
Volume 2, No. 1, Jan-Feb 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 240

ISSN No. 0976-5697

Reducing Efforts in Refactoring Process Using Design Patterns

Dharmendra Pathak*
School for Computer Science & IT

Devi AhilyaVishwavidyalaya
Indore (M.P.), India

dharam_241086@yahoo.co.in

Ugrasen Suman
School for Computer Science & IT

Devi AhilyaVishwavidyalaya
Indore (M.P.), India

ugrasen123@yahoo.com

Abstract: Refactoring is required to improve the overall design of software code, which provides better stability and more efficiency to particular
software. Design patterns are useful to solve some common software development problems within a particular context. In this paper, we will
describe the comparative introduction of various design patterns and refactoring techniques used in object oriented paradigm. Thereafter, we will
consolidate these two concepts and observe the impact of design patterns in refactoring with the efficient implementation using appropriate
examples. The proposed research can help to reduce efforts required in refactoring by a large extent.

Keywords: Design Patterns, Refactoring, Factory Pattern, Adapter Pattern, Bridge Pattern, Extract method, Template method, Move method.

I. INTRODUCTION

Design patterns are part of the cutting edge of object-
oriented technology. Design patterns represent solutions to
problems that arise when developing software within a
particular context. Patterns capture the static and dynamic
structure and collaboration among key participants in
software designs. Patterns facilitate reuse of successful
software architectures and designs. Design patterns provide a
higher perspective on analysis and design [5].

Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior of
the code. It improves the internal structure of code. It is a
disciplined way to clean up code that minimizes the chances
of introducing bugs. In essence refactoring improves the
design of the code after it has been written. With refactoring
unstructured design converted into well-designed code [1].

Refactoring is performed after the development of
software, which takes extra time and cost the design patterns
are implemented during developing software. Refactoring
cost and time can be reduced at a large extent if proper
design patterns were implemented at the time of software
development. Further, we have observed the impact of
various design patterns on different refactoring methods.

The rest of the paper is categorized into four main
sections. The Section I introduces the basic concept of design
patterns and refactoring. The consolidation of design
patterns and refactoring techniques, and the impact of
various design patterns over different refactoring methods
with examples are discussed in Section II. The Section III
summarizes the paper and presents the future research work.

II. CONSOLIDATION OF DESIGN PATTERNS AND
REFACTORING

There are various design patterns such as facade,
adapter, bridge, strategy, abstract factory, singleton pattern
etc. The common attributes of these patterns are intent,
problem, solution, participation and collaborators,
consequences and implementation. Also, there are various
refactoring methods such as extract class, move method,
substitute algorithm method, replace method with method
object, local extension method, replace constructor with
factory method etc. We will discuss the usefulness of various

design patterns to reduce the efforts required in refactoring
process.

A. Facade Pattern
Facade pattern can be used to create a simpler interface

in terms of method calls as well as to reduce the number of
objects that a client object must deal with [5]. The Facade
pattern can be characterized as follows:
[a] Intent: It is used to simplify how to use an existing

system to define our own interface.
[b] Problem: Problem is to use only a subset of a complex

system and to interact with the system in a particular
way.

[c] Solution: The Facade presents a new interface for the
client of the existing system to use.

[d] Participants and Collaborators: It presents a simplified
interface to the client that makes it easier to use.

[e] Consequences: Since the Facade is not complete, certain
functionality may be unavailable to the client.

[f] Implementation: Define a new class (or classes) that
have the required interface. Have this new class use the
existing system [2].
We are required to use all the functionality of a complex

system and can create a new class that contains all the rules
for accessing that system [6].

B. Impact on Extract Class Method
Extract method is used to decompose the complex classes

into simpler classes. In this method of refactoring, new class
is created and relevant fields and methods from the old class
can be moved into the new class. The implementing Facade
pattern instead of Extract class refactoring method can
reduce effort required for software design.

C. Implementation
A new class is created to express the split-off

responsibilities and then move methods from old to new
class. We start with lower-level methods (called rather than
calling) and build to the higher level.

Review and reduce the interfaces of each class and
decide whether to expose the new class. If we expose the
class then decide whether to expose it as a reference object or
as an immutable value object [1].

mailto:ugrasen123@yahoo.com�

Dharmendra Pathak et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,240-245

© 2010, IJARCS All Rights Reserved 241

D. Example
Consider the following example that exhibits the impact

of design pattern into refactoring method:
[a] Problem: Consider a class Student that has implemented

methods such as fetchData() to fetch student records,
connectData() to store all those records into databases
and etrWindow() method to provide GUI.

