
Volume 8, No. 2, March – April 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 16

ISSN No. 0976-5697

An Integration of Threat Modeling with Attack Pattern and Misuse Case
for Effective Security Requirement Elicitation

Md Tarique Jamal Ansari

Department of Information Technology
Babasaheb Bhimrao Ambedkar University

Lucknow, India

Dhirendra Pandey
Department of Information Technology

Babasaheb Bhimrao Ambedkar University
Lucknow, India

Abstract: Today’s security is becoming a brainstorming issue due to inventive attacks. To elicit effective security requirement to the system,
software developers need to think like an attacker. This paper considers three effective security requirement elicitation techniques, Threat
modelling, Misuse case and Attack pattern. Threat Modeling is a technique to prevent the system from any undesired event by modeling all the
information which has the potential to harm the system. It is a process for eliciting security requirement by identifying harmful threats to the
system. Misuse case represents negative use cases to model threats and mis-actors to represent attackers. Misuse cases are capable of modeling
threat and risk analysis process. Attack Pattern works as a method to identify the attacker’s perspective. Specifically, Threat modelling, Attack
pattern and Misuse case are compared on the basis of some parameters. The comparative analysis provides some merits and demerits of these
techniques. This paper investigates how misuse cases enhance the performance of threat modeling. This paper also describes an effective way for
security requirement elicitation by integrating threat modeling with attack pattern and misuse cases.

Keywords: Threat Modeling; Misuse Case; Attack Patterns; Secure software development; Security Requirement Elicitation

I. INTRODUCTION

In this era, human life is directly and indirectly affected by
various software applications e.g. the medical diagnosis
machines are available for complete body checkup and at the
same time number of space satellites are launching for
communication, educational development, whether forecasting
etc. The accuracy, privacy, and security are more important for
such kind of software application because human life is
sometimes entirely dependent on the software applications.
There are several reports available today which focused on the
importance of software security by discovering threats to the
system.

Symantec discovered more than 430 million new unique
pieces of malware in 2015, up 36 percent from the year
before1

The goal of this research is to design a framework by
combining different security requirement elicitation technique
to get an effective technique for elicitation of security
requirements early in the software development process.
Combining three widely used techniques and generalizing their
steps is simple and elicits more effectively security
requirements. The proposed technique can help not only to

. Further various software threats are responsible for
financial loss as well as dependability and integrity of the
software development. Due to the critical threats on software
application such as SQL injection, cross-site scripting (XSS),
denial of service (DoS), buffer overflow etc, the functional
requirements and non-functional requirements (NFRs) both are
major concern for secure software development and it must be
considered by the customers, users, and vendors of software
applications at the early stage of software development life
cycle.

1https://www.symantec.com/content/dam/symantec/docs/repor
ts/istr-21-2016-en.pdf

summary the viewpoint of different security requirement
elicitation techniques but also to make choice in their selection
of a particular situation. As a result security engineers can use
this improved threat modeling technique to eliminate the flaws
of security requirements elicitation techniques in terms of a
given condition.

II. LITRATURE REVIEW

Designing secure and the quality computer system is not an
easy task today. Hackers break the confidentiality and integrity
of the system and in response, software suppliers started
providing security as a mandatory feature for their product [1].
Requirement engineering for software application, business
system, and data center generally involves its functional
requirement. Most of the requirement engineer doesn’t
consider the security requirement which is the nonfunctional
requirement [2].

The need for security requirement exists because the
misusers create computer viruses which act as real threats to
the system. Integration of use case with misuse to model and
analyze the system during the design phase can be enhanced
the security by mitigating threats [3]. Several authors proposed
techniques for eliciting security requirement at the early phases
of software development lifecycle.

Mamadou H. Diallo et al. [9] have proposed a comparative
study of three techniques: The Common Criteria, Misuse
Cases, and Attack Trees to specifying security requirements.
They analyzed that each of these techniques worked well with
some strength and weakness. The Common Criteria are
difficult to understand and use, but are easy to analyze. Misuse
Cases are easy to understand and use, but produces output that
is not easy to read. In contrast, Attack Trees produce clear
output but are difficult to analyze. They supported to combine
the use of attack trees and misuse case. Attack patterns are
very much similar to attack trees [10].

Suvda Myagmar et al. [1] have investigated that threat
modeling can be used as a basis for security requirement

Md Tarique Jamal Ansari et al, International Journal of Advanced Research in Computer Science, 8 (2), March-April 2017,16-20

© 2015-19, IJARCS All Rights Reserved 17

specification. Guttorm Sindre and Andreas L. Opdahl [5,8]
have proposed an extension of UML use cases know as Misuse
Cases for representing the unwanted functionality of the
system. The main goal of their work is to provide a better way
for security requirement elicitation. Tatsuya Abe et al. [14]
have proposed a technique to model knowledge about the
potential threats in the form of patterns by developing the
negative scenarios which are used for business process
modeling. They tried to transform the normal scenarios into the
negative scenarios.

