php�
https://en.wikipedia.org/wiki/Message_Passing_Interface�
https://en.wikipedia.org/wiki/Application_checkpointing�

	my-app.c:
	10TA. Save State
	10TOne of the initial and currently commonest means that of application checkpointing was a "save state" feature in interactive applications, during which the user of the applying may save the state of all variables and different information to a data...
	10TB. Checkpoint/ Restart
	10TC. Fault Tolerance Interface (FTI)
	10TFTI may be a library that aims to produce machine scientists with simple thanks to perform checkpoint/restart in a very ascendible fashion. FTI leverages native storage and multiple replications and erasures techniques to produce many levels of res...
	D. Berkeley Lab Checkpoint/Restart (BLCR)
	E. DMTCP