[b] Solution provided by Facade pattern: This condition can
be removed by placing all three methods to three classes
Fetch, Connect and Window. StudentFacade class will
contain object of all these classes and let this class to be
used in the system (Student class) as follows:

 class Fetch
{ void fetchData(){//method body }
}

class Connect
{ void connectData(){//method body}
}

class Window
{ void etrWindow(){//method body}
}

class StudentFacade implements
interfaces….

 { Fetch f = new Fetch ();
Connect ct = new Connect ();
Window w = new Window ();

}
class Student extends StudentFacade

{ //remaining code
}

Now, these methods can be accessed by creating
Student class object as follows:

Student s =new Student ();
s.etrWindow();
s.fetchData();
s.connectData();

[c] Solution provided by refactoring method: Similar
solution can be provided by Extract class method, in
which Student class is divided into three classes as in
Facade Pattern and then create object of these three
classes into Student class as follows:

class Student implements interfaces….
{ Fetch f = new Fetch ();

Connect ct = new Connect ();
Window w = new Window ();

}
Thereafter, these methods can be accessed by creating

Student class object as follows:
 Student s =new Student ();

s.etrWindow();
s.fetchData();
s.connectData();

Hence, using this example it is observed that Facade
pattern can be used to eliminate Extract class method.

E. Adapter Pattern
It is used to convert the interface of a class into another

interface that the clients expect. Adapter lets classes work
together that could not otherwise because of incompatible
interfaces [5]. Adapter pattern can be characterized as
follows:
[a] Intent: Match an existing object beyond control to a

particular interface.

[b] Problem: A system has the right data and behavior but
the wrong interface. Typically used to make something
a derivative of an abstract class.

[c] Solution: The Adapter provides a wrapper with the
desired interface.

[d] Participants and Collaborators: The Adapter adapts the
interface of an Adaptee to match that of the Adapter's
target (the class it derives from). This allows the client
to use the Adaptee as if it were a type of target.

[e] Consequences: The Adapter pattern allows for
preexisting objects to fit into new class structures
without being limited by their interfaces.

[f] Implementation: It contains the existing class in another
class that contains the class match the required interface
and calls the methods of the contained class [2].
We are required to use all the functionality of a

complex system and can create a new class that contains all
the rules for accessing that system [6]. In Adapter pattern
following functions can be adapted:
[g] Those functions that are implemented in the existing

class can be adapted.
[h] Those functions that are not present can be

implemented in the wrapping class [3].

F. Impact on Move Refactoring Method
Move method is used when a method or interface is, or

will be, using or used by more features of another class than
the class on which it is defined. Create a new method or
interface with a similar body in the class it uses most. Either
the old method or interface can be turned into a simple
delegation or it can be removed altogether. By implementing
the Adapter Pattern, the efforts required in Move refactoring
Method can be reduced at very high extent.

G. Implementation
All features can be examined, which are used by source

method/ interface that are defined on the source class. The
sub and super classes can be checked in the source class for
other declarations of the method/ interface.
 The method can be declared in the target class, copy the
code from the source method to the target, and then adjust
the method/interface to make it work in its new home [1].

H. Example
The following example of image animation can help us

to show the impact of design pattern:
[a] Problem: Assume that a class ImageAnimation which is

implementing two interfaces animation and image
directly, which is not compatible to it.

[b] Solution provided by Adapter pattern: This condition
can be removed by placing both the interfaces into a
single class ComInter and then ImageAnimation will
extend this class as follows:

class ComInter implements image, animation
{ void run();

 void animation();
 void takeImage();

}
 class ImageAnimation extends ComInter

{ void takeImage()
 {//method body}
 void animation()
 {//method body}

}

Dharmendra Pathak et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,240-245

© 2010, IJARCS All Rights Reserved 242

[c] Solution provided by refactoring method: Similar
solution can be provided by Move refactoring method
by moving both the incompatible interfaces into a new
class ComInter and extending it by ImageAnimation as
follows:

 class ImageAnimation extends ComInter
{ // similar code
}

Thus, using this example it is clear that Adapter pattern
can be used to eliminate Move method.

I. Strategy Pattern
It can be used to define a family of algorithms,

encapsulate each one, and make them interchangeable.
Strategy lets the algorithm vary independently from clients
that use it.

The Strategy pattern is based on a few principles:
[a] Objects have responsibilities.
[b] Different, specific implementations of these

responsibilities are manifested through the use of
polymorphism.

