
Volume 8, No. 3, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 91

ISSN No. 0976-5697

A Metrics Based Framework to Improve Maintainability of Reusable Software
Components through Versioning

Anshul Kalia

Ph.D. Scholar, Dept. of RIC,
IKG-Punjab Technical University,

Kapurthala, India

Sumesh Sood
HOD, Dept. of Computer Applications,

IKG-Punjab Technical University Campus Dinanagar,
Dinanagar, India

Abstract: An improvement in maintainability of software components has the potential to affect the maintenance practices. The maintainers are
more likely to follow the maintenance process that improves the maintainability of software components. The study presents a method that is
intended to improve the maintainability of reusable software components. The study floats the idea of improving maintainability of reusable
software components through versioning. It states that on creating a new version of a reusable software component, the maintainability increases.
It validates the concept through case study conducted on open source software. The reason for taking open source software as case study is that
their probability to be reused is more as compared to other software components. The study makes use of metrics to calculate maintainability and
other factors that affect it. The study is also compared with other related studies to exhibit its contribution.

Keywords: Maintainability index, versioning, cyclomatic complexity, metrics.

I. INTRODUCTION

A study has been conducted to determine the effects of
versioning on software components. The study has been
conducted by using the metrics. Metrics are used to measure
the maintainability and cyclomatic complexity of components.
The maintainability of software components states their
potential to be maintained. It states the ease of maintaining the
components [22]. That is, how much effort will be required to
maintain the components? If the effort required to maintain
the software components is significantly high, then the cost of
maintaining components will rise. It can cause budgetary
problems for the project such as increasing the cost of
maintaining the individual components as well as increasing
the overall budget of the project. Now versioning of a
software component can be referred to as the improvements,
enhancements, upgradation in existing software components
[25]. In other words, it can be said that a previous version of a
software component is reused while making a new version of
that component. While doing so there may be changes in
software component. When a new version of a software
component is created either a major change is made by adding
a new functionality to the component or a minor change is
made by making few significant changes in component. The
types of changes made to the software components while
versioning are reflected by using version numbers [25]. The
study proposes a metrics based framework to improve the
maintainability of reusable software components through
versioning of software components. While proposing the
framework the study floats an idea of creating a new version
of a reusable software component. The reason is, with the
creation of a new version the maintainability of reusable
software component increases.

II. RESEARCH OBJECTIVE

The objective of this study is to analyze the maintainability
of reusable software components. It tries to determine the
factors that affect the maintainability of reusable software

components. After determining those factors, it measures the
effect of these factors on maintainability. That is, how the
maintainability varies in accordance with these factors. Also,
the study emphasizes on measuring the effects of versioning
on maintainability of reusable software components. While
doing such an exercise, the study takes an opportunity to
propose a metrics based framework that is intended to
improve the maintainability of reusable software components.

III. RESEARCH METHODOLOGY

The methodology that is adopted for conducting the study
is to firstly determine the factors that affect the maintainability
of reusable software components. It will then identify the
metrics that can be used to measure the maintainability and
the effect of determined factors on the maintainability. The
study will propose a framework that will be intended to
improve the maintainability of reusable software components.
The proposed framework will be validated through a case
study.

IV. FACTORS AFFECTING THE MAINTAINABILITY OF
REUSABLE SOFTWARE COMPONENTS

The following factors are considered as the one which are
responsible for affecting the maintainability of reusable
software components:

A. Size
The factor size affects the maintainability of reusable

software components. The more the size of components
the more difficult it is to maintain the components. Also it
takes more time to understand components large in size.
That in turn, increases the effort of maintaining
components and finally it has its effects on cost and time
to delivery [7] [10].

B. Complexity
The complexity refers to the degree of ease with

which the structure and architecture of component is
presented [23]. The lesser is the complexity the more will

Anshul Kalia et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,91-96

© 2015-19, IJARCS All Rights Reserved 92

be maintainability of components. The complexity of a
component is affected by the size of component [7].
Complexity is said to be directly proportional to the size of
component.

