
Volume 8, No. 1, Jan-Feb 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 120

ISSN No. 0976-5697

Algorithm to Solve Dirichlet Problem for Laplace’s Equation

Dr. Mohammad Miyan

Associate Professor, Shia P. G. College, University of Lucknow
Sitapur Road, Lucknow (UP) India

Abstract:- The various researches and developments in the parallel computing Apache Spark framework allows to process petabyte-scale data
and possesses properties such as scalability, fault tolerance, load balancing and mechanisms of in the memory computations across the nodes of
the cluster. So, the features are much attractive for high performance of scientific computations. As the Hadoop platform is not much suitable for
the iterative computing due to some typicality then Apache Spark with new distributed data structure (RDD) is much suitable. Here we are using
the method and algorithm described by researchers from time to time for Hadoop-based algorithm to solve the Dirichlet problem for Laplace’s
equation. The comparative figures are drawn with respect to time to verify the performance. By seeing graphs and other details, we can say that
the Spark based implementation is much suitable for solving the Dirichlet problem for their improved performance as compared to Hadoop-
based implementation.

Keywords:- Apache Spark; Dirichlets problem; Hadoop; Laplace’s equation; RDD.

I. INTRODUCTION

Most of the industries are using Hadoop broadly to analyze
their data sets. The Hadoop framework, is generally based
on the simple programming model normally i.e.,
MapReduce model and it empowers a computing solution
that is flexible, scalable, cost effective and fault-tolerant.
The important concern is to maintain the speed in the
processing of the large datasets with respect to waiting time
between queries and waiting time to run the used program.
The Spark was initiated by Apache Software Foundation for
speed up the Hadoop computing software process. The
Apache Spark is the lightning-fast cluster based computing
technology, designed for the fast computation. It is based on
Hadoop MapReduce and it expands the MapReduce model
to use it efficiently for the various computations that include
suitable queries and the better processing. The main feature
of the Spark is it’s in memory cluster computation
technique that increases the processing speed of the
application. The Spark is designed for covering a big range
of workloads like as batch applications, iterative algorithms,
interactive streaming and queries. Including all these
workload in the respective system, it also reduces the
management problem of maintaining the separate tools.
The Spark is one of the Hadoop’s sub-project established in
UC Berkeley’s (2009) AMP Lab by Matei Zaharia [1]. It
was open under the BSD license (2010). After that it was
given to a company Apache Software Foundation (2013)
and then is known as Apache Spark and gets a top level
(2014) [2].
The some important features of the Apache Spark are as
follows [3]:

 Spark provides built in APIs in various
programming languages like Scala, Java or Python.
So, we can write the applications in various
languages. The Spark comes up with eighty high

level operators for the interactive and suitable
querying.

 Spark helps to run a program in the Hadoop cluster
up to hundred times faster in the memory and ten
times faster when running on the disk. This is
possible by reducing the number of read or write
instructions to the disk only. It stores the
intermediate processing data in the memory.

 The Spark also supports ‘Map’ and ‘reduce’,
Streaming data, SQL queries, Machine learning
and Graphical algorithms.

It is the better framework for performing the suitable data
analysis on distributed computing cluster, like Hadoop. It
provides in memory the computations for increasing speed
and data processing over the MapReduce. It runs on top of
the existing Hadoop cluster and access Hadoop data store
i.e., HDFS, can also process the structured data in Hive and
Streaming data from HDFS, Kafka, Flume, Twitter etc.
Hadoop is the parallel data processing framework that has
generally been used to run MapReduce jobs. These are
normally long running jobs that take much time to complete.
The Spark has designed to run on top of the Hadoop and it is
the alternative to traditional batch MapReduce model which
can be used for real time data processing and fast useful
queries that complete within few moments. Therefore,
Hadoop supports both traditional MapReduce and also
Spark. The Spark stores data in memory i.e., better for speed
in comparison to Hadoop, which stores the data on the disk.
The Hadoop uses reproduction to get fault patience whereas
Spark uses the different data storage model, flexible
distributed datasets i.e., RDD, uses a suitable method of
guaranteeing fault tolerance that minimizes the network I/O.
The Hadoop is one of the ways to implement the Spark. The
Spark uses Hadoop in two ways i.e., one is storage and
second is processing. Since the Spark has its own cluster
management computation so, it uses the Hadoop for storage
purpose only [4]. The Hadoop ecosystem is shown in the
figure-1 [5]. The process of executing a job by Spark is