[c] There is a need to manage several different
implementations of what is, conceptually, the same
algorithm [3].
The Strategy pattern can be characterized as follows:

[d] Intent: It enables us to use different business rules or
algorithms depending on the context in which they
occur.

[e] Problem: The selection of an algorithm that needs to be
applied depends on the client making the request or the
data being acted on.

[f] Solution: Separates the selection of algorithm from the
implementation of the algorithm. It allows for the
selection to be made based upon context.

[g] Participants and Collaborators: It specifies how the
different algorithms are used which is implemented by
Concrete strategies.

[h] Consequences: The Strategy pattern defines a family of
algorithms. Switches and/or conditionals can be
eliminated. We must invoke all algorithms in the same
way.

[i] Implementation: It has the class that uses the algorithm
(Context) contains an abstract class (Strategy) that has
an abstract method specifying how to call the algorithm.
Each derived class implements the algorithm as needed
[2].
It is required by Strategy pattern that the algorithms

(business rules) being encapsulated now lie outside of the
class that is using them (the Context) It is assume to be a
good design practice to separate behaviors that occur in the
problem domain from each other that is, to decouple them
[5].

J. Impact on Substitute Algorithm Refactoring Method
Substitute algorithm method is used to replace an

algorithm with one that is clearer. This can be done by
replacing the body of the method with the new algorithm.
 Strategy pattern can be implemented to reduce the efforts
required in Substitute Algorithm refactoring method.

K. Implementation
Prepare alternative algorithm and then run the new

algorithm against tests, if the results are the same, then

finished else if the results aren’t the same, uses the old
algorithm for comparison in testing and debugging [1].

L. Example
Following Shape class example will justify this

concept:
[a] Problem: Consider different shape classes redundantly

declaring similar methods i.e. area (), display () and
variables length, width etc. in their bodies.

[b] Solution provided by Strategy pattern: This condition
can be removed by creating a abstract class Shape and
placing common methods and variables into its body as
follows:

abstract class Shape
{ float length, width;

Shape(float l, float w)
{

length=l;
width=w;

}
void display();
void area();
void volume();
//remaining code

}
class Rectangle extends Shape

{ Rectangle(float l, float w)
{
super(l,w);
}
void area()
{ //method body }
}

Similarly class Square extends Shape etc.
[c] Solution provided by refactoring method: Similar

solution is provided by Substitute algorithm method by
declaring single abstract class Shape and extending its
methods area(), display() by creating Rectangle, Square
etc. child classes objects as follows:

Rectangle r = new Ractangle (4.9f, 3.2f);
r.area();
r.display();

Thus, it shows that Strategy pattern can be used to
eliminate
Substitute algorithm method.

M. Bridge Pattern
Bridge pattern is basically used to decouple an

abstraction from its implementation because of this two can
vary independently [5].

Bridge is most useful to decouple abstraction from its
implementation unless the consideration of whether the
Bridge pattern applied. This can be used to abstract out the
implementations that are present in problem domain [3].

Bridge pattern can be characterized as follows:
[a] Intent: It decouples a set of implementations from the

set of objects using them.
[b] Problem: The derivations of an abstract class must use

multiple implementations without causing an explosion
in the number of classes.

[c] Solution: Define an interface for all implementations to
use and have the derivations of the abstract class to use
that interface.

Dharmendra Pathak et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,240-245

© 2010, IJARCS All Rights Reserved 243

[d] Participants and Collaborators: Classes derived from
abstraction use classes derived from implementer
without knowing which particular Concrete
Implementer is in use.

[e] Consequences: The decoupling of the implementations
from the objects that use them increases extensibility.

[f] Implementation: It encapsulates the implementations in
an abstract class and contains a handle to it in the base
class of the abstraction being implemented [2].

N. Impact on Replace Method with Method Object
Replace method with method object is used when we

have a long method that uses local variables in such a way
that we cannot apply Extract method.

This can be done by turning the method into its own
object due to this all the local variables become fields on
that object. We can then decompose the method into other
methods on the same object.

O. Bridge Pattern can be used to reduce the efforts
required in replace method with method object.
Implementation

P. Implementation
Create a new class; give the new class a constructor that

takes the source object and each parameter and give the new
class a method and copy the body of the original method
into compute then, replace the old method with one that
creates the new object and calls that method [1].

Q. Example
Consider the following Encryption example that helps

to consolidate the two concepts:
[a] Problem: Assume that the class Encryption has coupled

algoImplement() method abstraction to its
implementation by declaring and describing its body at
one place, which causes other classes to declare their
own encryption method separately.