C. Compliance
It refers to the compliance of components with the

international standards to maintain the components. That
is, it has been checked that whether the rules have been
violated while developing, and maintaining components or
not. If the rules have been violated, then it will have its
effects on the maintainability of components [1] [28].

D. Versioning
Versioning refers to the improvements,

enhancements, upgrading software components, and
adding new functionality to the components. It also refers
to removing errors, bugs, and problems which are faced in
the older versions [25]. By this way of maintaining
components, it serves two purposes. One it maintains the
software component, second it creates a newer version of
components. The newer version of software component
should be in compliance with the present technological
trends.

Though there exist other factors as well which are
responsible for affecting the maintainability of reusable
software components [16], but measuring the effect of all
those factors on maintainability is a tedious task. So, the study
is taking note of some of those factors which are considered as
important from the title’s view point of study. That is, only
those factors are considered that are required to be measured
from the title’s point of view.

V. METRICS USED TO MEASURE THE MAINTAINABILITY
AND RELATED FACTORS

The factors mentioned in section 4 are measured and their
effect on maintainability of reusable software components is
analyzed with the help of metrics. Different metrics are used
to serve this purpose. A list of such metrics is presented in this
section of study.

A. Lines of code
The lines of code metrics is used to measure the size

of a software component by counting the number of lines
included in a program. The LOC metrics is also referred to
as source lines of code (SLOC). It can be used to assess
the effort required to develop and to maintain the program
or software component [34].

There are two aspects through which the lines of
code metrics measure the line of code in software. One is
the physical lines of code and the other is logical lines of
code. In physical lines of code, the metrics includes all the
source lines of code, i.e. it counts all the code lines but
excluding the comment lines. Whereas in logical lines of
code, only the executable statements are counted
irrespective of the language formats. The logical lines of
code metrics are independent of language formats and
style conventions. Therefore, the logical lines of code
often remain the same [34].

The study makes use of logical lines of code metrics
(LLOC) for measuring the size of software component.

B. Cyclomatic complexity

The cyclomatic complexity is a software metrics
which is used to measure the complexity of software
quantitatively. This metrics measures the independent path
through a source code to calculate the complexity [17]
[23]. The cyclomatic complexity can be calculated for
functions, classes, methods, modules of software [4]. This
metric produces a number indicating the complexity of
software. The more the value of number, the more is the
complexity. The more complexity of software means that
it is difficult to maintain [4] [17]. The mathematical
formula used to calculate cyclomatic complexity is [17]
[23]:

Cyclomatic complexity (CC) = E-N+2P
Where P = Number of predicate nodes that contains
conditions

E = Number of edges

 N = Number of Nodes

C. Compliance
Compliance is actually a measure of software that

determines whether software has been developed in
accordance with the standard rules or not. If the rules are
violated while developing the software, then the
compliance of software is affected [1] [28].

The study calculates the compliance of software
components in terms of percentage by using the formula
[32]:

Compliance = ((Total number of rules – Number of rules
violated) / Total number of rules) * 100

D. Maintainability Index
Maintainability Index is software metric that is used

to measure the potential of source code to be maintained
and to be supported. It gives a measure about the software
that how easily its source code can be maintained [3] [14]
[21]. Maintainability index is calculated by using a
formula which includes other factors such as halstead
volume, cyclomatic complexity, and lines of code [3].

After calculating maintainability index a numeric
values is obtained ranging from 0 to 100. A higher
numeric value means higher maintainability. The range
from 0 to 100 is further classified in three levels to rate the
maintainability. The level 20 to 100 represents high
maintainability, the level 10 to 19 indicates moderate
maintainability, and the level 0 to 9 indicates low
maintainability [3] [21]. The mathematical formula used
for calculating maintainability index is [3]:

MI = MAX (0, (171 – 5.2 * ln (Halstead Volume) – 0.23 *
(Cyclomatic Complexity) – 16.2 * ln (Lines of Code)) *
100 / 171)

VI. FRAMEWORK TO IMPROVE MAINTAINABILITY OF
REUSABLE SOFTWARE COMPONENTS

The study proposes a framework to improve the
maintainability of reusable software components. It floats an
idea of creating a new version of a software component to
improve its maintainability. It should be noted that the
maintainability is different than that of maintenance.