Xiaohong Yuan et al. [15] described a technique for
developing abuse cases based on threat modeling and attack
patterns. Inger Anne Tøndel et al. [16] have linked the misuse
case and attack trees to get high-level view of threats towards a
system through misuse case diagram. They also introduced
links to security activity descriptions in the form of UML
activity graphs to describe mitigating security activities for
each identified threat.

III. IMPROVED THREAT MODELING

The integration of Attack pattern, Misuse case and Threat
Model is considered as an improved Threat Model. This
section contains an overview of three approaches Threat
modeling, Misuse case and Attack Pattern. The aim of this
section is to explain why these modeling techniques have been
selected for effective security requirement elicitation as well as
mitigation.

A. Misuse Case
Misuse case is an extension of UML use cases to specify

the performance that is not required in the system. These
Misuse cases provide support for eliciting security
requirements. Guttorm Sindre and Andreas L. Opdahl
investigate that Misuse cases are helpful in eliciting security
requirement. They have proposed a systematic approach to
eliciting security requirements based on use cases [5].

Figure 1 Misuse Case for Firewall Access Control

The approach extends traditional use cases to also cover

misuse and is potentially useful for non-functional
requirements. In this model, the attacker is considered as
misuser that can perform several attacks like DoS , brute force
attack, SQL injection etc.

B. Attack Pattern
An attack pattern is based on the concept of design pattern

which represents the malicious attack. It is also used for
characterizing individual types of attacks [4]. The concept of
attack pattern was promoted by Erich Gamma. In his book
[11], he discussed the solutions to distinct problems
experienced in object-oriented software design and how to

package this solution for the large level in the form of design
pattern [10]. Attack patterns are quite useful while developing
abuse and misuse cases. Attack patterns work as a blueprint for
creating any attack to the system [6]. Attack patterns provide
the attacker with all the information that he or she requires to
achieve a particular objective. Common Attack Pattern
Enumeration and Classification (CAPEC) and Common
Weakness Enumeration (CWE) are available online to provide
threat information in the form of attack pattern. Sean Barnum
et al. [10] have documented the basic concept, formation, and
usage about the attack patterns as an effective technique in the
design, development and deployment of secure software. The
following example of attack patterns discovering the access
controls that are enforced by a firewall are essential to
determining [4]:

Attack Pattern for Access Control Discovery:
Goal: Identify firewall access controls
Precondition: Attacker knows firewall IP address.
Attack:
OR 1. Search for specific default listening ports.
 2. Scan ports broadly for any listening ports.
 3. Scan ports stealthily for listening ports.
 OR 1. Randomize target of scan.

2. Randomize source of scan.
 3. Scan without touching target host.

Precondition: Attacker knows firewall access controls.

Michael Gegick and Laurie Williams have designed attack
patterns for highlight security vulnerabilities in a software-
intensive system design. Their approach is to match the attack
patterns to vulnerabilities in the design phase may encourage
security efforts to start early by the developers and to become
integrated with the software process [12]. Attack patterns
provide possible value during all phases of software
development [10].

C. Threat Modeling
Threat modeling is not a code reviewing process, but it

does complement the security code review process. The
formation of threat modeling in the SDLC ensures that
applications are being developed with security built-in from
the very beginning. Security built in with the documentation
produced as part of the threat modeling process can give the
reviewer a better understanding of the system. This allows the
reviewer to see the entry points of the application and the
associated threats with each entry point. A threat model cannot
be created by simply brainstorming an adversary’s possible
objectives. This is not a systematic approach and is likely to
leave large portions of the attack space uninvestigated. Threat
modeling is a technique for analyzing the security of an
application. An attacker only has to find one security flaw to
compromise the whole system [7]. Thus, it is important to be
systematic during the threat modeling process to ensure that as
many possible vulnerabilities and threats are invented by the
developers, not the attackers.
Threat analysis should be used at the very first stages of system
design. Although the effort required to threat model an existing
system is the same as for threat modeling a system during its
early design stages, it is harder and costlier to mitigate the
threats identified in an existing system due to architectural
constraints [1]. Threat modeling allows development teams to
understand a system’s threat profile by observing the

Login

Brute Force
Attack

User
Authentication

User
Authorization

Malware
Attack

Md Tarique Jamal Ansari et al, International Journal of Advanced Research in Computer Science, 8 (2), March-April 2017,16-20

© 2015-19, IJARCS All Rights Reserved 18

application software through the eyes of a hacker, and helps to
determine the top-level security risks modeled to the system.
Threat modeling is considered as an important step in the
security requirement engineering paradigm. Its assurances
include revealing the highest security risks to a software
product, determining how attacks can manifest, helping to
find bugs, and controlling penetration testing based on a threat
model [17].

IV. COMPARISION BETWEEN APPROACHES

Misuse Cases, Attack Pattern and Threat Modeling provide
information about potential threats but each of three techniques
has some strength and weakness. Table 1 [9,10] outline the
comparison between the three methods based on learnability,
usability, clarity of output, solution inclusiveness, and
analyzability.

A. Criteria for Evaluation
• Learnability: Learnability shows that how long would

it take designers to learn and use the techniques? It
also shows that the particular technique is easy for the
learner or not.

• Usability: Usability measures how simple or complex
a technique can be used. Once the information is
collected, how usable is the process of designing a
diagram, tree, or table.

• Solution Inclusiveness: Solution Inclusiveness mainly
shows that the particular technique is having the
complete solution for any problem. In other words,
Can these techniques specify any threat and its
solution?

• Clarity of Output: This principle is concerned with
the simplicity associated with reading and using the
outputs from the specification technique. It would be
more helpful if the techniques provide clear solutions
to attacks that are reasonable and usable by software
designers.

• Analyzability: The analyzability measures how easily
a designer can understand and analyze the results
provided by the techniques.

B. Comparison of the Techniques
Table 1 shows the comparison between the three

approaches Misuse Case, Attack Pattern and Threat Modeling
based upon some criteria of evaluation like learnability,
usability, solution inclusiveness, clarity of output and
analyzability.

Table 1 Comparison between three approaches

 Misuse Case Attack Pattern Threat
Modeling

Learnability

Simple to learn
based on use case

Difficult to
learn for
beginners

Simple to learn

Usability Simple to use
based on use cases

Difficult to use
for beginners

Simple to use

Solution
Inclusiveness

Solution included Solution
included

Solution
included

Clarity of
Output

May be difficult to
learn for large

system

Clear output May be difficult
to learn for large

system
Analyzability Easy to analyze Easy to analyze Easy to analyze

After analyzing this comparison it is noticed that all these
three approaches having some merits and demerits. It is also
observed from the above comparison that there is a need for
integrating these approaches so that effective elicitation of
security requirements can be achieved.

V. THE PROPOSED METHOD

Each of the three methods has some merits and demerits, but
they can be joined together to elicit effective security
requirements. The proposed method is used for eliciting
effective security requirements by integrating attack pattern
and misuse cases with Microsoft’s threat modeling. The
following figure 2 shows this integration.

Figure 2 Integration of Threat Modeling with Attack Pattern and Misuse

Case

Step 1. Create Misuse Case for the proposed system
The first step of the proposed technique is to create misuse

case diagram for the given system. Misuse case diagram
represents the unwanted functionality of the system. Misuse
case represents all the possible attacks on the system. The easy
and mostly used method for creating misuse cases is usually
through a process of informed brainstorming. Several
theoretical methods require fully specifying a system with
rigorous formal models and logics, but such activities are
extremely time and resource intensive [6].

Step 2. Identify threats using Misuse Case
The second step of this improved threat modeling technique

is to identify the potential threats from the misuse case
diagram. The capability to capture threats from misuse cases
and then the equivalent mitigating security use cases requires
expert knowledge. There are several key areas where results
must be made that affect the security of the system like the
identity of the misusers, the scope of the misuse cases and the
corresponding mitigations [18].

Classify Threats using Microsoft’s
STRIDE technique

Analyzing threats with treat trees

Determining the Risk of the threat
using DREAD model

Elicit and define security requirements

Identify threats using Misuse Case

Retrieve Attack Patterns from CAPEC
online threat library

Create Misuse Case for the proposed
system

Mitigation of threats

Md Tarique Jamal Ansari et al, International Journal of Advanced Research in Computer Science, 8 (2), March-April 2017,16-20

© 2015-19, IJARCS All Rights Reserved 19

Step 3. Retrieve Attack Patterns from CAPEC online threat
library:

After identifying potential threats from misuse case the
third step is to retrieve attack patterns from CAPEC (Common
Attack Pattern Enumeration and Classification) online library.
Several attack patterns can be easily retrieved through
keywords from CAPEC.

Step 4. Classify Threats using Microsoft’s STRIDE
technique:

Classify the all potential threats using Microsoft’s STRIDE
technique after identifying threats in step 2.The Microsoft’s
STRIDE technique is a classification method for identifying
known threats. Known threats can be grouped according to the
nature of attack. The STRIDE acronym is made from the first
letter of each of the following categories. These categories
uniquely identified a particular threat.
Table 2 Microsoft’s STRIDE Model

Step 5. Analyzing threats with treat trees:
After classifying the known threat the next step is to

analyze and determine the potential threats. Analyzing threats
with treat trees: The identified threats must be analyzed to
identify the areas where the attacker can easily harm with
attacks path. Threat tree is an effective way to analyze threats.
Threat trees can be represented in a graphical or textual form
within the threat modeling document. A threat tree consists of
a root node or threat and child node(s). Each child node
represents conditions needed for the adversary to find and
identify the threat. Threat trees are used to determine the
vulnerabilities associated with a threat. To identify a threat’s
vulnerabilities, begin at a node without any children and
traverse it up to the root threat [13]

Fig 3 A sample threat tree

Step 6. Determining the Risk of the threat using DREAD
model:
 Another step in analyzing the threats is to determine the
risk of the threat and the threat’s conditions or child nodes by
using the DREAD model. A threat modeling team calculates
security risks as an average of numeric values assigned to each
of five categories by using the DREAD model [13]. The
following table shows the DREAD model functionality.

Table 3 DREAD Model

If the identified threat poses significant risk to the application,
the potential threat is rated with high value and needs to be
addressed quickly.

Step 7. Elicit and define security requirements:
After analyzing and determining potential threats the next

step is to elicit and define security requirements. These
security requirements are helpful for the designer while
developing the software application. The aim of this step is to
map the threats identified for mitigation into security
requirements. It accomplishes this by analyzing and
determines the threats which obtain from the previous steps.
This step completed with elicitation and documentation of
security requirements.

Step 8. Mitigation of threats
The last step of improved threat modeling technique is to

mitigate all the potential threats. Mitigation of threat is a very
important step in software development because if any threat
is left unresolved then it will become vulnerability.
Vulnerability is weakness for any system. It allows hackers to
break the security of any system and illegally access the
important assets and data. Mitigation of threats reduces or
eliminates the potential threats.

STRIDE
Description

Spoofing Using others credentials to gain access to assets.

Tampering
Changing data to make an attack.

Repudiation Occurs when a user denies performing an action, but
the target of the action has no way to prove.

Information
Disclosure

The disclosure of information to a user who does not
have permission to see it.

Denial of
Service

Reducing the ability of valid users to access resources.

Elevation of
Priviledge

When an unprivileged user gains privileged status.

DREAD Description

Damage potential The loss if the vulnerability is exploited

Reproducibility How easy is it to reproduce the threat
exploit?

Exploitability What is needed to exploit this threat?

Affected users How many users will be affected?

Discoverability How easy is it to discover this threat?

1 Root Threat

1.1 (and) (Mitigated) Mitigated Condition
1.2 (and) Unmitigated Condition

1.2.1 (Mitigated) Mitigated Condition
1.2.2 (Mitigated) Mitigated Condition

1.3 Unmitigated Condition
1.3.1 (Mitigated) Mitigated Condition
1.3.2 Unmitigated Condition

Md Tarique Jamal Ansari et al, International Journal of Advanced Research in Computer Science, 8 (2), March-April 2017,16-20

© 2015-19, IJARCS All Rights Reserved 20

VI. DISCUSSION

Generally software security is not noticed by the developers
during early phases of software development life cycle.
Therefore, to ensure software security from the beginning the
following model has been designed that list all the actions
including improved threat modeling to be performed during the
life cycle of software development.

Figure 4 Secure Software Development Model

VII. CONCLUSION

This paper presented the technique to model improved
threat modeling by integrating threat model with attack
patterns and misuse cases. The main aim of this proposed
technique is to elicit the negative scenarios that realize the
threats. The improved threat modeling technique is described
with a sequence integration of misuse case, attack patterns and
threat modeling. MITRE’s CAPEC attack patterns are also
linked with this model which uniquely identifies each attack
pattern. The proposed improved threat modeling approach
needs to be further validated by several experiments in order to
verify if the technique is useful for the developers to elicit the
security requirements in an effective way.

VIII. REFERENCES

[1] Myagmar, Suvda, Adam J. Lee, and William Yurcik. "Threat
modeling as a basis for security requirements." Symposium on
requirements engineering for information security (SREIS).
Vol. 2005. 2005.

[2] Salini, P., and S. Kanmani. "Survey and analysis on security
requirements engineering." Computers & Electrical
Engineering 38.6 (2012): 1785-1797.

[3] Alexander, Ian. "Misuse cases: Use cases with hostile
intent." IEEE software 20.1 (2003): 58-66.

[4] Moore, Andrew P., Robert J. Ellison, and Richard C.
Linger. Attack modeling for information security and
survivability. No. CMU-SEI-2001-TN-001. CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST, 2001.

[5] Sindre, Guttorm, and Andreas L. Opdahl. "Eliciting security
requirements with misuse cases." Requirements
engineering 10.1 (2005): 34-44.

[6] Hope, Paco, Gary McGraw, and Annie I. Antón. "Misuse and
abuse cases: Getting past the positive." IEEE Security &
Privacy 2.3 (2004): 90-92.

[7] Schneier, Bruce.: Why cryptography is harder than it looks. EDI
FORUM-OAK PARK-. Vol. 10. THE EDI GROUP, LTD.,
(1997).

[8] Sindre, Guttorm, and Andreas L. Opdahl. "Capturing security
requirements through misuse cases." NIK 2001, Norsk
Informatikkonferanse 2001, http://www. nik. no/2001 (2001).

[9] Diallo, Mamadou H., et al. "A comparative evaluation of three
approaches to specifying security requirements." 12th Working
Conference on Requirements Engineering: Foundation for
Software Quality, Luxembourg. 2006.

[10] Barnum, Sean, and Amit Sethi. "Attack patterns as a knowledge
resource for building secure software." OMG Software
Assurance Workshop: Cigital. 2007.

[11] Gamma, Erich. Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995.

[12] Gegick, Michael, and Laurie Williams. "Matching attack
patterns to security vulnerabilities in software-intensive system
designs." ACM SIGSOFT Software Engineering Notes. Vol. 30.
No. 4. ACM, 2005.

[13] Burns, Steven F. "Threat modeling: A process to ensure
application security." GIAC Security Essentials Certification
(GSEC) Practical Assignment (2005).

[14] Abe, Tatsuya, Shinpei Hayashi, and Motoshi Saeki. "Modeling
security threat patterns to derive negative scenarios." 2013 20th
Asia-Pacific Software Engineering Conference (APSEC). Vol.
1. IEEE, 2013.

[15] Yuan, Xiaohong, Emmanuel Borkor Nuakoh, and Huiming Yu
Imano Williams. "Developing Abuse Cases Based on Threat
Modeling and Attack Patterns." Journal of Software 10.4
(2015).

[16] Tøndel, Inger Anne, Jostein Jensen, and Lillian Røstad.
"Combining misuse cases with attack trees and security activity
models." Availability, Reliability, and Security, 2010. ARES'10
International Conference on. IEEE, 2010

[17] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft
Press, 2nd edition, 2002.

[18] Johnstone, Michael N. "Modelling misuse cases as a means of
capturing security requirements." (2011).

Improved Threat Modeling for Security Requirement
Elicitation

Design

Development

Integration and Test

Evolution

Secure Software Application

	An Integration of Threat Modeling with Attack Pattern and Misuse Case for Effective Security Requirement Elicitation
	Introduction
	Litrature Review
	Improved Threat Modeling
	Misuse Case
	Attack Pattern
	Threat Modeling

	Comparision between Approaches
	Criteria for Evaluation
	Comparison of the Techniques

	The Proposed Method
	Step 1. Create Misuse Case for the proposed system
	The first step of the proposed technique is to create misuse case diagram for the given system. Misuse case diagram represents the unwanted functionality of the system. Misuse case represents all the possible attacks on the system. The easy and mostly...

	Step 2. Identify threats using Misuse Case
	The second step of this improved threat modeling technique is to identify the potential threats from the misuse case diagram. The capability to capture threats from misuse cases and then the equivalent mitigating security use cases requires expert kno...

	Step 3. Retrieve Attack Patterns from CAPEC online threat library:
	Step 4. Classify Threats using Microsoft’s STRIDE technique:
	Classify the all potential threats using Microsoft’s STRIDE technique after identifying threats in step 2.The Microsoft’s STRIDE technique is a classification method for identifying known threats. Known threats can be grouped according to the nature o...

	Step 5. Analyzing threats with treat trees:
	Another step in analyzing the threats is to determine the risk of the threat and the threat’s conditions or child nodes by using the DREAD model. A threat modeling team calculates security risks as an average of numeric values assigned to each of fiv...

	Step 7. Elicit and define security requirements:
	Step 8. Mitigation of threats
	The last step of improved threat modeling technique is to mitigate all the potential threats. Mitigation of threat is a very important step in software development because if any threat is left unresolved then it will become vulnerability. Vulnerabili...

	Discussion
	Conclusion
	References