[b] Solution provided by Bridge pattern: This condition can
be removed by decoupling abstraction with its
implementation. This can be done by creating a abstract
class algorithm and place algoImplement() method
there. Now every other class can override this method
accordingly as follows:

abstract class Algorithm
{ void algoImplement();

 //remaining code
}

class Encryption extends Algorithm
{ void algoImplement()
{ //method body
}
}

[c] Solution provided by refactoring method: Similar
solution can be provided by Replace method with
method object. In this approach all the implemented
algorithms will be divided into smaller methods and
placed into a new class and call it accordingly as needed
as follows:
class Algorithm

{ void algoImplement()
{

//method body
}
}

class Encryption
{void takeAlgo()

{ Algorithm a = new Algorithm();
 a.algoImplement();
 // remaining code

}
}

Hence, Replace method can be eliminated by using
Bridge design pattern.

R. Abstract Factory Pattern
Abstract Factory pattern can be used to provide an

interface for creating families of related or dependent
objects without specifying their concrete classes.
[a] It is known to client object that who to ask for the

objects it required and how to use them.
[b] The Abstract Factory class can be used to specify which

objects can be instantiated by defining a method for
each of these different types of objects.

[c] The concrete factories are used to specify which objects
are to be instantiated [3].
The Abstract factory pattern can be characterized as

follows:
[d] Intent: It is used to have families or sets of objects for

particular clients (or cases).
[e] Problem: Families of related objects required to be

instantiated.
[f] Solution: It coordinates the creation of families of

objects and gives a way to take the rules of how to
perform the instantiation out of the client object that is
using these created objects.

[g] Participants and Collaborators: The Abstract Factory
defines the interface for how to create each member of
the family of objects required.

[h] Consequences: The pattern isolates the rules of which
objects to use from the logic of how to use these
objects.

[i] Implementation: It defines an abstract class that
specifies which objects are to be made, then implement
one concrete class for each family [2].
Using the Abstract Factory is indicated when the

problem domain has different families of objects present and
each family is used under different circumstances [5].

S. Impact on Introduce Local Extension Method
Local extension method is used when a class needs

several additional methods, but modification in the class is
not possible.

To implement this concept create a new class that
contains these extra methods and make this extension class a
subclass or a wrapper of the original.

T. Abstract Factory pattern can be used to reduce the
efforts required in Introduce local extension method

U. Implementation
Create an extension class either as a subclass or a

wrapper of the original and then add converting constructors
to the extension and new features to the extension then
replace the original with the extension where required and
move any foreign methods defined for this class onto the
extension [1].

Dharmendra Pathak et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,240-245

© 2010, IJARCS All Rights Reserved 244

V. Example
The following TimeTable class example will justify this

concept:
[a] Problem: Assume that the class TimeTable is accessing

two different methods upload() and download() by
creating two different class objects of class UploadFile
and class DownloadFile separately in its body.

[b] Solution provided by Abstract Factory pattern: This
condition can be removed by creating both classes objects
into single AbstractFactory Class and extending this class
into TimeTable class as follows:

class AbstractFactory
{ UploadFile uf = new UploadFile();

DownloadFile df = new DownloadFile();
}

class TimeTable extends AbstractFactory
{ uf.upload();

df.download();
}

[c] Solution provided by refactoring method: Similar
solution can be provided by Introduce local extension
method by placing both the objects into single class and
accessing them using extending that class as follows:

class EnhanceAbility
{ UploadFile uf = new UploadFile();

DownloadFile df = new DownloadFile();
}

Similarly this class will be extended by TimeTable
class.

Hence, this example clears that Abstract factory pattern
can be used to eliminate Local extension method.

W. Singleton Pattern
It ensures that a class only has one instance, and

provides a global point of access to it. The Singleton pattern
works by having a special method that is used to instantiate
the desired object. Some interesting concepts about this
special method:
[a] When this method is called, it checks to observe

whether the object has already been instantiated. If it
has, the method just returns a reference to the object. If
not, the method instantiates it and returns a reference to
the new instance.

[b] To ensure that this is the only way to instantiate an
object of this type, we have to define the constructor of
this class to be protected/private [5].
The Singleton pattern can be characterized as follows:

[c] Intent: Intent is to have only one of an object, but there
is no global object that controls the instantiation of this
object and to ensure that all entities are using the same
instance of this object, without passing a reference to all
of them.

[d] Problem: Several different client objects require
referring to the same thing, and we have to ensure that
we do not have more than one of them.

[e] Solution: It guarantees one instance.
[f] Participants and Collaborators: Clients create an

instance of the Singleton solely through the getInstance
method.

[g] Consequences: Clients doesn’t require concerning
themselves whether an instance of the Singleton exists.
This can be controlled from within the Singleton.

[h] Implementation: Add a private static member of the
class that refers to the desired object. (Initially, it is

null.), then add a public static method that instantiates
this class if this member is null (and sets this member's
value) and then returns the value of this member and
last set the constructor's status to protected or private
due to this no one can directly instantiate this class and
bypass the static constructor mechanism [2].
The essence of the Singleton pattern is that every object

in the application uses the same instance of the Singleton
[4].

X. Impact on Replace Constructor with Factory Method
 Replace constructor with factory method is used to
provide better features using simple construction when
creating an object.
 Singleton pattern can be used to reduce the efforts
required in Replace constructor with Factory refactoring
method can be reduced at very high extent.

Y. Implementation
 Create a factory method and make its body a call to the
current constructor then replace all calls to the constructor
with calls to the factory method and declare the constructor
private/protected [1].

Z. Example
 The following FileInstance class example will illustrate
this concept:
[a] Problem: Consider FileInstance class has multiple

accesses point to instantiated its object.
[b] Solution provided by Singleton pattern: This can be

removed by providing single global access point to
FileInstance class object.class OpenFile provides the
single global point to access and instantiate FileInstance
class object as follows:

class FileInstance
{ FileInstance f=new File (“Test.txt”);

protected FileInstance (File fl)
{ f=fl;
}
}
class OpenFile extends File
{ File newFile;

OpenFile(newFile)
{ super(newFile);
}
}

Now, FileInstance class object can only be instantiated
using single global point provided by OpenFile class.
[c] Solution provided by refactoring method: Similar

solution can be provided by replacing constructor of
FileInstance class using Factory method as follows:

protected static FileInstance instant (File fl)
{ f=fl;
}

This factory constructor can only be called and
instantiated using its child class OpenFile as follows:
 FileInstance fit = FileInstance.instant(newFile);

Thus, this example shows that Singleton pattern can be
used to eliminate Replace constructor with factory method.

III. CONCLUSION AND FUTURE RESEARCH WORK

In this paper, we have discussed various design patterns
as well as various refactoring techniques. We have also
discussed the importance of various design patterns solving

Dharmendra Pathak et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,240-245

© 2010, IJARCS All Rights Reserved 245

the common software development problems. It can reduce
the efforts required in most common refactoring methods to
a large extent with different examples. It will help to
improve overall software design.

Our future research work will focus on the case study of
large projects to show the impact of design patterns over
refactoring process.

IV. REFERENCES

[1] M.Fowler, K.Beck, J.Brant, W. Opdyke, D.Roberts:
Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

[2] Alan Shalloway, James R. Trott: Design Patterns
Explained, A New Perspective on Object Oriented

Design, Second Edition, Addison Wesley Professional
2004.

[3] S. Demeyer, S. Ducasse, O. Nierstrasz : Object
Oriented Reengineering Patterns, Morgan Kaufmann,
2002.

[4] Steven John Metsker: Design Patterns Java Workbook,
Addison Wesley, 2002.

[5] Douglas C. Schmidt: Design Patterns and Frameworks
for Object Oriented Communication Systems,
Washington University, 1997.

[6] Gamma et al.: Design Patterns: Elements of Reusable
Object – Oriented Software, Addison Wesley, Reading,
MA, 1994.

[7] James O. Coplien and Douglas C. Schmidt: Pattern
Languages of Program Design, Addison Wesley,
Reading, MA, 1995.

	INTRODUCTION
	CONSOLIDATION OF DESIGN PATTERNS AND REFACTORING
	Facade Pattern
	Impact on Extract Class Method
	Implementation
	Example
	Adapter Pattern
	Impact on Move Refactoring Method
	Implementation
	Example
	Strategy Pattern
	Impact on Substitute Algorithm Refactoring Method
	Implementation
	Example
	Bridge Pattern
	Impact on Replace Method with Method Object
	Bridge Pattern can be used to reduce the efforts required in replace method with method object. Implementation
	Implementation
	Example
	Abstract Factory Pattern
	Impact on Introduce Local Extension Method
	Abstract Factory pattern can be used to reduce the efforts required in Introduce local extension method
	Implementation
	Example
	Singleton Pattern
	Impact on Replace Constructor with Factory Method
	Implementation
	Example

	CONCLUSION AND FUTURE RESEARCH WORK
	REFERENCES