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb 2017,120-125

© 2015-19, IJARCS All Rights Reserved 121

demonstrated by figure-2 [6]. The Spark RDD is shown by
the figure-3 [7] and the RDD-transformations and actions
are shown by the figure-4 [8].
The Spark’s major use [9] cases over the Hadoop are as
follows:

 The suitable, interactive Data Mining and the Data
Processing.

 The iterative Algorithms in the Machine Learning.
 The Stream processing i.e., Log processing and

Fraud detection in the live streams for alerts,
aggregates and analysis.

 The Spark has totally Apache Hive-compatible data
warehousing structure that can run about hundred
times faster than Hive.

 The sensor data processing i.e., where the data is
fetched and joined from the different sources, in
memory dataset really helpful as they are much
easy and fast for processing.

The ways of Spark deployment are as follows:

 Spark Standalone deployment means Spark takes
the position on the top of Hadoop Distributed File
System and space is allocated for the HDFS. In this
case, the MapReduce and Spark will run parallel to
do the complete jobs.

 Hadoop Yarn deployment means, spark runs on
Yarn without any pre installation or root access. It
also helps to integrate Spark into Hadoop
ecosystem. It is shown by figure-1. It also instructs
the other sections to run on the top of the stack.

 Spark in MapReduce is normally used for starting
the spark job with the standalone equipment. With
SIMR, user can begin the Spark and uses its shell
without any administrative approach.

Figure 1 (Hadoop Echosystem)

Figure 2 (Process of Executing a job by Spark)

Figure 3 (Spark RDDs)

Figure 4 (RDD Transformations and Actions)

II. RELATED RESEARCHES

Freeman, (2014) [11]; Horlacher et al., (2014) [12]; Zhao et
al., (2015) [13] have discussed about the large scope of
problems in different areas of science that have successfully
solved by using Apache Spark. The Apache Spark structure
was initially comes and used due to the low performance of
the machine learning tools for the large scale data

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb 2017,120-125

© 2015-19, IJARCS All Rights Reserved 122

processing within time. The Spark gives a wide range of
methods to handle the various types of problems. There are
not much alternatives to choose from to replace or augment
MPI computational paradigm for the big scale scientific
problems with iterative schemes and research is ongoing
with varied success in this useful field. The vast advantage
of MPI over the Apache Spark is that MPI potentially can be
broadened to the wide range of applications in HPC and still
be much fast. So, the most important issue with MPI is due
to its lack of built-in failure resistance. The failures can be
problematic for long running works in setting of the huge
number of computing nodes. There are various techniques
and methods to avoid the failures in MPI structure but they
are unvaried and vulnerable to implement.
Hans Johansen et al., (1998) [14] have presented a
numerical based process to solve the Laplace’s equation
with the variable coefficients with the Dirichlet boundary
conditions, on the two dimensional cases. His work
suggested a new way of approaching discretizations for free
or fixed boundary problems in that the boundary can be
shown by using a volume of the fluid description.
The treatment of these methods is discussed by Gropp et al.,
(2004) [15]. The Apache Spark design can be treated as a
generalization of MapReduce programming paradigm in the
reference of the distributed programming models.
MapReduce can be seen as the series of parallel map tasks
followed by the series of parallel reduce tasks. The map is to
derive key pairs from raw input according to some criteria
functionally. The reduction takes the list of values with the
specified key as an input and outputs different set of key
pairs generated by the input list. The Spark offers aside from
map and reduces the several earlier discussed operations and
in general abstracts away these operations into the
transformation concept. Large works are devoted to improve
the speed of running MapReduce based programs.
Lu et al., (2011) [16] have describe the hybrid framework of
using MPI as the pipeline to exchange an intermediate data
between concurrently running reduce and map processes.
The resulting solution outperforms some of the MPI-
Mapreduce or Hadoop implementations on the applications
i.e., Distributed Inverted Indexing, Word Count and
Distributed Approximate Similarity Search.
Matei Zaharia et al., (2012) [2], have described the RDD
internal design and properties. They also demonstrated its
ability to do in-memory computations on the large clusters
in the fault-tolerant way. They have discussed the large
speed-up on iterative graph and machine learning algorithms
with the help of Apache Spark over PGAS and Hadoop. On
considering the conceptual differences of global-memory
access languages like as PGAS and various parallel
programming languages with different memory abstractions
there is the trade-off between maintaining granularity of the
elements in the memory and also doing large number of
operations on these elements. The main advantage over the
PGAS model is that RDD operations are coarse-grained so
that reducing overhead of storing the states of every element
in a distributed atmosphere. They have presented the
resilient distributed datasets (RDDs), general-purpose,
efficient and fault-tolerant abstraction for sharing the data in
the cluster applications. The RDDs can instruct a huge range
of parallel applications and techniques that also includes
many specialized programming structures that have been
proposed for the iterative computation and other new

applications that these structures do not take up. B.
Kumalakov et al., (2012) [18] studied of adapting the
scientific computing problems to the cloud environment,
like the Map Reduce. Presented research introduces novel
iterative processing framework for Hadoop.
Lu et al., (2014) and Lu and Liang, (2016) [19], [20] have
given a comparative better performance and communication
library based on the MPI communication structures called
Data MPI. As the result of which, that showed the using
Data MPI communication primitive’s, everyone can achieve
performance gain of around 32% as compared to the
Hadoop communication primitives. Authors also generalize
communication patterns into 4D bipartite communication
model and key value communication model, which fits into
the requirements of Hadoop-like system specifications and
could potentially lead to better design of communication
sub-systems in Big Data frameworks.
Reyes-Ortiz et al., (2015) [21] have compared Apache Spark
performance with Open MP /MPI based on KNN and
Pegasos SVM machine learning algorithms. The results
showed that open MP / MPI method is comparatively more
than ten times faster with respect to running time; however,
we can note that the Spark has also a great advantage of
caching.
Li et al., (2016) [22] have described several avenues to
improve in Hadoop MapReduce framework as follows:

 Developing of more efficient job scheduling
mechanism which takes into account non-
homogeneous distribution of the resources in the
distributed system

 Improving of programming model to developing
advanced iterative processing routines which would
allow more efficient job execution

 Extending of the capabilities of system by allowing
the parallel execution of map and reduce tasks

 Developing of more convenient real time
processing by improving streaming functionality

Apache Spark is believed to show much better performance
according to first and fourth items given above. Apache
Spark is based on RDD distributed data structure storage.
Shomanov Aday et al., (2016) [9] have described an
algorithm to solve Dirichlet problem for Poisson’s equation
is described, analyzed and compared to optimized Hadoop
based implementations. Apache Spark uses a distributed
data structure called RDD. The algorithm given by them
consists of operations on RDD such as grouping, mapping
and partitioning. The various drawbacks and benefits of the
mathematical algorithm and also of applicability for tiny
type computations are analyzed and discussed.

III. PARALLEL ALGORITHM

The exact analytical solutions for Dirichlet problem is only
limited by the specific cases in appropriate domains
therefore in major situations, the numerical approaches to
find solution to the problem is applied. Let us consider the
3D model of Dirichlet problem for the Laplace’s equation
[9], [10] in a domain D of hypercube, where D is as defined:
D= {(xi): 0 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖};∀ 𝑖𝑖

�
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥𝑖𝑖

2

3

𝑖𝑖=1

= 𝐹𝐹(𝑥𝑥𝑖𝑖) (3.1)

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb 2017,120-125

© 2015-19, IJARCS All Rights Reserved 123

In the domain, the number of points is P1, P2 and P3 with the
co-ordinates xi. Then the result will be computational mesh
with

∆𝑥𝑥𝑖𝑖 =
𝐷𝐷𝑖𝑖
𝑃𝑃𝑖𝑖

,∀ 𝑖𝑖 (3.2)

The second order derivatives with approximation gives:

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥1

2 ≈
𝑣𝑣𝛼𝛼+1,𝛽𝛽 ,𝛾𝛾 + 𝑣𝑣𝛼𝛼−1,𝛽𝛽 ,𝛾𝛾 − 2𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾

∆𝑥𝑥1
2 (3.3)

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

2 ≈
𝑣𝑣𝛼𝛼 ,𝛽𝛽+1,𝛾𝛾 + 𝑣𝑣𝛼𝛼 ,𝛽𝛽−1,𝛾𝛾 − 2𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾

∆𝑥𝑥2
2 (3.4)

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥3

2 ≈
𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾+1 + 𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾−1 − 2𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾

∆𝑥𝑥3
2 (3.5)

From the above equations, we have

𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾
𝑛𝑛+1 =

⎣
⎢
⎢
⎢
⎡

 𝑣𝑣 𝛼𝛼+1,𝛽𝛽 ,𝛾𝛾
𝑛𝑛 + 𝑣𝑣𝛼𝛼−1,𝛽𝛽 ,𝛾𝛾

𝑛𝑛

∆𝑥𝑥1
2 +

 𝑣𝑣 𝛼𝛼 ,𝛽𝛽+1,𝛾𝛾
𝑛𝑛 + 𝑣𝑣𝛼𝛼 ,𝛽𝛽−1,𝛾𝛾

𝑛𝑛

∆𝑥𝑥2
2 +

 𝑣𝑣 𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾+1
𝑛𝑛 + 𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾−1

𝑛𝑛

∆𝑥𝑥3
2 − 𝐹𝐹𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾 ⎦

⎥
⎥
⎥
⎤

∑ 2
∆𝑥𝑥𝑖𝑖2𝑖𝑖

 (3.6)

Here 𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾 ,𝐹𝐹𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾 are the values of v and F in (α, β, γ) node
of computational mesh. Now we are using the method and
algorithm described by researchers (B. Kumalakov, 2013;
Mansurova et al., 2014; Shomanov Aday et al., 2016) to
Hadoop-based algorithm for solving Dirichlet problem for
Laplace’s equation.
The Hadoop based implementation to solve the Dirichlet
problem has the following steps:
Step1. The Map phase algorithm maps each point in the
computational domain to certain reducer that will perform
the computations in its own sub domain.
Step2. In the Reducer phase every point is mapped inside the
3-dimensional array to perform stencil computations
according to Laplace’s equation difference scheme. The new
internal points after computation in the current iteration are
stored to a suitable place to avoid redistribution of them
across the nodes of the cluster in the process of the next
iteration and the new boundary points are reduced and
written to the suitable output HDFS directory.
Step3. If the iteration count is reached the limit program will
terminate, otherwise the algorithm will continue with step 1.
Apache Spark algorithm for solving Dirichlet problem for
Laplace’s equation uses object based representation of
points in the computational domain. Point class is used for
storing single point in computational mesh. Every point
consists of the following properties: Integer partition_id,
integer number a for x1 coordinate, integer number b for x2
coordinate, integer number c for x3 coordinate, floating-
point number value for value in specific point (x1, x2, x3) of
the discrete mesh. Partition property is responsible for
storing partition number of the point that is sub-domain

identifier. Algorithm consists of several steps each step
performs certain operations on RDDs.
The parallel algorithm to solve the Dirichlet problem for
Laplace’s equation with the use of MapReduce consists of
the three parts i.e., initializing, iterating and controlling
parts.
The initialization part is executed before the iteration part.
The main function of it is to initialize all points with respect
to the problem conditions.
The Iteration section of the algorithm [10] is as follows:
Map function
Input: in_key subcube number, in_value is a string like
(a_b_c Value);
Output: (out_key=in_key, out_value=in_value)
I1: collect (out_key, out_value)
I2: End;
Reduce function
Input: (in_key, in_value), in_key is a string that represents
the number of part of the cube; in_value is a string like
(a_b_c Value).
Output: (out_key, out_value), out_key is a string represents
the neighbor-subcubes" of current one, out_value is the
string represents new values of boundary plains' points.
I1: Define 2-multidimensional matrices for the data
I2: Initialize one of them with data received from mapper
I3: for a = 0, . . . , 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑟𝑟 of 𝑃𝑃𝑙𝑙𝑎𝑎𝑖𝑖𝑛𝑛𝑠𝑠 do
I4: for b = 0, . . . , 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑟𝑟 of 𝑅𝑅𝑜𝑜𝑤𝑤𝑠𝑠 do
I5: for c = 0, . . . , 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒r of 𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑡𝑡𝑠𝑠𝐼𝐼𝑛𝑛𝑅𝑅𝑜𝑜𝑤𝑤 do
I6: if 𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑠𝑠 𝑒𝑒𝑥𝑥𝑐𝑐𝑙𝑙𝑢𝑢𝑑𝑑𝑖𝑖𝑛𝑛𝑔𝑔 "𝑔𝑔ℎ𝑜𝑜𝑠𝑠𝑡𝑡 𝑝𝑝𝑙𝑙𝑎𝑎𝑖𝑖𝑛𝑛𝑠𝑠" then
I7: Fa = (data[a + 1][b][c] + data[c- 1][b][c]) / owa;
I8: Fb = (data[a][b + 1][c] + data[a][b - 1][c]) /
owb;
I9: Fc = (data[a][b][c + 1] + data[x][b][c - 1]) /
owc;
I10: newData[a][b][c]=
 (Fa + Fb + Fc - Ro((a+dta)*ha, b* hb, c*hc))/c;
I11: Writing inner updated values to hdfsfiles[]
I12: Out of boundary values[]
I13: Output (out_key, out_value)
I14: End;
So to perform the exchange operation we want to apply
mapping, grouping and partitioning transformations in all
the iteration of the algorithm. The mapping transformation
will map point elements into tuple of the point and partition
number. The partition number is identified by the point
coordinates. After that the points are grouped together by
applying group. By key transformation and finally every
partition is separated by applying partition into locations.
Such operations slightly degrade the performance of the
program leading to moderate speed-up. The major
distinction between Spark implementation and Hadoop
based implementation is that the Spark solution uses in-
memory computations and thus is suited better for iteration
based tasks like as Dirichlet problem [10].

IV. EXPERIMENTAL ANALYSIS

The cluster setup consisted of the following hardware and
software settings: quadcore i3 Intel processor PC each
equipped with 8 GB memory cards, Intel Xeon Processors
and 4 Gigabit Ethernet switch for the network connection
and equipped with Hadoop and Spark software. After testing
the program on cluster environment Spark implementation

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb 2017,120-125

© 2015-19, IJARCS All Rights Reserved 124

has been compared to Hadoop combined with MPI and
Hadoop implementations as described by (B. Kumalakov,
2013; Mansurova et al., 2014; Shomanov Aday et al., 2016)
[9], [10], [23] in terms of running time for different sizes of
computational domain and different number of cores and
cluster nodes. The computational domain represents a cube
with fixed and same number of discrete points along every
dimension. The results of computation were verified for
correctness compared to the sequential code for the same
problem with the same settings of the domain size and initial
conditions.
Now increasing the number of iterations results in the
performance improvement of the Spark implementation as
compared to Hadoop-based implementation. The reason for
that performance difference is that the Spark performs more
operations it perform most of the operations in the memory
to leads the higher performance in case of big number of
iterations. Whereas the Hadoop performs better on single
iteration cycle, but at the end of the every iteration it writes
data back to HDFS or to local file system which leads to
poor performance due to the accumulation of input output
latencies over the course of computation. The test runs of
the software measured system performance with the
hypercubes of input sizes: 128 x 128 x 128, 256 x 256 x
256 and 512 x 512 x 512. The graphs of the various ratios
are as follows:

Figure 5. (The execution time in the three cube sizes and the number of

nodes)

