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Abstract:- The various researches and developments in the parallel computing Apache Spark framework allows to process petabyte-scale data 
and possesses properties such as scalability, fault tolerance, load balancing and mechanisms of in the memory computations across the nodes of 
the cluster. So, the features are much attractive for high performance of scientific computations. As the Hadoop platform is not much suitable for 
the iterative computing due to some typicality then Apache Spark with new distributed data structure (RDD) is much suitable. Here we are using 
the method and algorithm described by researchers from time to time for Hadoop-based algorithm to solve the Dirichlet problem for Laplace’s 
equation. The comparative figures are drawn with respect to time to verify the performance. By seeing graphs and other details, we can say that 
the Spark based implementation is much suitable for solving the Dirichlet problem for their improved performance as compared to Hadoop-
based implementation. 
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I. INTRODUCTION 

Most of the industries are using Hadoop broadly to analyze 
their data sets. The Hadoop framework, is generally based 
on the simple programming model normally i.e., 
MapReduce model and it empowers a computing solution 
that is flexible, scalable, cost effective and fault-tolerant. 
The important concern is to maintain the speed in the 
processing of the large datasets with respect to waiting time 
between queries and waiting time to run the used program. 
The Spark was initiated by Apache Software Foundation for 
speed up the Hadoop computing software process. The 
Apache Spark is the lightning-fast cluster based computing 
technology, designed for the fast computation. It is based on 
Hadoop MapReduce and it expands the MapReduce model 
to use it efficiently for the various computations that include 
suitable queries and the better processing. The main feature 
of the Spark is it’s in memory cluster computation 
technique that increases the processing speed of the 
application. The Spark is designed for covering a big range 
of workloads like as batch applications, iterative algorithms, 
interactive streaming and queries. Including all these 
workload in the respective system, it also reduces the 
management problem of maintaining the separate tools. 
The Spark is one of the Hadoop’s sub-project established in 
UC Berkeley’s (2009) AMP Lab by Matei Zaharia [1]. It 
was open under the BSD license (2010). After that it was 
given to a company Apache Software Foundation (2013) 
and then is known as Apache Spark and gets a top level 
(2014) [2]. 
The some important features of the Apache Spark are as 
follows [3]: 

 Spark provides built in APIs in various 
programming languages like Scala, Java or Python. 
So, we can write the applications in various 
languages. The Spark comes up with eighty high 

level operators for the interactive and suitable 
querying. 

 Spark helps to run a program in the Hadoop cluster 
up to hundred times faster in the memory and ten 
times faster when running on the disk. This is 
possible by reducing the number of read or write 
instructions to the disk only. It stores the 
intermediate processing data in the memory. 

 The Spark also supports ‘Map’ and ‘reduce’, 
Streaming data, SQL queries, Machine learning 
and Graphical algorithms. 

It is the better framework for performing the suitable data 
analysis on distributed computing cluster, like Hadoop. It 
provides in memory the computations for increasing speed 
and data processing over the MapReduce. It runs on top of 
the existing Hadoop cluster and access Hadoop data store 
i.e., HDFS, can also process the structured data in Hive and 
Streaming data from HDFS, Kafka, Flume, Twitter etc. 
Hadoop is the parallel data processing framework that has 
generally been used to run MapReduce jobs. These are 
normally long running jobs that take much time to complete. 
The Spark has designed to run on top of the Hadoop and it is 
the alternative to traditional batch MapReduce model which 
can be used for real time data processing and fast useful 
queries that complete within few moments. Therefore, 
Hadoop supports both traditional MapReduce and also 
Spark. The Spark stores data in memory i.e., better for speed 
in comparison to Hadoop, which stores the data on the disk. 
The Hadoop uses reproduction to get fault patience whereas 
Spark uses the different data storage model, flexible 
distributed datasets i.e., RDD, uses a suitable method of 
guaranteeing fault tolerance that minimizes the network I/O. 
The Hadoop is one of the ways to implement the Spark. The 
Spark uses Hadoop in two ways i.e., one is storage and 
second is processing. Since the Spark has its own cluster 
management computation so, it uses the Hadoop for storage 
purpose only [4]. The Hadoop ecosystem is shown in the 
figure-1 [5]. The process of executing a job by Spark is 
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demonstrated by figure-2 [6]. The Spark RDD is shown by 
the figure-3 [7] and the RDD-transformations and actions 
are shown by the figure-4 [8]. 
The Spark’s major use [9] cases over the Hadoop are as 
follows: 

 The suitable, interactive Data Mining and the Data 
Processing. 

 The iterative Algorithms in the Machine Learning. 
 The Stream processing i.e., Log processing and 

Fraud detection in the live streams for alerts, 
aggregates and analysis. 

 The Spark has totally Apache Hive-compatible data 
warehousing structure that can run about hundred 
times faster than Hive. 

 The sensor data processing i.e., where the data is 
fetched and joined from the different sources, in 
memory dataset really helpful as they are much 
easy and fast for  processing. 

 
The ways of Spark deployment are as follows: 

 Spark Standalone deployment means Spark takes 
the position on the top of Hadoop Distributed File 
System and space is allocated for the HDFS. In this 
case, the MapReduce and Spark will run parallel to 
do the complete jobs. 

 Hadoop Yarn deployment means, spark runs on 
Yarn without any pre installation or root access. It 
also helps to integrate Spark into Hadoop 
ecosystem. It is shown by figure-1. It also instructs 
the other sections to run on the top of the stack. 

 Spark in MapReduce is normally used for starting 
the spark job with the standalone equipment. With 
SIMR, user can begin the Spark and uses its shell 
without any administrative approach. 

 

 
Figure 1 (Hadoop Echosystem) 

 
Figure 2 (Process of Executing a job by Spark) 

 

 
Figure 3 (Spark RDDs) 

 
Figure 4 (RDD Transformations and Actions) 

II. RELATED RESEARCHES 

Freeman, (2014) [11]; Horlacher et al., (2014) [12]; Zhao et 
al., (2015) [13] have discussed about the large scope of 
problems in different areas of science that have successfully 
solved by using Apache Spark. The Apache Spark structure 
was initially comes and used due to the low performance of 
the machine learning tools for the large scale data 
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processing within time. The Spark gives a wide range of 
methods to handle the various types of problems. There are 
not much alternatives to choose from to replace or augment 
MPI computational paradigm for the big scale scientific 
problems with iterative schemes and research is ongoing 
with varied success in this useful field. The vast advantage 
of MPI over the Apache Spark is that MPI potentially can be 
broadened to the wide range of applications in HPC and still 
be much fast. So, the most important issue with MPI is due 
to its lack of built-in failure resistance. The failures can be 
problematic for long running works in setting of the huge 
number of computing nodes. There are various techniques 
and methods to avoid the failures in MPI structure but they 
are unvaried and vulnerable to implement.  
Hans Johansen et al., (1998) [14] have presented a 
numerical based process to solve the Laplace’s equation 
with the variable coefficients with the Dirichlet boundary 
conditions, on the two dimensional cases. His work 
suggested a new way of approaching discretizations for free 
or fixed boundary problems in that the boundary can be 
shown by using a volume of the fluid description. 
The treatment of these methods is discussed by Gropp et al., 
(2004) [15]. The Apache Spark design can be treated as a 
generalization of MapReduce programming paradigm in the 
reference of the distributed programming models. 
MapReduce can be seen as the series of parallel map tasks 
followed by the series of parallel reduce tasks. The map is to 
derive key pairs from raw input according to some criteria 
functionally. The reduction takes the list of values with the 
specified key as an input and outputs different set of key 
pairs generated by the input list. The Spark offers aside from 
map and reduces the several earlier discussed operations and 
in general abstracts away these operations into the 
transformation concept. Large works are devoted to improve 
the speed of running MapReduce based programs.  
Lu et al., (2011) [16] have describe the hybrid framework of 
using MPI as the pipeline to exchange an intermediate data 
between concurrently running reduce and map processes. 
The resulting solution outperforms some of the MPI-
Mapreduce or Hadoop implementations on the applications 
i.e., Distributed Inverted Indexing, Word Count and 
Distributed Approximate Similarity Search. 
Matei Zaharia et al., (2012) [2], have described the RDD 
internal design and properties. They also demonstrated its 
ability to do in-memory computations on the large clusters 
in the fault-tolerant way. They have discussed the large 
speed-up on iterative graph and machine learning algorithms 
with the help of Apache Spark over PGAS and Hadoop. On 
considering the conceptual differences of global-memory 
access languages like as PGAS and various parallel 
programming languages with different memory abstractions 
there is the trade-off between maintaining granularity of the 
elements in the memory and also doing large number of 
operations on these elements. The main advantage over the 
PGAS model is that RDD operations are coarse-grained so 
that reducing overhead of storing the states of every element 
in a distributed atmosphere. They have presented the 
resilient distributed datasets (RDDs), general-purpose, 
efficient and fault-tolerant abstraction for sharing the data in 
the cluster applications. The RDDs can instruct a huge range 
of parallel applications and techniques that also includes 
many specialized programming structures that have been 
proposed for the iterative computation and other new 

applications that these structures do not take up. B. 
Kumalakov et al., (2012) [18] studied of adapting the 
scientific computing problems to the cloud environment, 
like the Map Reduce. Presented research introduces novel 
iterative processing framework for Hadoop. 
Lu et al., (2014) and Lu and Liang, (2016) [19], [20] have 
given a comparative better performance and communication 
library based on the MPI communication structures called 
Data MPI. As the result of which, that showed the using 
Data MPI communication primitive’s, everyone can achieve 
performance gain of around 32% as compared to the 
Hadoop communication primitives. Authors also generalize 
communication patterns into 4D bipartite communication 
model and key value communication model, which fits into 
the requirements of Hadoop-like system specifications and 
could potentially lead to better design of communication 
sub-systems in Big Data frameworks.  
Reyes-Ortiz et al., (2015) [21] have compared Apache Spark 
performance with Open MP /MPI based on KNN and 
Pegasos SVM machine learning algorithms. The results 
showed that open MP / MPI method is comparatively more 
than ten times faster with respect to running time; however, 
we can note that the Spark has also a great advantage of 
caching. 
Li et al., (2016) [22] have described several avenues to 
improve in Hadoop MapReduce framework as follows:  

 Developing of more efficient job scheduling 
mechanism which takes into account non-
homogeneous distribution of the resources in the 
distributed system  

 Improving of programming model to developing 
advanced iterative processing routines which would 
allow more efficient job execution  

 Extending of the capabilities of system by allowing 
the parallel execution of map and reduce tasks 

 Developing of more convenient real time 
processing by improving streaming functionality 

Apache Spark is believed to show much better performance 
according to first and fourth items given above. Apache 
Spark is based on RDD distributed data structure storage. 
Shomanov Aday et al., (2016) [9] have described an 
algorithm to solve Dirichlet problem for Poisson’s equation 
is described, analyzed and compared to optimized Hadoop 
based implementations. Apache Spark uses a distributed 
data structure called RDD. The algorithm given by them 
consists of operations on RDD such as grouping, mapping 
and partitioning. The various drawbacks and benefits of the 
mathematical algorithm and also of applicability for tiny 
type computations are analyzed and discussed. 

III. PARALLEL ALGORITHM 

The exact analytical solutions for Dirichlet problem is only 
limited by the specific cases in appropriate domains 
therefore in major situations, the numerical approaches to 
find solution to the problem is applied. Let us consider the 
3D model of Dirichlet problem for the Laplace’s equation 
[9], [10] in a domain D of hypercube, where D is as defined: 
D= {(xi): 0 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖};∀ 𝑖𝑖 

�
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥𝑖𝑖

2

3

𝑖𝑖=1

= 𝐹𝐹(𝑥𝑥𝑖𝑖)                                     (3.1) 
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In the domain, the number of points is P1, P2 and P3 with the 
co-ordinates xi. Then the result will be computational mesh 
with  

∆𝑥𝑥𝑖𝑖 =
𝐷𝐷𝑖𝑖
𝑃𝑃𝑖𝑖

,∀ 𝑖𝑖                                              (3.2) 

The second order derivatives with approximation gives: 

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥1

2 ≈
𝑣𝑣𝛼𝛼+1,𝛽𝛽 ,𝛾𝛾 + 𝑣𝑣𝛼𝛼−1,𝛽𝛽 ,𝛾𝛾 − 2𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾

∆𝑥𝑥1
2     (3.3) 

 

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

2 ≈
𝑣𝑣𝛼𝛼 ,𝛽𝛽+1,𝛾𝛾 + 𝑣𝑣𝛼𝛼 ,𝛽𝛽−1,𝛾𝛾 − 2𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾

∆𝑥𝑥2
2     (3.4) 

 

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥3

2 ≈
𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾+1 + 𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾−1 − 2𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾

∆𝑥𝑥3
2     (3.5) 

From the above equations, we have 
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⎥
⎥
⎥
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∑ 2
∆𝑥𝑥𝑖𝑖2𝑖𝑖  

 (3.6) 

Here  𝑣𝑣𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾 ,𝐹𝐹𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾  are the values of v and F in (α, β, γ) node 
of computational mesh. Now we are using the method and 
algorithm described by researchers (B. Kumalakov, 2013; 
Mansurova et al., 2014; Shomanov Aday et al., 2016) to 
Hadoop-based algorithm for solving Dirichlet problem for 
Laplace’s equation.  
The Hadoop based implementation to solve the Dirichlet 
problem has the following steps:  
Step1. The Map phase algorithm maps each point in the 
computational domain to certain reducer that will perform 
the computations in its own sub domain.  
Step2. In the Reducer phase every point is mapped inside the 
3-dimensional array to perform stencil computations 
according to Laplace’s equation difference scheme. The new 
internal points after computation in the current iteration are 
stored to a suitable place to avoid redistribution of them 
across the nodes of the cluster in the process of the next 
iteration and the new boundary points are reduced and 
written to the suitable output HDFS directory. 
Step3. If the iteration count is reached the limit program will 
terminate, otherwise the algorithm will continue with step 1.  
Apache Spark algorithm for solving Dirichlet problem for 
Laplace’s equation uses object based representation of 
points in the computational domain. Point class is used for 
storing single point in computational mesh. Every point 
consists of the following properties: Integer partition_id, 
integer number a for x1 coordinate, integer number b for x2 
coordinate, integer number c for x3 coordinate, floating-
point number value for value in specific point (x1, x2, x3) of 
the discrete mesh. Partition property is responsible for 
storing partition number of the point that is sub-domain 

identifier. Algorithm consists of several steps each step 
performs certain operations on RDDs.  
The parallel algorithm to solve the Dirichlet problem for 
Laplace’s equation with the use of MapReduce consists of 
the three parts i.e., initializing, iterating and controlling 
parts.  
The initialization part is executed before the iteration part. 
The main function of it is to initialize all points with respect 
to the problem conditions. 
The Iteration section of the algorithm [10] is as follows: 
Map function 
Input: in_key subcube number, in_value is a string like 
(a_b_c Value); 
Output: (out_key=in_key, out_value=in_value) 
I1: collect (out_key, out_value) 
I2: End; 
Reduce function 
Input: (in_key, in_value), in_key is a string that represents 
the number of part of the cube; in_value is a string like 
(a_b_c Value). 
Output: (out_key, out_value), out_key is a string represents 
the neighbor-subcubes" of current one, out_value is the 
string represents new values of boundary plains' points. 
I1: Define 2-multidimensional matrices for the data 
I2: Initialize one of them with data received from mapper 
I3: for a = 0, . . . , 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑟𝑟 of 𝑃𝑃𝑙𝑙𝑎𝑎𝑖𝑖𝑛𝑛𝑠𝑠 do 
I4:    for b = 0, . . . , 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒𝑟𝑟 of 𝑅𝑅𝑜𝑜𝑤𝑤𝑠𝑠 do 
I5:      for c = 0, . . . , 𝑛𝑛𝑢𝑢𝑚𝑚𝑏𝑏𝑒𝑒r of 𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑡𝑡𝑠𝑠𝐼𝐼𝑛𝑛𝑅𝑅𝑜𝑜𝑤𝑤 do 
I6:        if 𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑠𝑠 𝑒𝑒𝑥𝑥𝑐𝑐𝑙𝑙𝑢𝑢𝑑𝑑𝑖𝑖𝑛𝑛𝑔𝑔 "𝑔𝑔ℎ𝑜𝑜𝑠𝑠𝑡𝑡 𝑝𝑝𝑙𝑙𝑎𝑎𝑖𝑖𝑛𝑛𝑠𝑠" then 
I7:          Fa = (data[a + 1][b][c] + data[c- 1][b][c]) / owa; 
I8:          Fb = (data[a][b + 1][c] + data[a][b - 1][c]) / 
owb; 
I9:          Fc = (data[a][b][c + 1] + data[x][b][c - 1]) / 
owc; 
I10:        newData[a][b][c]=  
                 (Fa + Fb + Fc - Ro((a+dta)*ha, b* hb, c*hc))/c; 
I11: Writing inner updated values to hdfsfiles[] 
I12: Out of boundary values[] 
I13: Output (out_key, out_value) 
I14: End; 
So to perform the exchange operation we want to apply 
mapping, grouping and partitioning transformations in all 
the iteration of the algorithm. The mapping transformation 
will map point elements into tuple of the point and partition 
number. The partition number is identified by the point 
coordinates. After that the points are grouped together by 
applying group. By key transformation and finally every 
partition is separated by applying partition into locations. 
Such operations slightly degrade the performance of the 
program leading to moderate speed-up. The major 
distinction between Spark implementation and Hadoop 
based implementation is that the Spark solution uses in-
memory computations and thus is suited better for iteration 
based tasks like as Dirichlet problem [10].  

IV. EXPERIMENTAL ANALYSIS 

The cluster setup consisted of the following hardware and 
software settings: quadcore i3 Intel processor PC each 
equipped with 8 GB memory cards, Intel Xeon Processors 
and 4 Gigabit Ethernet switch for the network connection 
and equipped with Hadoop and Spark software. After testing 
the program on cluster environment Spark implementation 
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has been compared to Hadoop combined with MPI and 
Hadoop implementations as described by (B. Kumalakov, 
2013;  Mansurova et al., 2014; Shomanov Aday et al., 2016) 
[9], [10], [23] in terms of running time for different sizes of 
computational domain and different number of cores and 
cluster nodes. The computational domain represents a cube 
with fixed and same number of discrete points along every 
dimension. The results of computation were verified for 
correctness compared to the sequential code for the same 
problem with the same settings of the domain size and initial 
conditions.  
Now increasing the number of iterations results in the 
performance improvement of the Spark implementation as 
compared to Hadoop-based implementation. The reason for 
that performance difference is that the Spark performs more 
operations it perform most of the operations in the memory 
to leads the higher performance in case of big number of 
iterations. Whereas the Hadoop performs better on single 
iteration cycle, but at the end of the every iteration it writes 
data back to HDFS or to local file system which leads to 
poor performance due to the accumulation of input output 
latencies over the course of computation. The test runs of 
the software measured system performance with the 
hypercubes of input sizes:  128 x 128 x 128, 256 x 256 x 
256 and 512 x 512 x 512. The graphs of the various ratios 
are as follows: 

 
Figure 5. (The execution time in the three cube sizes and the number of 

nodes) 

 

 
Figure 6. (The execution time in different reducers and number of nodes) 

 

 
Figure 7. (The comparison of the execution times in MPI and Hadoop 

platform) 

The graphical representation by figure-5 represents ratios 
between the data numbers and used time to complete an 
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execution. By increasing the number of nodes the speed of 
processing decreases but for the small data there is no 
benefit. The figure 6 represents ratios between the number 
of reducers and time taken to complete the test execution 
with cube (256 x 256 x 256). By increasing the reducer’s 
number, it decreases the time of execution. The figure 7 
represents the comparison between the calculations on MPI 
and Hadoop respectively. 

V. CONCLUSIONS 

By using the algorithm and the computational analysis for 
solving the Dirichlet problem for Laplace’s equation and by 
using Apache Spark framework and compared it with 
Hadoop-based implementations. By analyzing the graphical 
analysis and other details, we can say that the Spark based 
implementation is much suitable for solving the Dirichlet 
problem for their improved performance as compared to 
Hadoop-based implementation. 
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	The Spark’s major use [9] cases over the Hadoop are as follows:

