
Volume 7, No. 6(Special Issue), November 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

297

978-93-85670-72-5 © 2016 (RTCSIT)

Hybrid approach for Detecting Code Clone by Metric and Token based comparison

Deepali

Assistant Professor

Guru Nanak College

Budhlada,India

Ankur Gupta

Software Engineer

Amadeus India Pvt. Ltd.

Banglore

Chirag Batra

Technology Lead

TCS

USA, New York

Abstract—In software development process, coping of

existing code fragment and pasting them with or without

modification is a frequent process. Clone means copy of an

original form or duplicate. Software clone detection is

important to reduce the software maintenance cost and to

recognize the software system in a better way. There are

many software code clone detection techniques such as text-

based, token-based, Abstract Syntax tree based etc. and they

are used to spot and finding the existence of clones in

software system. One of the approaches to detect code clones

is by analysis of different metrics for the programs. Another

approach is token based comparisons of two programs to

detect code clone. Our technique uses the combination of

metrics and token based approach using hashing algorithm

by analysis of two source codes in the process of finding

clones among them and the percentage of cloning is reported

as result.

Keywords— software clone detection, metric based

comparison, token based approach using hashing algorithm,

java byte code.

I. INTRODUCTION
In general, clones are set of identical segments of code in

a software system, which has a bad impact in the system. In
software development approach, duplicating previous code
segments in different programs with or without modification
is frequent process and that duplicated code is extremely
difficult to maintain. The imitation in code is known as
software clone and the phenomenon is known as software
cloning. Code Cloning considered asa bad smell in software
industry and has a bad impact on software quality, software
maintenance and also increases maintenance cost. Roy and
Cordy [1][2] mentioned software clone as software reuse.
Although, it is a fast and instant method of software reuse yet,
it is a harmful design procedure.

Baker [11][2] has taken a simple program and concluded
that program code can be reduced by 14% based on exact
matches and 61% based on parameterized matches. Several
studies states that about 5% to 20% of software contains
duplicate program segment [1] .Thus, it becomes very
important to find the clones in programs accurately and in an
efficient manner. Cloning in softwareis really harmful as it
becomes really difficult to maintain software and its
evolution. The reason behind cloning can be intentional or
unintentional. There is major shortcoming of duplication in
code fragment that if there is a bug in code segment to be
duplicated, then that bug will be propagated at different
places and the bug is to be tested multiple times at different
places of the code and that would definitely increase the

maintenance cost. Cloning on large extent increases the size
of a system and results in design problems such as missing
inheritance and procedural abstraction. The modification cost
carried out after delivering of software product is figured out
to be 40% - 70% of the total costs during lifetime of a system
[2].

There are many software clone detection techniques and
tools that differ from each other on the basis of approach used
by them to detect clones. Cloning between two program
codes is recognized on the basis of textual similarity and
functional similarity. These types of similarities define the
clone type. Based on the textual similarity we define the type
1, type 2 and type 3 clones.

Type 1 (Exact clone):- Identical code fragments except
for variations in white spaces, layout and comments.

Type 2 (Renamed/Parameterized Clone): Syntactically
same code fragments except for changes in identifiers,
literals, types, whitespaces, layouts and comments.

Type 3 (Near miss clone):- Copied with further
modification such as “change, add or remove” statements in
addition to changes in identifier, literal, types, whitespaces,
layouts and comment.

Based on the functional similarity we define type 4 clones
imitated as a semantic clone.

Type 4 (Semantic clone):- Code fragment which are
functionally similar but not textually similar.

This paper describe the hybrid clone detection technique

using metric based comparison and token based comparison
approach using hashing algorithm on the java source code.
The metric based comparison is straightly applied on the
source code for which many tools are available to find out
metrics for the source code program. Later on, we apply a
hashing based algorithm to execute the tokenbased
comparison of the two programs to find more accurate clone
results. This paper has 5 sections, section 2 describes the
related work, section 3 describes the proposed work, section 4
describes the results, and section5 describes the conclusion
and future scope.

II. BACKGROUND
Software clone detection is mainly implemented for the

reorganization, preservation, refactoring and reengineering
ofsoftware [4] [1]. By detecting clones, the computation cost
and complexity of the software system can be minimized.
Because of these factors software clone detection is new and
an important research area.

 Following are the software clone detection approaches:-

Deepali et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,297-302

978-93-85670-72-5 © 2016 (RTCSIT)

298

A. Textual approach:
Two code fragments are compared with each other to find

matched sequence of texts or strings. If match is found then

code is a clone pair by the detection technique.

B. Token based approach:
It needs a parser or lexer to normalize the code in form of

token. So every line of source code is transformed into

tokens then comparison applied on intermediate

representation of code. The sequences of lines are compared

through different algorithms. This technique is slower than

text based approach and it is more robust.

C. Abstract syntax tree approach:
The actual source code is parsed into abstract syntax tree

(AST) or parse tree and traverse the tree for finding similar

sub tree. If match is found for sub tree is termed as

clone.AST based approach finds even better results than the

text and token based approaches but it is very complex to

create an abstract syntax tree and clone detection using AST

is acostlyprocedure on both time and memory.

D. Program dependency graph based

approach:
It shows the control flow and data dependencies. When PDG

is achieved from source code, graph isomorphism based

comparison is applied to find match. For larger code it is

very difficult to obtain PDG.

E. Metric based approach:
As an alternative of comparing two codes directly, metrics

from source codes are obtained and these metrics are

compared to detect clone. To calculate metrics,there are

numerous softwares that canbe used such as Columbus,

Source Monitor, Datrix etc. This technique is more scalable

and accurate for big software system.

F. Hybrid based approach:
Hybrid based clone detection technique combines two or

more than two different approaches to detect clones which

increases its complexity but it is very active technique for

detecting clones as compared to above discussed technique.

III. PROPOSED WORK
Figure 1 depicts the basic block diagram for the clone

detection process. The proposed technique consists of two
stages. First stage is a metric based comparison and Second
stage is token based approach for clone detection. Firstly, the
metrics are calculated as shown in figure 2 and then the
comparison algorithm is applied on these metrics to detect
clones.

Figure 1: Block Diagram for Clone Detection approach

STAGE 1:

In metric based approach, different metrics are calculated
from source code tool and then compared to detect code
clone. It is more appropriate approach because it gives more
precise result in large software system and also it can be
appliedstraight on the source code.Straight Due to its
application in large software systems, the technique holds
more scalability. There are many tool that detect metric such
as Source Monitor, Columbus, Datrix, MCD Finder etc. The
Source Monitor tool is used to detect metric of java source
code.

Metrics that are calculated from Source Monitor tool: -

1. No of files

2. No of lines

3. No of statements

4. Percentage branch statements

5. No of method call statements

6. Percentage lines with comments

7. Classes and interfaces

8. No of Methods per class

9. Average Statements per method

10. Line no of most complex method

11. Maximum complexity

12. No of line number of deepest block

13. Maximum block depth

14. Average block depth

15. Average complexity.

Deepali et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,297-302

978-93-85670-72-5 © 2016 (RTCSIT)

299

Figure 2: Result of Source Monitor tool for Code 1st

The results of the calculated metrics of java source code as
shown in figure 2are transformed into theXML file (figure 3).

Figure 3: XML view of metrics

The next step is to extract the metrics from the XML file
in to database (figure 4) that can later be used for comparison
using JDBC.Once the metrics are extracted, they are
compared for the two source programs to find out similarity
among them and that similarity is reported as result in from of
percentage of cloning (figure 5).

 Figure 4: Metrics result transform into database

 Fig 5: Result of Cloning on the basis of metrics

STAGE 2:

After calculating metrics and comparing them, once it is
identified that the extent of cloning is good enough to go to
next stage, then token based approach will be applied on
thetwo source programs to calculate more precise code
clones.In token based approach, firstly we have to form an
intermediate representation of code in which we interchange
the identifiers and keywords with some pre-defined tokens.
Once the intermediate representation of the two source codes
is accomplished, then we have to apply the comparison
algorithm. A hashing based comparison algorithm has been
developed to compare the two intermediate representations.
The hash algorithm gives us good result with less time
complexity because searching using hashing can be done in
O(n). Figure 6 shows the intermediate representation for the
two source codes. Finally, the percentage of cloning is
reported as result as shown in figure 8. In next section, the
algorithm for token based comparison is discussed.

A. Algorithm for implement hashingbased comparison

G. Take two programs and remove all types of
comments in the program depending on the
language of interest.

H. Also removes tabs, and new line(s) and other blanks
spaces from the java program.

I. Then we have to perform an intermediate
representation of programs in which we substitute
all identifiers and keywords by some tokens.

Deepali et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,297-302

978-93-85670-72-5 © 2016 (RTCSIT)

300

J. Then, a hash value is calculated for every statement
of intermediate representation of program and will
be stored in a list. Note that, this hash function must
be implemented in a way, such that the hash value
returned must be different for different statements,
and it must be same for two same statements.

Input: F1 (program in a text file)

Output: F2 (An intermediate representation for F1)

Begin:

Take two programs& ignore all kinds of comments in the F1

depending on the language of interest and remove blank lines

from F1.

Store all keywords with their corresponding tokens in a 2-D

array to map them later for our intermediate representation of

F1.

Read F1 != end

a. Read each character one by one and store it in an array

until space or new line encounter.

b. If the character is from the set {(,),:,;, . ,{ ,}, =}

-----special characters.

Retrieve the string from the character array and trim it

to remove spaces from string.

else ,

 then store the character into the character array

c. Check whether the string is corresponding to any

keyword

if yes,

put the token corresponding to the string into

 the F2.

else ,

put “$” for that string into F2

Check whether the next character is „ ‟,‟\t‟ or „\n‟

if yes,

put the character in F2

else ,

put “$” for that character into F2as a

specialcharacter.

 End of file,

Read F2 != end,

For each statement,

 Calculate a hash value and store that hash value in

 a list.

 End of file,

End

K. This algorithm produces two lists containing the

hash values for each statement of the intermediate
representation of the two programs.

L. Finally, the contents of two lists are compared to
find out similarity among two codes. The algorithm
is given in the table shown below.

IV. RESULTS

Figure6:Intermediate Stage for Clone Detection approach

Figure7:Hash values returned from the intermediate stage

Figure8:Final cloning percentage for Clone Detection

approach

V. RELATED WORK
In last decade many algorithm are proposed on software

clone detection technique and every algorithm has its own

Deepali et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,297-302

978-93-85670-72-5 © 2016 (RTCSIT)

301

advantage and disadvantage. This unit describes the summary
and overview of recent research in the areaof metric based
software clone detection approach.

Y. Yuan et al. [19] proposed a count matrix based clone
detection (CMCD) method, which is produced while counting
the rate of frequencies of every variable in conditions
specified by pre-determined counting condition. The
projected technique is language-independent as it depends
only on variable count. That is, if we have to count the rates
of frequencies of variable in certain conditions with special
standards, these standards are called as counting
condition.Counting condition is used to select when the count
should begin. The count matrix (CM) is a group of n count
vectors (CV) and compares these Counting vectors with the
help of Euclidean space. The variation between two vectors is
calculated by the Euclidian Distance among them in the
space, i.e.

𝐷 𝑣1, 𝑣2 = 𝑣1 − 𝑣2 2 = 𝑣1𝑖 − 𝑣2𝑖 ^2
13

𝑖=1

The CMCD perform well in extracting count-based
information and it is language independent. It supports to
detect clone in large programs (> 1M LoC) also it has a
abilities to perform well in scenario-based evaluation.

Vidhya et al. [20] proposed an emergent technique on
java directories by using a metric based approach. The
proposed system has been tested with two directories of
JAVA files as input and the outcomes are produced based on
the matching among files in directories. The percentage of the
comparison is calculated by implementing the line by line
comparison of the intermediate form of the files. This
proposed technique merge both the textual based approach
and metric based technique. Metric based approach
isstraightforward hence it is a light weight method. The
textual based approach is the one which give high exactness.
This proposed technique also helps to notice the directory
level cloning that is not structurally correlated but
functionally similar.

K. Raheja et al. [4] proposed another approach using
metric based technique for clone detection on byte code.
Firstly the metrics are calculated from MCD Finder (java
based) tool and then comparison technique is applied on these
metrics to detect clone. MCD Finder tool works only for the
Java language and it is easy to use. The metric based
technique is used to identify the potential clone which does
not directly work on source code. The proposed technique
can also be merge with other techniques like abstract syntax
tree based and the program dependence graph based
technique to make this a hybrid method to proficiently detect
semantic clones.

Zhuo Li et al. [3] proposed a technique, metric space
based software clone detection by an iterative method. This
technique transforms the main source code fragment into
metric space member through the retrieved coordinate value,
and then calculates similarity level through all members on
their distance within the similar metric space. The nearer the
two members are, the more similar they are, from code
perception. As the distance between two members become
lesser, then it means they are more similar and if the distance
between them increases, it means they are less similar. This

technique gives advantage like exactness and scalability with
the help of metric space.

VI. CONCLUSION AND FUTURE

WORK
The technique detects clones (type-1 and type-2) by

metrics based approach for filtering code and after that it

uses token based comparisons to detect code clone. The

technique detects clones by hash algorithm in token based

comparison to detect whether two clones really are clones

of each other and it is also able to detect the type 3 clone

near miss clone by using hash algorithm. The technique

can also detect code plagiarism in student‟s computer lab

programs.In future this approach can be integrated with

other approaches like abstract syntax tree based approach

and the program dependence graph approach to make this

a hybrid approach to efficiently detect semantic clones.

REFERENCES

[1] Roy, C.K., and Cordy, J.R., “A Survey on Software
Clone Detection Research” School of Computing
TR 2007-541, Queen‟s University, 115 pp., 2007.

[2] “Software clone detection: A systematic review”
Dhavleesh Rattan, Rajesh Bhatia, Maninder Singh.
Information and Software Technology,Volume 55,
Issue 7, July 2013, Pages 1165–1199.

[3] “An iterative, metric space based software clone
detection approach” Zhuo Li ; Jianling Sun Software
Engineering and Data Mining (SEDM), 2010 2nd
International Conference on Publication Year: 2010
, Page(s): 111- 116.

[4] “An Emerging Approach towards Code Clone
Detection:Metric Based Approach on Byte Code”,
Kanika Reheja,Rajkumar Tekchandani,in
IJARCSSE,Volume 3,Issue 5,May 2013.

[5] R. Wettel, R. Marinescu, “Archeology of code
duplication: Recovering duplication chains from
small duplication fragments”, in: Proceeding of the
7th International Symposium on Symbolic and
Numeric Algorithms for Scientific, Computing,
2005, p. 8.

[6] K. Roy, J.R. Cordy and R. Koschke, “Comparison
and evaluation of code clone detection techniques
and tools: A qualitative approach,” Science of
computer programming, Vol. 74, No. 7, pp. 470-
495, 2009.

[7] Amandeep Kaur, Mandeep Singh Sandhu ,
“Software code clone detection model using hybrid
approach”, in IJCT, Volume 3 No.2, OCT, 2012.

[8] C.K. Roy, J.R. Cordy, NICAD: “Accurate detection
of near-miss intentional clones using flexible pretty-
printing and code normalization”, in: Proceeding of
the 16th IEEE International Conference on Program
Comprehension (ICPC‟08), Amsterdam, The
Netherlands, 2008, pp. 172–181.

Deepali et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,297-302

978-93-85670-72-5 © 2016 (RTCSIT)

302

[9] C.K. Roy, “Detection and analysis of near miss
software clones”, in: Proceeding of the 25th IEEE
International Conference on Software Maintenance
(ICSM‟09), Edmonton, AB, 2009, pp. 447–450.

[10] S. Lee, I. Jeong, SDD:“High performance code
clone detection system for large scale source code”,
in: Proceeding of the Object Oriented Programming
Systems Languages and Applications Companion to
the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages,
and applications (OOPSLA Companion ‟05), San
Diego, CA, USA, 2005, pp. 140–141.

[11] Baker, “On finding duplication and near-duplication
in large software systems”, in: Proceeding of the 2nd
Working Conference on Reverse Engineering
(WCRE‟95), Toronto, Ontario, Canada, 1995, pp.
86–95.

[12] Gehan M. K. Selim ,King Chun Foo, Ying Zou
“Enhancing Source-Based Clone Detection Using
Intermediate Representation”, 17th Working
Conference on Reverse Engineering, 2010.

[13] G. Anil Kumar, Dr. C. R. K. Reddy, Dr. A.
Govardhan, “an efficient method-level code clone
detection scheme through textual analysis using
metrics”, International Journal of Computer
Engineering and Technology (IJCET) Volume 3,
Issue 1, pp. 273-288 , January-June (2012).

[14] Jean-Francois Patenaude, Bruno Lagu¨e, “Extending
Software Quality Assessment Techniques to Java
Systems”, Seventh International Workshop on
Digital Object Identifier, pp. 45- 56, 1999.

[15] MooseGager,a Software Metrics Tool based on
Moose Student Project Author Thomas B¨uhler
October 2003 Supervised by: Dr. Michele Lanza
Prof. Dr. Oscar Nierstrasz Institut f¨ur Informatik
und angewandte Mathematik Universit¨at Bern.

[16] Kodhai.E, Perumal.A, and Kanmani.S, ”Clone
Detection using Textual and Metric Analysis to
figure out all Types of Clones” International Journal
of Computer Communication and Information
System(IJCCIS)- Vol2. No1. ISSN: 0976–1349
July – Dec 2010.

[17] J. Mayrand, C. Leblanc, and E. M. Merlo.
Experiment on the automatic detection of function
clones in a software system using metrics. In
International Conference on Software Maintenance
(ICSM), pages 244–253, 1996.

[18] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto,
Katsuro Inoue. Refactoring Support Based on Code
Clone Analysis. In Proceedings of the 5th
International Con- ference on Product Focused
Software Process Improvement (PROFES'04), pp.
220-233, Kansai Science City, Japan, April 2004.

[19] Yang Yuan, Yao Guo, "CMCD: Count Matrix
Based Code Clone Detection," apsec, pp.250-257,
2011 18th Asia-Pacific Software Engineering
Conference, 2011.

[20] “Identifying Functional Clones Between Java
Directories Using Metric Based System”, Vidhya.K,
Thirukumar. K, in IJARCSSE, Volume 3,Issue
8,ISSN: 2277 128X,May 2013.