Figure 6. (The execution time in different reducers and number of nodes)

Figure 7. (The comparison of the execution times in MPI and Hadoop

platform)

The graphical representation by figure-5 represents ratios
between the data numbers and used time to complete an

0

100

200

300

400

500

600

0 200 400 600

t
i

m
e

sizes

Size-1

Size-2

Size-3

Expon.
(Size-1)

Expon.
(Size-2)

Expon.
(Size-3)

0

50

100

150

200

250

0 5 10 15 20

t
i

m
e

No. of reducers

Size-1

Size-2

Size-3

Expon.
(Size-1)

Expon.
(Size-2)

Expon.
(Size-3)

0

50

100

150

200

250

300

0 200 400 600

t
i

m
e

Sizes

MPI

HADOOP

Mohammad Miyan, International Journal of Advanced Research in Computer Science, 8 (1), Jan-Feb 2017,120-125

© 2015-19, IJARCS All Rights Reserved 125

execution. By increasing the number of nodes the speed of
processing decreases but for the small data there is no
benefit. The figure 6 represents ratios between the number
of reducers and time taken to complete the test execution
with cube (256 x 256 x 256). By increasing the reducer’s
number, it decreases the time of execution. The figure 7
represents the comparison between the calculations on MPI
and Hadoop respectively.

V. CONCLUSIONS

By using the algorithm and the computational analysis for
solving the Dirichlet problem for Laplace’s equation and by
using Apache Spark framework and compared it with
Hadoop-based implementations. By analyzing the graphical
analysis and other details, we can say that the Spark based
implementation is much suitable for solving the Dirichlet
problem for their improved performance as compared to
Hadoop-based implementation.

VI. REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I.
Stoica, “Spark: Cluster computing with working sets”,
Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing, Jun 2010, 22-25, ACM, USA, pp: 10-10.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave and J. Ma et al.,
“Resilient distributed datasets: A faulttolerant abstraction for
in-memory cluster computing”, Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, Apr. 2012, 25-27, ACM, USA., pp: 2-2.

[3] Spark SQL Tutorial Notes by Tutorials Point (I) Pvt. Ltd.,
2015, pp. 1-29.
https://www.tutorialspoint.com/spark_sql/spark_sql_tutorial.p
df.

[4] Apache Spark Tutorial Point, 2017.
https://www.tutorialspoint.com/apache_spark/apache_spark_i
ntroduction.htm

[5] Kornkorneliusz, “Hadoop Ecosystem and Big Data”, May
2014. https://blog.udemy.com/hadoop-ecosystem/

[6] A. Kuntamukkala (Software Architect), “Apache Spark: An
Engine for Large-Scale Data Processing”, SciSpike.
https://dzone.com/refcardz/apache-spark

[7] RDD-Resilient Distributed Dataset Analysis by GitBooks.
https://jaceklaskowski.gitbooks.io/mastering-apache-
spark/content/spark-rdd.html

[8] F. R. Olivera, Apache Spark Java Conference, Buenos Aires,
Argentina, Nov. 2014.
http://www.slideshare.net/frodriguezolivera/apache-spark-
41601032

[9] S. Aday and M. Madina, “Novel Apache Spark based
Algorithm to Solve Dirichlet Problem for Poisson Equation in
3D Computational Domain”, Journal of Computer Sciences,
2016, 12 (10): 502-509. DOI: 10.3844/jcssp.2016.502.509

[10] B. Kumalakov, A. Shomanov, Ye. Dadykina, S. Ikhsanov and
B. Tulepbergenov, “Solving Dirichlet Problem for Poisson’s
Equation Using MapReduce Hadoop”, Poceed. Of Conf.,

Kazakhistan, 2013, pp. 136-142.
http://taac.org.ua/files/a2013/proceedings/KZ-2-
Bolatzhan%20Kumalakov-327.pdf

[11] J. Freeman, “Mapping brain activity at scale with cluster
computing”, Nat. Meth., 11: 941-950, 2014. DOI:
10.1038/nmeth.3041.