Anshul Kalia et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,91-96

© 2015-19, IJARCS All Rights Reserved 93

Maintainability – It refers to the degree of ease with which
a software component can be maintained. Also it states the
tendency of a software component to be maintained [22]. If
the maintainability index of a software component increases,
it shows that the component can be maintained more easily.
Otherwise, if the maintainability index of a software
component decreases, it shows that it will be difficult to
maintain a software component [10].

Maintenance – Maintenance refers to the process of
removing faults, errors, defects, and improving the
performance of software components [13]. It is required that a
component should have a greater maintainability index, so
that there should be a requirement of less effort to maintain
the software components.

Whenever, a component is under the process of
maintenance, there are changes that occur while maintaining a
software component. The quantum of changes may vary as
per the requirement of changes. That is, there may occur
minor changes or major changes in a software component
while maintaining it [25]. These changes then made a new
version of a reusable software component which has
something different than its previous version. These changes
in software components are generally represented using the
version numbers. The version numbers are allocated using a
numerical set of two or three values separated with ‘.’ or dot.
The first number in a version number represents the major
changes or the addition of new functionality to the
component, the second number in a version number represents
the minor but significant changes, the third number in a
version number represents the minor and few changes or the
bug eliminations made to the software component [25].

The study proposes that when a new version of a reusable
software component is created its maintainability improves
[10]. The metrics should be used for measuring the
maintainability, complexity and other factors as mention in
the section 5. It should be used for measuring both the older
and newer versions of reusable software components. When
the metrics are used to measure the older version, it should be
helpful in exhibiting the weak areas of software components,
and when the metrics are used to measure the newer versions,
it should be helpful in exhibiting the improvements in
software components. By way of using metrics, one can assess
the exact state of older and newer versions of reusable
software components.

This framework has been constructed to serve the
requirements of consumer and the producer of reusable
software components. As it is a well known fact that the
reusable software components can be viewed from two
viewpoints such as from the consumer and from the
developer’s point of view [13]. Now, this framework
facilitates both the consumers and the producers of reusable
software components. For consumers: The consumers of
reusable software components before selecting a component
for use can make use of metrics to assess the maintainability
of different versions of reusable software components. They
should be able to select those versions of a component that
have the high maintainability index. This way of selecting
reusable software components will be benefitted in the
maintenance effort of components [2] [13]. For producers:
The producers of reusable software components should be

able to produce quality components and with high
maintainability index when using this framework. They
should be able to assess the exact state of reusable software
components before performing the act of maintenance. The
metrics can be used to assess the components. The framework
will thus be helpful in giving direction to the maintenance of
components. The producers can increase the maintainability
of reusable software components in order to have better
selling prospects [2] [13].

A. Activities to be performed in framework
This section specifies the activities to be performed when

using this framework. The activities are again classified
according to the consumers and the producers of reusable
software components [13].

1) For consumers:
a. The metrics should be used to measure the

maintainability index of different versions of a
component.

b. The version of a component with higher
maintainability index should be selected.

2) For producers:
a. The metrics should be used to assess the exact state

of reusable software components before performing
the act of maintenance.

b. It will then identify the weak areas.
c. The maintainability index can then be increased by

applying the required efforts.
B. Case study

The study has taken a case of open source software named
as ‘NUnit’ [24]. The study considers the five versions of the
current release of NUnit 3.0, i.e. NUnit 3.4.1, 3.2.1, 3.2.0,
3.0.1, 3.0.0. NUnit is a unit testing framework for
Microsoft.Net. It is a unit testing tool. It is written in C#.Net.
It serves for the testing needs of all .Net languages. It serves
the same purpose as is done by the JUnit for java applications.
NUnit 3.0 is open source software and is released under the
MIT license [24]. This allows for the use of NUnit in free
applications and in commercial applications and also in
libraries without any limitations [24].

The reason for selecting NUnit as a case study is that it is
open source software [24]. The possibility of open source
software to be reused is more. That is, the probability of open
source software to be reused is more as compared to the non-
open source software (proprietor based software). This is
because, the open source software is available freely, and their
source code is available freely. So making changes in open
source software is easier and creating new version of open
source software is easier. This makes the open source
software more compatible with other software.

C. Results for different versions of NUnit

The study has obtained the results for five versions of
current release of NUnit 3.0. These versions are NUnit 3.4.1,
NUnit 3.2.1, NUnit 3.2.0, NUnit 3.0.1, and NUnit 3.0.0 [24].
The results for these versions of NUnit are obtained by using
two software tools such as ‘visual studio 2015’, and
‘NDepend’ [19] [28].

Visual studio 2015 is used as a tool to measure the
maintainability index of different versions of NUnit. The

Anshul Kalia et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,91-96

© 2015-19, IJARCS All Rights Reserved 94

visual studio 2015 provides an in-built functionality to
measure the maintainability index of software. In visual studio
2015, there is a feature called ‘Analyze’ that runs analysis on
software and produces the code metrics results [19]. The study
has used this functionality to measure the maintainability
index of NUnit.

NDepend tool is used to measure the cyclomatic
complexity, size, and compliance of NUnit software. The
cyclomatic complexity is measured on method basis [28]. The
size is measured on the basis of logical lines of code (LLOC)
[28]. Compliance of NUnit is measured with the help of
summary provided by NDepend for rules violation [28] [31].

1) NUnit 3.4.1:
Table 1: Version and Maintainability Index of NUnit 3.4.1

Version
Name MI Avg.

CC Size Compliance*

NUnit
3.4.1 170.19 2.17 27042LOC 93.19%

2) NUnit 3.2.1:

Table 2: Version and Maintainability Index of NUnit 3.2.1
Version
Name MI Avg.

CC Size Compliance*

NUnit
3.2.1 169.09 2.17 26733LOC 93.87%

3) NUnit 3.2.0:

Table 3: Version and Maintainability Index of NUnit 3.2.0
Version
Name MI Avg.

CC Size Compliance*

NUnit
3.2.0 167.82 2.17 26506LOC 93.87%

4) NUnit 3.0.1:

Table 4: Version and Maintainability Index of NUnit 3.0.1
Version
Name MI Avg.

CC Size Compliance*

NUnit
3.0.1 166 2.14 25298LOC 93.87%

5) NUnit 3.0.0:

Table 5: Version and Maintainability Index of NUnit 3.0.0
Version
Name MI Avg.

CC Size Compliance*

NUnit
3.0.0 165.95 2.14 25160LOC 93.87%

6) Comparison of different versions of NUnit:

Table 6: Comparison of Versions and Maintainability Index of NUnit
Version
Name MI CC Size Compliance*

NUnit
3.4.1 170.19 2.17 27042LOC 93.19%

NUnit
3.2.1 169.09 2.17 26733LOC 93.87%

NUnit
3.2.0 167.82 2.17 26506LOC 93.87%

NUnit
3.0.1 166 2.14 25298LOC 93.87%

NUnit
3.0.0 165.95 2.14 25160LOC 93.87%

* Compliance percentage has been calculated considering the
critical rules violations [28].

From the comparison of different versions of NUnit
it has been observed that with the increase in versions the
maintainability index increases. With the increase in
maintainability index and versioning of the software, the size
of software increases i.e. lines of code increases. But with the
increase in size the complexity of software remains almost
consistent, just with few variations. Also the compliance of
software remains intact.

Generally, there remains the possibility that with the
increase in size the complexity may increase and compliance
may decrease. But in this case, both the complexity and the
compliance remain consistent. The main objective of the study
to improve maintainability of software through versioning is
being fulfilled. That is, it is evident that the maintainability
index increases with the creation of new version of software.
Thus, it can be considered as one of the methods to improve
the maintainability of software.

Figure 1: Maintainability Index and Versions of NUnit

A graph between maintainability index and versions
of NUnit software shows that the maintainability index
increases as the version of software increases. It can be seen
from the graph that when there is a small change from version
‘3.0.0’ to ‘3.0.1’, the increase in maintainability index is also
small [25]. When there is a significant increase from version
‘3.0.1’ to ‘3.2.0’, there is a significant increase in
maintainability index. This significant increase in
maintainability index is also reflected from version ‘3.2.1’ to
‘3.4.1’ [25].

VII. RELATED WORK

Kwon in 1997 conducted a study that investigated the
implementation of maintenance activities in conjunction with
software reuse. Kwon proposes a model that integrates the
activities of software reuse with software maintenance. It
proposes to integrate the software maintenance activities with
software configuration management activities. It also provides
with a prototype named as ‘TERRA’ to implement the
proposed model. It addresses the problems faced by software
during maintenance such as lack of integrated maintenance
and support environment, lack of integrated tools and methods
for maintenance related activities of reusable software
components [13]. But the study lacks in evaluating that how
the maintenance of reusable software components will be
affected by integrating it with software configuration
management activities. The study conducted in this paper fills
this gap by evaluating the effect of software versioning on
reusable software components.

Anshul Kalia et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,91-96

© 2015-19, IJARCS All Rights Reserved 95

Voas in 1998 conducted a research that was intended to
upgrade the maintenance process for software components.
The study discusses the maintenance issues concerning
incompatibility, reliability, and third-party software
components. It states an instance of year 2000 (Y2K) problem
where the actual life of software exceeds its estimated
lifecycle [33]. That in turn causes a problem for maintaining
the software. The problem mentioned also relates to the
maintenance problems of legacy software components. The
solution to these problems lies in versioning of software
components. Versioning extends the life of software
components, makes the components compatible with the
present technological platform, and will be able to increase
the reliability of software components as it is a legacy
component.

In 2007 Koponen conducted a research on the maintenance
processes of open source software projects through defect and
version management systems. The study has designed a
process framework for maintenance of open source software
and tries to measure these processes by using metrics. The
study also presents an evaluation framework to measure the
maintenance processes of open source software through defect
and version management system. The study establishes the
relation between maintenance processes and defect
management system and measures its effects on maintenance
processes [11]. But it lacks in establishing the relation
between maintenance processes and version management
systems and also lacks in measuring its effects on
maintenance processes. The study in this paper establishes the
relation between versioning and maintenance by taking a case
of open source software. The study concludes that versioning
provides a better environment for maintenance of open source
software.

Khondhu et. al in 2013 calculated the maintainability index
of a population of open source projects. The study tries to
establish a relation between the size growth over a period of
time and the maintainability index of open source
components. It finds that the maintainability index of open
source software components increases with increase in size of
components. That is, as the number of lines increases in
software components over a period of time the maintainability
index also increases [10]. These results support the results
obtained in this paper of study. Thus, the study by khondhu et.
al in 2013 helps to validate this piece of study as it involves a
large population of open source software components.

VIII. CONCLUSION AND FUTURE WORK

The study states a method for maintenance of reusable
software components. The method is intended to improve the
maintainability of reusable software components by creating a
new version. It determines the factors that affect the
maintainability of reusable software components. It makes use
of metrics to calculate the maintainability index. It validates
the concept through a case study. In a case study, it
determines the effect of factors on maintainability of reusable
software components. Through case study, it has been
validated that the maintainability index of reusable software
components improves with versioning. A comparison of the
study is also made with other related studies in order to
exhibit its contribution.

In this study, the effects of factors on maintainability of
reusable software components mentioned in section 4 have
been measured. The concept stated in this study can be
extended to reusability for future work. That is, the impact of
maintainability on reusability of reusable software
components should be measured. It should be checked that
how the maintainability affects the reusability of reusable
software components.

IX. REFERENCES

[1] Bhakthavatsalam, N., Jayaraaman, A., D'Souza, G.,
Raghavachar, P., Gopal, P., Gosselin, J., Garrison, J., Cloutier,
L. (2015). Managing Compliance. In Oracle Enterprise
Manager Lifecycle Management Administrator's Guide

[2] Birth, H., Durrmann, V., & Strohmaier D. (2014). Difference
between Closed and Open Source Software Maintenance.
Retrieved June 12, 2016, from
https://wiki.oulu.fi/download/attachments/45090047/ossd_2014
_birth_durrman_strohmaier.pdf?version=1&modificationDate=
1416734248000&api=v2

(pp. 45-
1-45-86). Oracle. Retrieved November 20, 2016, from
https://docs.oracle.com/cd/E24628_01/em.121/e27046/complian
ce_lcm.htm#EMLCM93381.

[3] C. (2007, November 20). Maintainability Index Range and
Meaning. Retrieved December 6, 2016, from
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/mai
ntainability-index-range-and-meaning

[4] Cyclomatic complexity and its Applications. Retrieved
December 3, 2016, from http://www.guru99.com/cyclomatic-
complexity.html

[5] Dart, S., Christie, A. M., & Brown, A. W. (1993). A Case Study
in Software Maintenance

[6] Farago, C., Hegedus, P., Ladanyi, G., & Ferenc, R. (2015).
Impact of Version History Metrics on Maintainability.

(pp. 1-58, Tech. No. CMU/SEI-93-
TR-8). Pittsburgh, Pennsylvania: SEI-CMU.
doi:http://www.sei.cmu.edu/reports/93tr008.pdf (NTIS No.
ESC-TR-93-185)

 2015 8th
International Conference on Advanced Software Engineering &
Its Applications (ASEA),

[7] Heitlager, I., Kuipers, T., & Visser, J. (2007). A Practical Model
for Measuring Maintainability.

30-35. doi:10.1109/asea.2015.14

[8] Hristov, D., Hummel, O., Huq, M., & Janjic, W. (2012).
Structuring Software Reusability Metrics for Component-Based
Software Development.

6th International Conference on
the Quality of Information and Communications Technology
(QUATIC 2007). doi:10.1109/quatic.2007.8

[9] IEEE Standards Association. (2014). IEEE Standards Definition
Database Search-S. Retrieved September 9, 2015, from
http://standards.iee

ICSEA 2012: The Seventh International
Conference on Software Engineering Advances, 421-429. ISBN:
978-1-61208-230-1

[10] Khondhu, J., Capiluppi, A., and Stol, K. (2013) Is It All Lost? A
Study of Inactive Open Source Projects, In: Proceedings of the
9th International Conference on Open Source Systems.

[11] Koponen, T. (2007). Evaluation of maintenance processes in
open source software projects through defect and version
management systems

[12] Koponen, T., & Hotti, V. (2005). Open source software
maintenance process framework.

(Doctoral thesis, University of Kuopio,
Finland, 2007) (pp. 1-92). University of Kuopio.
doi:http://epublications.uef.fi/pub/urn_isbn_978-951-27-0107-
0/urn_isbn_978-951-27-0107-0.pdf

 ACM SIGSOFT Software
Engineering Notes,30(4), 30-34. doi:10.1145/1082983.1083265

Anshul Kalia et al, International Journal of Advanced Research in Computer Science, 8 (3), March-April 2017,91-96

© 2015-19, IJARCS All Rights Reserved 96

[13] Kwon, O.C. (1997). A process model for maintenance with
reuse: an investigation and an implementation abstract.
Durham theses, Durham University. Available at Durham E-
Theses Online: http://etheses.dur.ac.uk/4724/

[14] Land, R. (2002). Measurements of Software Maintainability.
Retrieved June 18, 2016, from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.600.6
609&rep=rep1&type=pdf

[15] Larsson, M., & Crnkovic, I. (2000), Component Configuration
Management. Retrieved June 3, 2016, from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.23
94&rep=rep1&type=pdf

[16] Lee, Y., & Chang, K. (2007). Automated source code
measurement environment for software quality

[17] McCabe Cyclomatic Complexity. Retrieved December 3, 2016,
from
http://www.chambers.com.au/glossary/mc_cabe_cyclomatic_co
mplexity.php

(Doctoral
thesis). Auburn University, Alabama. Retrieved June 19, 2016
from
https://etd.auburn.edu/bitstream/handle/10415/189/Lee_Young_
28.pdf?sequence=1

[18] Michura, J., Capretz, M. A., & Wang, S. (2013). Extension of
Object-Oriented Metrics Suite for Software Maintenance.

[19] Microsoft. (2015). Visual Studio 2015 (Version 2015)
[Computer software]. Retrieved October 20, 2016, from
https://www.visualstudio.com/downloads/

ISRN
Software Engineering,2013, 1-14. doi:10.1155/2013/276105

[20] Murta, L., Oliveira, H., Dantas, C., Lopes, L.G., & Werner C.
(2004). Towards Component-based Software Maintenance via
Software Configuration Management Techniques. Retrieved
September 8, 2015, from
http://reuse.cos.ufrj.br/prometeus/publicacoes/cbsm.pdf

[21] Naboulsi, Z. (2011, May 26). Code Metrics – Maintainability
Index. Retrieved December 6, 2016, from
https://blogs.msdn.microsoft.com/zainnab/2011/05/26/code-
metrics-maintainability-index/

[22] O. (2015, July 28). Maintainability. Retrieved November 17,
2016, from https://en.wikipedia.org/wiki/Maintainability

[23] Pherson, S. M. (2004, September 24). Cyclomatic complexity.
Retrieved December 3, 2016, from
https://en.wikipedia.org/wiki/Cyclomatic_complexity

[24] Pool, C., Prouse, R., Busoli, S., & Colvin, N. (2015). NUnit
(Version 3.4.1, 3.2.1, 3.2.0, 3.0.1, 3.0.0) [Computer software].
Retrieved November 19, 2016, from https://www.nunit.org/

[25] Rouse, M. (2007). Versioning. Retrieved November 11, 2016,
from
http://searchsoftwarequality.techtarget.com/definition/versionin
g

[26] Saraiva, J., Barreiros, E., Almeida, A., Lima, F., Alencar, A.,
Lima, G., . . . Castor, F. (2012). Aspect-oriented software
maintenance metrics: a systematic mapping study.

[27] Sjøberg, D. I., Anda, B., & Mockus, A. (2012). Questioning
software maintenance metrics.

16th
International Conference on Evaluation & Assessment in
Software Engineering (EASE 2012). doi:10.1049/ic.2012.0033

 Proceedings of the ACM-IEEE
international symposium on Empirical software engineering
and measurement - ESEM '12,

[28] Smacchia, P. (2016, April 29). NDepend (Version 6.3)
[Computer software]. Retrieved November 2, 2016, from
http://www.ndepend.com/download

107-110.
doi:10.1145/2372251.2372269

[29] Software Engineering Standards Committee. (1998).

[30] Software maintenance. (2004, July 5). Retrieved November 17,
2016, from https://en.wikipedia.org/wiki/Software_maintenance

1219-1998
IEEE Standard for Software Maintenance. New York, USA:
IEEE / Institute of Electrical and Electronics Engineers
Incorporated. ISBN: 0-7381-0336-5

[31] U. (2007, May 21). Thread: Percentage Compliance. Retrieved
December 10, 2016, from
http://www.dbforums.com/showthread.php?1618548-
Percentage-Compliance

[32] Vattumalli, N. B. (2010). Panorama - a software maintenance
tool

[33] Voas, J. (1998). Upgrading Software Maintenance for
Components. Retrieved September 9, 2015, from
https://www.cigital.com/papers/download/maintain.pdf

(Master's thesis, Iowa State University, 2010) (pp. 1-62).
Iowa State University.
doi:http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2882&c
ontext=etd

[34] Wheeler, D. (2003, August 12). Source lines of code. Retrieved
December 3, 2016, from
https://en.wikipedia.org/wiki/Source_lines_of_code

	Introduction
	Research Objective
	Research methodology
	Factors affecting the maintainability of reusable software components
	Metrics used to measure the maintainability and related factors
	Framework to improve maintainability of reusable software components
	Related work
	Conclusion and future work
	References