[12] O. Horlacher, , F. Lisacek and M. Müller,. Mining large scale
tandem mass spectrometry data for protein modifications
using spectral libraries. J. Proteome Res., 2014, 15: pp. 721-
731. DOI: 10.1021/acs.jproteome.5b00877

[13] G. Zhao, C. Ling and D. Sun, “Spark SW: Scalable distributed
computing system for large-scale biological sequence
alignment”, Proceedings of the 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, May
2015, 4-7, IEEE Xplore Press, pp: 845-852. DOI:
10.1109/CCGrid.2015.55.

[14] H. Johansen, “Applied Numerical Algorithms Group”,
Computational Research , Barkley Lab, US Deptt. of Energy,
1998. http://crd.lbl.gov/departments/applied-
mathematics/ANAG/about/staff-and-postdocs/hans-johansen/

[15] W. Gropp and E. Lusk, “Fault tolerance in message passing
interface programs”, Int. J. High Performance Comput.
Applic., 2004, 18: 363-372. DOI:
10.1177/1094342004046045.

[16] X. Lu, and F. Liang, “Accelerating iterative big data
computing through MPI”, Int. J. Comput. Sci. Technol., 2016,
30: 283-294. DOI: 10.1007/s11390-015-1522-5.

[17] Solving Critical Simulation Problems Under Emergency
ConditionsUsing Volunteer Computing

[18] B. Kumalakov, D. A. Zaki and G. Dobrowolski, 4th
International Conference on Simulation and Modeling
Methodologies, Technologies and Applications,
SIMULTECH 2014 pp. 170-178.

[19] X. Lu, B. Wang, L. Zha and Z. Xu, “Can MPI benefit Hadoop
and MapReduce applications?”, Proceedings of 40th
International Conference on Parallel Processing Workshops,
Sept. 2011, 13-16, IEEE Xplore Press, pp: 371-379. DOI:
10.1109/ICPPW.2011.56.

[20] X. Lu, , F. Liang, B. Wang, L. Zha and Z. Xu, “DataMPI:
Extending MPI to hadoop-like big data computing”,
Proceedings of the IEEE 28th International Parallel Distributed
Processing Symposium, May 2014, 19-23, IEEE Xplore
Press, pp: 829-838. DOI: 10.1109/IPDPS.2014.90.

[21] J. L. Reyes-Ortiz, L. Oneto and D. Anguita, “Big data
analytics in the cloud: Spark on hadoop Vs MPI/OpenMP on
Beowulf”, Proc. Comput. Sci., 2015, 53: 121-130. DOI:
10.1016/j.procs.2015.07.286.

[22] R. Li, H. Hu, H. Li, Y. Wu and J. Yang, “MapReduce parallel
programming model: A state of-the-art survey”, Int. J. Parallel
Programm., 2016, 44: 832-866. DOI: 10.1007/s10766-015-
0395-0.

[23] M. Mansurova, D. Ahmed-Zaki, A. Shomanov, Y. Dadykina
and S. Ikhsanov et al., “Solving dirichlet problem for poissons
equation using mapreduce hadoop and MPI”, Proceedings of
International Conference New Trends in Information and
Communication Technologies, (ICT’ 14), 2014, pp: 226-234.

https://www.tutorialspoint.com/apache_spark/apache_spark_introduction.htm�
https://www.tutorialspoint.com/apache_spark/apache_spark_introduction.htm�
https://blog.udemy.com/hadoop-ecosystem/�
https://dzone.com/users/287223/ashwin_kvsp.html�
https://dzone.com/refcardz/apache-spark�
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd.html�
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-rdd.html�
http://www.slideshare.net/frodriguezolivera/apache-spark-41601032�
http://www.slideshare.net/frodriguezolivera/apache-spark-41601032�
http://taac.org.ua/files/a2013/proceedings/KZ-2-Bolatzhan%20Kumalakov-327.pdf�
http://taac.org.ua/files/a2013/proceedings/KZ-2-Bolatzhan%20Kumalakov-327.pdf�

	The Spark’s major use [9] cases over the Hadoop are as follows:

