
Volume 2, No. 1, Jan-Feb 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 215

ISSN No. 0976-5697

Customer Satisfaction within an Organization driven Aspect Oriented Business
Component Model

Atsa Etoundi Roger
 Department of Computer Sciences,

University of Yaoundé I, UYI
Yaoundé, Cameroon

roger.atsa@uy1.uninet.cm

Fouda Ndjodo Marcel
Department of Computer Sciences,

University of Yaoundé I, UYI
Yaoundé, Cameroon

marcel.fouda@uy1.uninet.cm

Atouba Christian Lopez*
 Department of Computer Sciences,

University of Yaoundé I, UYI
Yaoundé, Cameroon

achristianlopez@yahoo.fr
__
Abstract: The Component Based Software Development is an activity which saw its importance increase within time. However, limitations have
been detected in classic approaches of components development; notably weakness in the ability to reuse components. It is in most cases caused
by crosscutting concerns. We propose in this paper, an Aspect-Oriented Business Component Model based on the concepts of Aspect approaches
to increase the reusability of these business components. It is constructed from knowledge bits of user requirements in an organization, enhanced
by performance indicators related to customer satisfaction of that organization. Because we cannot predict the axes of the developer’s concerns,
it advocates the gradual incorporation of these throughout the development process. This model's main advantage is that it allows the substitution
of some modular integration units with the suitable one. The defined model integrates as basic concerns only concerns relative to business and
those relating to the satisfaction of the organization’s service delivery. The obtained model offers the possibility to apply substitution among
internal elements of a business component in order to reuse certain aspects of a model

.

Keywords: Business Process Modeling, Requirement Engineering, Software Component, Software Development, Subject-Oriented
Programming

I. INTRODUCTION

The crosscutting Concerns are non-business features
(security, interface, data persistence, etc) necessary for the
implementation of computer systems. A developer is often
faced with this kind of functionality when developing a
large application. In this case, even if you apply a good
vertical modularization of business concerns, there will
always be a problem of horizontal concerns that cross all
business modules. In [7], it appears that these cross-cutting
concerns induce, in traditional approaches to development,
two fundamental problems: the problems of dispersion and
tangled code. Thus limiting the capacity for reuse and
evolution of computer systems [7, 9] since these reusable
parts, include specific details for a specific use case.
Particularly, details of data persistence, security, man-
machine interface, etc. However, reuse is presented in the
literature as a fundamental concept in contributing to
reducing costs and production time of computer systems. In
addition, this concept emphasizes the notion of “business
component”; and a business component is a materialization
of the reusable parts of an information system. In order to

increase the capacity for reuse of business components, it is
essential to have a business component model capable of
being adapted to fit in different situations. We believe that
such a solution is possible only if there is a
multidimensional separation of crosscutting concerns,
notably data persistence, security, man-machine interface,
etc. Aspect approaches are an alternative to these problems
and require a multidimensional separation of different
concerns [7, 9]. However, they are confronted with the lack
of steps needed, from a business process requirement;
identify the steps in the implementations of aspect oriented
computer applications.

In the literature, several approaches exist for modeling
business processes. However, research [1, 2, 3, 4, 5, 6] have
particularly caught our attention, because they, through the
Triangular Modeling Approach (TAM) [6] of a business
process, allows the inclusion of client satisfaction of
services rendered by a business process, and minimizing
misunderstandings between developers and users of
computer applications [1, 2]. We believe that this research
[1, 2, 3, 4, 5, 6], reconciled with those of [7,9] the ongoing
on Aspect approaches which allows us to get an adaptable

mailto:roger.atsa@uy1.uninet.cm�
mailto:marcel.fouda@uy1.uninet.cm�

Atouba Christian Lopez et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,215-225

© 2010, IJARCS All Rights Reserved 216

aspect-oriented business component model and enrich the
inclusion of client satisfaction of service provided by the
business process. This capability will be useful when
discriminating among a list of components, those that best
meet the problem. Moreover, these business components
will certainly develop applications based computing
satisfaction of service recipients of the organization.
According to [10], it will be possible to make dynamic
adaptability with such business components.
 We propose in this paper, an approach that takes
advantage of the development by Aspect [10] to define a
business component model, based on a model of needs of a
business process incorporating the recommendations of [6].
We hope that such a model will be interesting for an
organization that is concerned with the satisfaction of its
customers. Furthermore, provided the separation of cross-
cutting concerns, such a model is easily adaptable and
scalable.
 Our work in the sequel will revolve around four
sections. The first section will be devoted to Related Works,
the second section will be devoted to basic concepts of our
approach, the third section to the process of building aspect-
oriented business components; last section is devoted to
conclusion and perspectives

II. RELATED WORKS

.

A. Business Components
 The reuse of the knowledge of a domain, and most
especially that from a particular business and which
constitutes a business domain (BD) has grown significantly,
because it has been the subject of much research [19] [23]
[22] [21]. Such an approach is intuitive, from the moment
we realize that certain activity domains result to the frequent
manipulation of identical concepts. We then think to analyze
these concepts and to create computer abstractions that
could be reused in new developments. Thus, reusable
components, which are not only for solving purely computer
technical problems, but that meet the specific requirements
of a particular domain, may also make easier, faster and less
costly implementation of information systems in which they
relate. It is in this sense that the Business component
approach (BC) was proposed [19] [24] [20]. Thus such
components are used for example in the fields of medicine,
finance or accounting [26]. Research in the field of BC gave
rise to numerous technologies based on components, which
are now proposed and used in all activity sectors. Several
definitions of the concept of business component exists in
the literature, but that which retained our attention was
given by [8] because it is a summary of definitions given by
[19, 20, 23, 25, 27, 28]. [8] defines a business component as
follows:

Definition (1): Business Component
 A BC is a representation of an active concept in a
business domain. A BC may be a composition of artifacts
that ensure the completeness of its solution [8].
 [8] tells us that, according to [19] [29], business
components are classifiable into three types of knowledge:

(i) business components of type entity: they represent real
and “static” elements of the domain activity in question, and
generally correspond to the elements identified during the
design of data models, (ii) business components type
process: they represent activities (business processes) of the
domains in question. Users base themselves on this type of
business components in accomplishing their tasks. From this
fact, the process of manipulating and using business
components of this type, (iii) the utility business
components: this refers to business components that can be
implemented in Information Systems relating to different
contexts. They are used by business components of the
process type and of the entity type. They are of smaller
granularity than both categories of business components
mentioned above. A measure, an address, a monetary value,
as well as components such as spatial reference as points,
lines or polygons, are examples of business components of
type utility
 BC of type process in the context of organizations are
presented as unstable elements, because they need to evolve
to enable the organization to remain competitive [8]. In the
following, the concept of business component will refer to
the business component of the process type.

.

 It appears, however, from the work of [7] that there are
a number of limitations in component approaches
particularly: (i) non readability and non intelligibility of
code: entanglement (dispersion respectively) of code of one
or several cross-cutting concerns with those (respectively, in
one) relative to the set of basic concerns, often produces a
final code involving many cross cutting concerns. This
reduces the readability of the code that is less
understandable, (ii) poor traceability: the cross-cutting
concerns with their code dispersed in that related to the rest
of the application, are difficult to locate in the final code and
therefore not traceable; (iii) the maintainability and
evolutivity are difficult: the code which is not readable and
less understandable, it is very difficult to locate, maintain
and evolve, the various concerns of the application. As a
result, any evolution or development of one or more cross
cutting concerns, is very complex since it affects all basic
concerns in which it is involved; (iv) the low efficiency and
productivity: the simultaneous definition of many cross
cutting concerns at the same time and in the same modular
unit, moving the attention of the developer away from the
final goal of the application, to additional requirements, thus
limiting its effectiveness and productivity, (v) low code
reuse: the code of various cross cutting concerns being
dispersed, it is not reusable. Thus, the code based on the
concerns of being “non proper” (mixed with the cross
cutting concerns that affect them), it is difficult to reuse in
many other usage contexts of use.
 In the paragraph below, we will introduce the concept of
cross cutting concerns and that relating to the separation of
concerns.

B.
 Modern applications require more and more features in
order to cope with growing problems; and can include for
example: distribution and competition of data, the man-
machine interfaces, real time considerations, persistence
management or robustness to failures. The introduction of

What is the Separation of Concerns?

Atouba Christian Lopez et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,215-225

© 2010, IJARCS All Rights Reserved 217

these features increases the development for several reasons:
(i) their implementation is dependent on changing
technologies (software platform) (ii) they are rarely
considered and identified during the design phase. These
findings have given rise to a new paradigm: “the separation
of concerns” [13]. This paradigm advocates the separation
of concerns both during the design [11] and during the
implementation. The separation of concerns highlighted
three trends: (i) applications are composed of different
concerns, (ii) the complexity of applications is constantly
increasing, and (iii) the number of concerns required by
applications is also increasing. The separation of concerns
seeks to identify the different facets of a system such as:
functional parts (structures and behaviors that match the
business part of the application) and non functional parts
(code synchronization, display of signs, treatment of
persistence, transaction management, etc.).. The first
distinction between different categories of concerns, is
consistent with a design and implementation of a simplified,
better understanding, a decrease in the coupling between
concerns and more generally, greater re-use.
 A concern is a generic concept describing a
homogeneous entity. The notion of concern leads to new
questions in the design and implementation: what are the
entities that are destined to become a concern? Or, what
concern is it made up of? We return to the problem of
identifying different sorts of concerns.
 Concerns should be separated from each other to allow
their reuse in different contexts. The challenge is to
overcome the problems of coupling inter concerns.
Compared to the object paradigm, the separation of concerns
allows to gain modularity and expressiveness in the design
or implementation. To be reused, the concerns are composed
between themselves and the rest of the implementation of
the application. This phase of composition often requires
mutual adaptations between the different concerns.
Separation of concerns dislocates a set of problems related
to the reuse toward the composition phase. This “weaving”
of different concerns involves a usually non-orthogonal
composition, which is to say that concerns may alter the
semantics of other concerns. The separation of concerns has
been subsequently improved and this improvement is known
as the multidimensional separation of concerns. It
corresponds to a separation of concerns that meets the
following prerequisites:
A. To be able to categorize the concerns in several

arbitrary dimensions; a dimension represents a set of
concerns with common characteristics

B.
.

The simultaneous separation of concerns on an arbitrary
number of dimensions, without having one privileged
dimension that would course the decomposition along
the other dimensions in a favored manner

C. To be able
.

 to identify and encapsulate any type of
concern

D. To be
.
capable of supporting new concerns and new

dimensions of concern when introduced during the
development cycle

E.
.

Take into account the concerns that have between them
an assembly and whose behavior may interfere with one
or more concerns.

 An implementation that would provide full support for
multidimensional separation of concerns would allow “a la
carte” remodularization. For a developer, it would have as

main interest to choose the most appropriate modularization
unit, based on one or more concerns.
Multidimensional separation of concerns is a set of very
ambitious targets. They are based on both languages at the
application design. However, no existing technique meets
these objectives and an important research activity has yet to
be conducted [14].
 In the following, we shall use for simplicity the term
“separation of concerns” instead of “multidimensional
separation of concerns”. The following paragraph is
dedicated to presenting the basic concepts of aspect
approaches

C.

.

Aspect Approaches
 AOP [15] is a model of separation of concerns based on
the object paradigm (although the model was subsequently
applied to other paradigms). This model formalizes in
applications the interweaving of concerns which are not
taken into account by the object paradigm. This intertwining
(also called crosscutting) is the result of a weaving operation
between trends that are associated to concerns. It results
from the lack of separation between the component
application concerns. AOP proposes new entities to address
intertwining.
 Intertwine elements are called aspects. One aspect is an
abstraction of a concern, whose characteristic is to apply a
set of classes. The implementation of an aspect is
interwoven with the rest of the implementation. The object
paradigm is always used to model behaviors that are
naturally hierarchical.
 Finally, since aspects are entire modules, we need to
able to compose them with the rest of the system. The places
where the aspects intervene with the rest of the program are
called joint points. A join point can have a variety of
granularity: a particular method, a set of methods, all
methods of a class, all methods of a set of classes, etc..
Every join point has an associated contextual information
that is usable to know the where it applies.
 Aspects have methods that are attached to one or
several joint points. Once attached to a joint point, the
method is executed whenever the flow of program execution
reaches this point. A modifier may specify the time of
execution from the joint points: before, after, around, after
exception or after return of value. Moreover, these methods
have an additional instance variable named JoinPoint that
encapsulates contextual information captured from the
junction in progress: intercepted message, class addressed
by the message, parameters, etc..

An additional step should be added to run a program
with aspects: either a new stage of compilation that will
compose the aspects and the “normal” program before
sending it to the native compiler language, either a
modification of the interpreter to be able to compose aspects
at runtime. This step is called “of aspect” (aspect Weaver)
and it implies that at some point of weaving the execution of
aspects and objects are composed to provide the desired
behavior. [16] and [17] proposed for this purpose examples
of aspect weaver implementation.
 Aspects have the ability to inherit from other aspects
and encapsulate variables and instance methods or class.
They can be instantiated and multiple instantiation policies
are possible: an instance of the same appearance for all
objects of a class, each object can have a proper instance of
the same aspect, or a single common instance.

Atouba Christian Lopez et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,215-225

© 2010, IJARCS All Rights Reserved 218

 In the case of a reflective environment, the aspects
specificities must also address the requirements for
reflexivity. It is then necessary for the implementation
aspect to be completely dynamic, for example see [18]. for
example, to enable the changing of an aspect at runtime.
 In conclusion, aspect oriented programming allows a
modular implementation of concerns intertwine with the rest
of the system. This paradigm has as benefits the advantages
of modularity, which guarantees a simpler code, easier to
develop and maintain and has a greater potential for reuse.
 Despite the potential of Aspect approaches, software
engineers seem to have no interest in the consideration of
satisfaction of beneficiaries of services provided by the
developed application. Moreover, according to [7],
ultimately, the stakes are improving the quality of
productivity. This highlights the need to take into account
the vision of those for whom the services are intended for by
the organization. In 2010, a number of studies [6] have been
conducted on the inclusion of satisfaction of beneficiaries of
services of organization, in the modeling business processes.
This work resulted in a triangular business processes model.
The next section will focus on the synthesis of work [1, 3, 5,
6] on the business processes.

D.
 In [1], a goal oriented approach for defining a business
process requirements model was defined. The approach
proposed by [1] is goal oriented for the definition of a
business process requirements model, taking into account
their level of importance and limitations inherent to these
requirements. The level of importance of a goal is the credit
a user associates to this goal. Constraints are non-functional
requirements related to what that goal must be met. The
representation of the expressed requirements or knowledge
bits proposed in [1] is defined as follows:

Modeling Requirements of A Business Process

(), , , ,ψ ω λ δ ν∂ =
where: v is the name of a knowledge bit; ψ is the context in

which the goal is defined; ω is the goal; λ is the business
rule; δ represents the constraints; ν is the level of
importance. This approach revolves around four main
activities: elicitation of user requirements, selection of
different goals, transformation of requirements into
knowledge bits and ultimately the development of the
requirement model. This approach has the advantages of: -
reducing misunderstandings raised by [1] between
application developers and users, - the reconciliation of the
users requirements in the formal representation of those
requirements, and finally, integration the level of importance
of various aspects of the system and the constraints inherent
to these requirements. However, this approach has as main
weakness: (i) the lack of indicators on the validation of level
of importance attributed to requirements, (ii) the lack of
formalism for defining business rules, (iii) the lack of
formalism for the representation of constraints, and lack of a
formalism for describing the contexts of each of knowledge
bit . Regarding shortcomings (ii) and (iii), the work of [3]
helped overcome this difficulty by formalizing the
specification of a business rule, this led to the formalization
of the context of a knowledge bit :

_ __ (,)nom règle nom règlenom règle contexte description=

where: _nom règlecontexte is the context part of the

business rule; _nom règledescription is the description
part of the business rule. Each of these parts has been
subject to detailed presentation in [3,4]. Regarding the
shortcomings (i) the work [6] have helped raise this concern.
These work has contributed significantly to the
consideration of quality of service as perceived by
beneficiaries of services of an organization in the modeling
its business processes. These works, through the triangular
modeling, have significantly enriched the modeling of
business processes.
 However, given the capital role of this research, it is
essential that the reusable modules of information systems
take these considerations into account. Thus, the definition
of a new business component model is needed.
 The next section will be devoted to basic concepts of
our approach of definitions of a new model for business
components which shall be “aspect oriented”.

III. BASIC CONCEPTS
 In the previous section, the pre-requisites for
understanding the concepts developed in the section below
were presented.
 In the works [1, 2], a representation of an expressed
requirement was proposed. Unknowingly, the authors
implicitly used a cross-cutting concerns separation
approach. The representation of requirements proposed in
[1,2] refers to the coordinates of a point in a coordinate
system in which the axes are made of each component of a
knowledge bit, thereby materializing, the various areas of
concern that should be taken into account in defining aspects
of the system to develop. However, it is impossible to say
beforehand the number of axes of cross-cutting concerns
that a software architect will take into account in developing
an IT solution to a specific problem. Thus, we believe that
we should define new concepts that take into account that
the axes of concerns may change from one problem to
another and by the aspirations of each IT solution designer.

Definition (2): Integrable units or Modular Integration units
 Consider a hyperspace consisting of several areas of
concern, we shall call integrated unit, a construction of
language in question, which may be, for example, a variable
declaration, a method (or function or business rule), a class,
interface [7].
 Given the heterogeneity of integrable units, it seems
appropriate to give a formal definition of this concept. Thus,
we define a integrable unit in the following manner:

_ _ ,Unity name port com action=
 Where: action is either the specification of a business
rule either the specification of a condition, of a function, or
the specification of an interface; _port com describes the
communication port of the modular integration unit. It is
through this port that the integrable unit is composed to
others in the definition of an aspect.
 The specification of a business rule, of a function
(method respectively) or a condition should be made
following the rules described in [3], while those relative to
interface is made literally. The communication port,
meanwhile, will be structured as follows:

| , | , ,InputStream Nothing OutputStream Nothing goal TypeLabel

Atouba Christian Lopez et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,215-225

© 2010, IJARCS All Rights Reserved 219

where: InputStream is the integrable data stream input unit;
OutputStream is the data stream at the output of a integrable
unit and goal is the goal that must be met by the integrable
unit; goal indicates the goal that must be satisfied by
modular integration unit; Nothing indicates, depending on its
position in the communications port, the absence of data
streams as input or output of the integrable unit; TypeLabel
can be one of the following values:

, , ,Interface rule declaration any where Interface indicates that
the action part of the unit to which the port refers is an
interface specification, rule indicates that the action part of
the unit to which the port refers is a specification of a rule,
declaration indicates that the action part of unit to which
relates the port refers is a declaration of variables, any
indicates that the communication port has no data stream at
input and output. We also talks of an empty communication
port.
 The different streams will have the following structure:

()()*_ | ,XXX Stream Type Type=

Where: Type is a base type according to work [3];
_XXX Stream is either OutputStream or InputStream .

 Two types of integrations of modular integration units
exist: horizontal integration and vertical integration.

Definition (3): Vertical Integration
 Consider two modular units 1U and 2U , integrations, we
shall say that 1U is vertically integrated to 2U , denoted

∆1 2vU U , if and only if the input data stream of 1U takes its
values from intermediate results of 2U . Such units will be
recorded formally as follows:

{ }∆ ≡1 2 1 2 1 2, , . . , . .vU U U U U p InputStream U p InputStream

Definition (4): Horizontal Integration
 Consider two modular integration units 1U and 2U , we
shall say that 1U is horizontally integrated to 2U , denoted

∆1 2hU U , if and only if 2U uses the results of 1U during its
execution or rather the execution of 2U is dependency of that
of 1U . Such units will be recorded formally as follows:

{ }∆ ≡1 2 1 2 2, , . _ .hU U U U U port com InputStream

Definition (5):

A.

 Constraints
 In [1,2], the concept of constraints relative to the
expressed requirement was defined, formally, we shall
define a constraint as a set of modular integration units each
belonging to a dimension of concern. The constraints are
involved in the business rules in the form of predicates.

 We denote basic cutting concerns, any cross cutting
concerns that we cannot do without in the modeling business
processes, and this whatever the designer of the application
and development approach used.

Basic Crosscutting Concern

 We considered in this work that there exist only two
basic areas of concern: (i) functional concerns relating to the
business (basic), and (ii) concerns relative to the satisfaction
of customers of an organization (quality concerns
(performance indicators, quality factors, etc). We believe

that whatever software engineer, the modeling of a
satisfaction oriented business process of customers of an
organization, requires minimally taking into account these
two concerns.

B.
 An initial aspect is a modular decomposition unit in
which there are two integrated concerns that are functional
concerns related to business and quality concerns.

Initial Aspect

 It is the representation of a point in a two-dimensional
hyperspace that is the dimension of the basic functions and
concerns of quality. The formal representation of the initial
aspect is as follows:

{ }+ +=   1 2, , , _smallAspect Unity Unity Rule port com

Where: { }+_port com = { }{ }*
_ , _port com port com , in the

specific case of smallAspect , { }+_port com =

{ }1 2. _ , . _U port com U port com ; 1Unity is integrable modular
unit belonging to business dimension of concerns; 2Unity is
a modular integration unit of quality of service dimension
of concerns of and Rule is the description of the integration
rule of the two integrable units. This description is literally
and refers either to ∆h ; either to ∆v .
 Our intuition has led us to this representation, because it
is rare for business rules of a business process of an
organization to evolve. Moreover, if they change
substantially, there is a new business process. However,
although there is consensus on business rules, other cross-
cutting concerns mainly depend on the inspiration of the
developer and the objectives assigned to him. We thought it
useful to consider an evolution of the original aspect in
function of the aspirations of those developers.

C.
The previous representation of an initial aspect is based

on the concepts of aspect approaches and particularly the
Hyperspace approach [30] which proposes, that as new
concerns, whenever they arise, by an incremental manner
extend the hyperspace dimension with cross-cutting
concerns; Thus inducing the need to extend the definition of
the initial aspects in the new hyperspace. As illustrated in
Figure 2, below.

Evolution Principle of Initial Aspects

Functional concerns relative
to business

Concerns relative to quality
of service

Figure 1 : Representation of Minimal Aspect

Volume 2, No. 1, Jan-Feb 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 220

ISSN No. 0976-5697

 In the figure above, we have shown the inclusion new
dimension of concerns in the representation of modular
aspect decomposition. The ‘+’ indicates the operator
inclusion of new integrable MMI unit; it implicitly induces
defining a rule for integrating the new integrable unit. To the
left of the sign ‘+’, we have an initial aspect, and to the
right we have an integrable unit belonging to the new
dimension of concern. The arrow indicates the final result
after taking into account the new integrated unit. We denote
by extended aspect, the aspect obtained after extending the
initial aspect. Consider an initial aspect smallAspect with

{ }+= 1 2, , , _smallaspect unity unity rule port com and a new

modular integration unit ihm with _ ,ihm port com action=

and r the integration rule induced by the inclusion of ihm .
Formally the evolution of an initial aspect shall be denoted:

+ = , , , _ , _smallaspect ihm unity unity ihm new rule port com

Where: = ∧_new rule rule r ; if r is a horizontal integration

rule, { } { }+= ∪_ . _ . _port com smallaspect port com ihm port com ,
if a rule is by cons r is a vertical integration rule

{ }+=_ . _port com smallaspect port com ; ∧ denotes the
composition operator of integration rules.

 ‘+’ inclusion operator, integration of modular units is
polymorphism and is defined as follows:

A. : aspects unities rules aspects+ × × → Such that
()1,.., , , ,na u u rule p aspects∀ = ∈ ,b unities∈ and r rules∈ :

(, ,) ,..., , ,a b r u u b ru le r+ = ∧

B. : ()unities unities P unities+ × → Such that ,u v unities∀ ∈ ,

{ }(,) ,u v u v+ = if u v≠ and { }(,)u v u+ = if cons u v= .

C. : () ()aspects P unities P rules aspects+ × × → Such that
()1,.., , , ,na u u rule p aspects∀ = ∈ { }1,.., (),mb b b P unities= ∈ and

{ }1,..., ()mr r r P rules= ∈ :

() ()()()()1 1 2 2, , ... , , , , ... , ,m ma b r a b r b r b r+ = + + +

where: aspects is the set of all aspects, unities is a finite
set of all modular integration units; rules is a finite set of all

the domain rules, ()P unities the set of parts of unities , m
represents a number of elements or any part of unities or of
rules .

While the conjunction operator is defined as follows:
: rules rules rules∧ × →

In order to simplify the writing, we shall write a b+ instead
of (, ,)a b r+ , in lieu of ()()()()1 1 2 2... , , , , ... , ,m ma b r b r b r+ + + ,

We shall write
1

m
i

i
a b

=
+ ∑ ; whereas (,)u v+ shall be u v+

Property 1:
r

 Commutativity of Composition Rules
 Consider two integration rules and m , induced by the
operator inclusion of modular integration units, the
following entries are equivalent: (1) ∧m r ; (2) ∧r m .
 The process of inclusion of new concerns is called the
extension process aspects. Within the extended aspect,
several possibilities can be envisaged for the interaction
between the integrable units contained in the aspect of
modular decomposition.
 In the following, the function dim :type Unities String− >
such that for any modular integration unit u , dim ()type u
returns a string representing the dimension of membership
concerns of u .

D.

Definition (6): Right Commutativity
 Consider three elements

Some Mathematical Characteristics

, ,a b c and a relationship ϑ , we
shall say that ϑ is commutative to right if and only if:
() ()ϑ ϑ = ϑ ϑa b c a c b

Definition (7): Right Associativity
 Consider any four elements , , ,a b c d and a relation ϑ , we
say that is right associative to a if and only if:

()() ()()ϑ ϑ ϑ = ϑ ϑ ϑa b c d a b c d

1) Commutativity at the Extremity
 Consider an aspect = 1,..., , ,na unity unity rule port and
two modular integration units = , bb action port , and = , cc action port

we shall show that the inclusion relation '+' is commutative

Figure 2: evolution of aspect after inclusion a new dimension of concerns

functionnal concerns
relative to business

Concerns relative to the
quality of service

MMI
functional concerns
relative to business

concerns relative to quality
of service

Man-Machine Interface
(MMI)

Atouba Christian Lopez et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,215-225

© 2010, IJARCS All Rights Reserved 221

to right (or extremity).

[a] Evaluation of ()+ +a b c , ()+ = ∧1,..., , , , 'n ba b unity unity b rule rule port

where: brule is the rule induced by the inclusion of b into
aspect; ='port port if + ≡ ∆v , else { }= ∪' bport port port .

Assume that ()= +'a a b , ()+ = ∧ ∧1' ,..., , , , , "n b ca c unity unity b c rule rule rule port
where crule the rule is induced by the inclusion of c into
aspect ; ='' 'port port if + ≡ ∆v , else { }= ∪'' ' cport port port .

[b] Evaluation of ()+ +a c b , ()+ = ∧1,..., , , , 'n ca c unity unity c rule rule port
where: crule is the rule induced by the inclusion of c into
aspect a ; ='port port , if + ≡ ∆v , else { }= ∪' bport port port .

Assume that ()= +'a a c , ()+ = ∧ ∧1' ,..., , , , , "n c ba b unity unity c b rule rule rule port where:

brule is the rule induced by the inclusion of b in aspect 'a .
='' 'port port if + ≡ ∆v else { }= ∪'' ' bport port port .

From a) and b), () ()+ + = + +a b c a c b because '+ ' is right
commutative or simply '+ ' is commutative at the extremity.

Property 2
The entries below are equivalent: (i)

: Equivalences of entries
()+ +a b c ;(ii)

()+ +a c b ; (iii) ()+ +a b c ; (iv) ()+ +a b c ;(v) ()+ +a b c ; (vi)
+ +a b c ; (vii) + +a c b ; (viii) ()+ +a c b .

Property 3
 Consider any aspect and a modular unit of integration,
we have:

: Equivalence of entries

2) Associativity at the Extremity
 Consider an aspect = 1,..., , ,na unity unity rule port and
three modular integration units = , bb action port ,
= , cc action port , and = , dd action port . Show that the

inclusion relation '+' is associative to the right (or end), that
is to say ()() ()+ + + = + + +a b c d a b c d .

 Assume ()= + +'a a b c , the appearance obtained after
taking into account the integration and modular integration
units b and c , we have ()()+ + + = +'a b c d a d . According

to Property 2, ()= + +'a a b c , as a result ()+ = + + +'a d a b c d .

 Assume = +''a a b , we have ()+ + + = + +''a b c d a c d
from Property 2, we can write, ()+ + = + +'' ''a c d a c d . By
replacing by its value, we get ()+ + +a b c d .
 Consider a any aspect, and a set of modular units of
integrations 1,..., nb b (n is a nonzero integer) to be taken into
account in appearance of a , the appearance obtained after
taking into account the n modulars integrations units will be
represented as follows:

=
= +∑

1
'

n

i
i

a a b

Axiom
 Consider two integration rules

 1: Equivalence between Integration Rules
a and b , we shall say

that a is equivalent to b , denoted a b≡ , if and only if a
and b are all integration rules, either vertical or horizontal.

Axiom

 Consider two modular integration units

 2: Equivalence between Modular Units of
Integrations

,u action p=< >
and ,v action q=< > , we shall say that u is equivalent to v ,
denoted u v≡ , if and only if . .u action v action= .

Axiom
 Consider two initial aspects

 3: Equivalence between Initial Aspect

1 2, , ,a aa a a r p=< > and

1 2, , ,b bb b b r p=< >we shall say that a is equivalent to b ,
denoted a b≡ , if and only if the following are satisfied: (1)

1 1a b≡ and 2 2a b≡ or 2 1a b≡ and 1 2a b≡ , (2) a br r≡

Axiom
 Consider two business aspects

 4: Equivalence between Business Aspects
a and b , 0a and

0

b the
initial aspects respectively associated with the business
aspects a and b , we say that the business aspects a and b
are equivalent, denoted a b≡ , if and only if 0 0a b≡ .

Axiom
 Consider two business aspects

 5: Substitution of Business Aspects
a and b (with

0
1

n
i

i
a a a

=
= + ∑ ; 0

1

m
i

i
b b b

=
= + ∑), the substitution of modular

integration units of a with those of b , denoted a b , is
defined as follows:

0
u C

a b a u
∈

= + ∑

Where: C is a set of modular integration units defined as
follows: , / dim () dim ()u C u A v B type u type v∈ ↔ ∈ ∈ =ó v ;

1

n
i

i
A a

=
= ∑ ;

1

m
i

i
B b

=
= ∑ .

Axiom
 Consider a business aspect

 6: Substitution of a Modular Integration Unit
a and a modular integration

unit b (with 0
1

n

i
i

a a a
=

= + ∑) the substitution of a modular

integration unit b in a , denoted a b , is defined as
follows:

0
u C

a b a u
∈

= + ∑

Where: C is a set of modular integration units defined as

follows: { } { }/ dim () dim ()
u A

C b u type u type b
∈

 = ∪ ≠ 
 
 v;

1

n

i
i

A a
=

= ∑

Axiom
 Consider two hyperspaces

 7: Restriction of Aspect
A having m (where m is an

integer) dimensions of concern; and B having p dimensions
of concerns (where p is an integer). Let A and B be such

that 1 .p m≤ < let ,a 0
1

n

i
i

a a a
=

= + ∑ an extended aspect

belonging to the hyperspace A , we denote
1

,
p

i
i

b
=
∑ the set of

integration modular units of a which belong to the axes of
concern are found in hyperspace ,B the extended aspect

0 1' p
iia a b∑

=
= + is called restriction of a in the hyperspace .B

 All these axioms help to show that the initial aspects

Atouba Christian Lopez et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,215-225

© 2010, IJARCS All Rights Reserved 222

can be adapted into requirements. Consequently, business
aspects, as derivatives of initial aspects, the same applies.

IV. CONSTRUCTION APPROACH OF ASPECT
ORIENTED BUSINESS COMPONENT.

 In the previous section, it was defined a set of basic
concepts necessary to understand the approach we propose
in this section. The approach we propose in this section is
based on [1, 3, 6] relating to the modeling of business
processes from the perspective of requirements. In [3] a
formalism for the specification of business rules was
defined. This formalism advocated the use of predicates in
the sequence of a business rule. These predicates can be
grouped into three broad categories: (i) the first is reserved
for storage predicates. These are predicates that refer to
persistent data (registration, update, etc...), (ii) the second is
reserved to observers update predicates (this concept was
defined in [6]) (iii) interoperability predicates. These
predicates refer to those used for the interaction between the
business rule and the external environment. These refers to
predicates that relate to editing, input, and (iv) action
predicates, they refer to those reflecting the business
processing. The approach we propose in this section is based
on specifying a business rule to determine the resulting
aspect-oriented business component, as well as all necessary
dimensions of concern.

A.

 Consider a expressed requirement

Construction of Business Components Oriented
Aspect

(), , , ,b ψ ω λ δ ν= in
terms of Section 2.4,

 Step 1: Construction of the initial aspect
 This paragraph shows how, to construction an initial
aspect from an expressed requirement.

[a] Construction of the modular integration unit 1unity
belonging to the dimension of concerns relative to the
business rule. By definition 1unity is expressed as:

=1 _ ,unity port com action Where: λ=action ;
_port com by definition is expressed:

, , ,InputStream OutputStream goal TypeLabel , with

.InputStream Contexteλ= ; .reOutputStream sultsλ= ;
TypeLabel rule= ; goal ω= .

[b] Construction of integrations modular units 2unity

belonging to the dimension of quality concerns.
According to [6] several different types of observers can
be associated with a task and therefore a business rule.
When there is more than one observer associated to a
rule, the following process must be repeated for each of
them. By definition, for any observer associated with the
rule λ , _eval unity expressed as:

=_ _ ,eval unity port com action where: = evalaction f ,

()InputStream type= , type indicates the type of the

observer. OutputStream numeric= . TypeLabel rule= ;
 goal users satisfaction= .

[c] we consider that there exist m observers associated to
the rule λ , and ()1_ ,..., _ meval unity eval unity , the modular

integration units each encapsulating an evaluation
function to an observer respectively. The initial aspect of
an expressed requirement, noted smallaspect , shall be
defined as follows:

{ }1 1, _ ,..., _ , ,msmallaspect unity eval unity eval unity rule port
+=

 Where: 1 1, _ ,..., _ munity eval unity eval unity taken under
the preceding conditions; rule : “create joint points in the
sequence part of λ , where there is use of the observers
update predicate”;

 Step 2: evolution of the original aspect
 This follows in step 1 above.

[a] obtain from the specification of the rule, all categories
of predicates. Above we have listed a few of them. It
may, however, happen that there are more categories
than those previously listed. In the following, we focus
only on those that do not refer either to quality
concerns, or action concerns.

 Each category of predicates refers to a dimension of
concerns. Therefore, the set of modular integration units for
each dimension should be determined. Suppose there exist
n , except for quality or actions concerns that are already

contained in the initial aspect, we shall denote
=


1

n

i
i

cat , the

set of categories of predicates consider;
=


1

p

j
j

unity , all the set

of p modular integration units of the same dimension of
concerns that must be taken into account in the evolution of
the original aspect of the expressed requirement. We shall

denote
= =
  ,

1 1

pn

i j
i j

unity the set of all modular integration units

of all dimensions to take into account in the evolution of the
initial aspect. The aspect obtained after changing the
original aspect will be formally defined as follows:

= =

 
= + ∑ ∑  

 
,

1 1

pn

i j
i j

aspect smallaspect unity

 Where: ,i junity indicates the i mej è modular integration
unit to be considered in the dimension of concern formed by
the i mei è category of predicates.

Definition (8): Business Aspect
 Consider an expressed requirement (), , , ,b ψ ω λ δ ν= in
the previous conditions, and smallaspect the initial aspect
associated with the requirement b . A business aspect is an
aspect obtained after considering all the concerns
encapsulated by different categories of predicates of a
business rule. Formally, the business aspect will be
represented as follows:

= =

 
= +   

 
∑ ∑ ,

1 1

pn

i j
i j

aspect smallaspect unity (1)

Lemma (1): Completeness of aspects
[a] Any business aspect of is said to be complete;

[b] any business aspect can be written as:

Atouba Christian Lopez et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,215-225

© 2010, IJARCS All Rights Reserved 223

∈
+ ∑

()u P unities
initialaspect u where: initialaspect is the initial

aspect;
∈
∑

()u P unities
u is the set of changes of initialaspect .

Definition (9): Aspect Oriented Business Component
An aspect oriented business component is a unit formed

by the composition of several business aspects. Formally,
we define any business component c as follows:

+=   , ,c a a op where a is either a business aspect or a

aspect oriented business component; op is a function of
composition.

Several operators exist in the literature, those which retained
our attention are:

- [] : is the alternative choices operator. This
operator connects the input-output of business aspects
(aspects oriented business components respectively);

- + : This operator assembles the aspects oriented
business components (business aspects respectively) so as to
encapsulate them in the order to create a new business-
oriented aspect. components

Consider ,BCaspects the set of business components;
sin ,Bu essAspects the set of business aspects, the set of parts
sin .Bu essAspects Polymorphic operators composed of the

above mentioned are defined as follows:

− × →[]: BCAspects BCAspects BCAspects
− × →[]: BCAspects Aspects BCAspects
− + × →: Aspects Aspects BCAspects
− + × →: BCAspects BCAspects BCAspects
B.

This part describes the process of transforming the
business process requirement model a process to an aspect
oriented business component model. The process of
transforming the business process requirement model into an
aspect-oriented business component is the bottom-up
(ascending) process. That is to say from leaves to the root.

Business Requirement Model to Aspect Oriented
Business Component Model Transition

 Step 1: creation of business aspects
Transform the basic requirements into business aspect.

Step 2: Creation of aspect oriented business components
[a] For any expressed requirement b (where b is an

intermediate requirement), chooses from leaves to the
root, first transform it into an intermediate aspect
(extended aspect) which lacks only the transformation of
the deterministic choice operator;

[b] Consider 1,..., ,nb b (≥2n) the set of sub requirements of
b . We assume that 1,..., ,na a are business aspects
associated with the above mention sub requirements and
that is a is the intermediate aspect of b in which lacks
just the transformation of the deterministic choice
operator. The business component associated with the
knowledge bit is constructed as follows:

()()()= + 1 2 3... ' [] [] ... [] nC a a a a a

Where: 'a is the aspect obtained after removal of the
deterministic choice operator.
[c] the process b) must be repeated for all intermediary
knowledge bits, from leaves towards the root.

 The model obtained after transformation of the
requirement model is the model of aspect-oriented business
components associated with said business process.

C. Some Axioms on Adaptability of Aspect Oriented
Business Components

Axiom

 An aspect-oriented business component will be called
complete if and only if all aspects occupations that compose
part of the same hyperspace.

 8: Completeness of Aspect-Oriented Business
Component

Axiom

 Consider two hyperspaces

 9: Restriction of Aspect Oriented Business
Component

A having m (where m is an
integer) dimensions of concern, and B having p
dimensions of concerns (where p is an integer). Let A and
B be such that 1 .p m≤ < let ,a 1,..., ,na a a op=< > an aspect-

oriented business component for any ia :

(a). if
*,(,1)ia A i N i n∈ ∈ ≤ ≤ we note

' ,ia the restriction of ia

in the hyperspace ,B 1' ' ,..., ' ,na a a op=< > is called
restriction of a in hyperspace B ;

(b). if *(,1)ia i N i n∈ ≤ ≤ aspect-oriented business component,
then there exists a nonempty set ,

iaA of business
components such that 1, ,..., , ,

ia t pb A b b b o∀ ∈ =< > where:
are ib any business component, and po the composition
operator of .ib for each business component e of ,

iaA

apply (i). Intermediate aspect-oriented business
components intermediate remain unchanged. Only those
belonging to

iaA are restricted.

Axiom 10: Extension of an Aspect Oriented Business
Component

Consider two hyperspaces A having m (where m is an
integer) dimensions of concern, and B having p dimensions
of concerns (where p is an integer). Let A and B be such
that 1 .p m≤ < Let ,a 1,..., ,na a a op=< > an aspect-oriented

business component for any ia :

Atouba Christian Lopez et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011,215-225

© 2010, IJARCS All Rights Reserved 224

(a). if
*,(,1)ia B i N i p∈ ∈ ≤ ≤ ,we note

' ,ia the extension of ia

in hyperspace ,A 1' ' ,..., ' ,na a a op=< > is called the
extension a in the hyperspace A ;

(b). if *(,1)ia i N i n∈ ≤ ≤ is an aspect-oriented business
component, then there exists a nonempty set of business
components such that 1, ,..., , ,

ia t pb A b b b o∀ ∈ =< > where:

ib are any business aspects, and po the composition
operator of .ib for each business component e of ,

iaA
apply (i). Intermediate aspect oriented business
components remain unchanged. Only those belonging to

iaA are extended.

Axiom

1,..., ,na a a op=< >

 11: Substitution of a Business Aspect in Aspect
Oriented Business Component

Consider an aspect oriented business component
and a business aspect b , the substitution

of a business aspect *(,1)ka k N k n∈ ≤ ≤ of a , by the
business aspect ,b denoted . ka a b , is defined as follows:

1 1 1. ,..., , , ,..., ,k k k na a b a a b a a op− +=< >

Axiom

a

 12: Equivalence between Aspect-Oriented Business
Components

Consider and b two aspect-oriented business
components, we shall say that a and b are equivalent if and
only if the business aspects that compose them are
equivalent.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed in a first step, defining a set
of new concepts in relation to the definition of an aspect
oriented business component model, in a second step, we
defined an approach for building these aspects oriented
business components from a business requirement model to
a business process, thereby creating a multidimensional
separation approach for modeling business processes. This
approach introduces the consideration of the aspect concept
in the business components, thus inducing the principle of
partial evolution of an aspect oriented business component.
That is to say that some modular integration units may
change without destabilizing the other parties. Thus, it may
occur that it is necessary to change the man-machine
interface without touching the part concerning performance
indicators. In addition, the component model in its definition
already incorporates the concept of taking into account new
concerns, that is to say that if one dimension of the concern
is found missing, taking into account the modular
integration unit belonging to this dimension will be done
without having to touch the part already designed. To
achieve our objective, we initially defined the concepts of
initial aspect, intermediary aspect, business aspect; and then
the transitory rules from the requirements models to
business components model. However, we did not insist on
treatment associated with input/output of different business
components in the composition of oriented aspect business
components because that is the subject of ongoing work. In
the coming days, we plan:
– To finalize work on the aspects oriented business

components. Especially on the sections relating to the

treatment of input-output of such components during
their composition;

– To define a code generator from the model of aspect
oriented business components;

– To define a platform for identifying a system
requirements model and in the same vein to identify
reusable requirements;

– To enrich the work on selection of software components.
 The purpose of all these works is to implement a
component-based development platform from a
requirements specification closer to the human language and
which takes into account the expectations of the
beneficiaries of the service rendered by the business process.
This course will surely minimize misunderstandings
between developers and business executives, and produce
systems based on software components of lower costs while
managing the changing requirements in a business process.

VI. REFERENCES

[1] Atsa Etoundi Roger, Fouda Ndjodo Marcel, Atouba Christian
Lopez, A Goal Oriented Approach for the Definition of a
Business Process Requirement Model. International Journal
of Computer Applications 9(7):1–7, November 2010.

[2] Roger Atsa Etoundi, Marcel Fouda Ndjodo, Atouba
Christian Lopez, A Goal Based Approach for QFD
Refinement in Systematizing and Identifying Business Process
Requirements, International Journal of Computer Science
Issues, Vol. 7, Issue 6, pp 343-350, 2010.

[3] Atsa Etoundi Roger, Fouda Ndjodo Marcel and Atouba
Christian Lopez, A Model based Business Process
Requirement Rule Specification. International Journal of
Computer Applications 11(9):17–24, December 2010.

[4] Atsa Etoundi Roger, Fouda Ndjodo Marcel, Atouba Christian
Lopez, Business Process Requirement Engineering.
International Journal on Computer Science and Engineering,
volume 2, n° 9, December 2010.

[5] Atsa Etoundi Roger, Fouda Ndjodo Marcel, Atouba Christian
Lopez, A Formal Approach for the Inclusion of Key
Performance Indicators in a Business Process. International
Journal on Computer Science and Engineering, volume 3, n°
9, January 2011.

[6] Atsa Etoundi Roger, Fouda Ndjodo Marcel, Atouba Christian
Lopez, Abessolo Alo’o G., Knowledge Management Driven
Business Process and Workflow Modeling within an
Organization for Customer Satisfaction, International Journal
of Engineering Science and Technology, pp 7350-7362,
December 2010

[7] Ouafa Hachani, Patrons de conception à base d’aspects pour
l’ingénierie des systèmes d’information par réutilisation,
thèse, Université Joseph Fourier-Grenoble I, Novembre 2006.

[8] Rajaa SAIDI, Conception et Usage des Composants Métier
Processus pour les Systèmes d'Information, thèse, Institut
Polytechnique de Grenoble, Septembre 2009.

[9] Laurent QUINTIAN, JADAPT : Un modèle pour améliorer la
réutilisation des préoccupations dans le paradigme objet,
thèse, Université de Nice Sophia-Antipolis, Juillet 2004.

[10] Daniel CHEUNG-FOO-WO, Adaptation Dynamique par
Tissage d’Aspects d’assemblage, Thèse, Université de Nice-
Sophia Antipolis, Février 2010.

[11] Carver L., Griswold W.G., « Sorting out Concerns »,
Workshop on Multi-Dimensional Separation of Concerns,
OOPSLA'99, 1999.

[12] Fayad M. E., Schmidt D. C., Johnson R. E., Building
Application Frameworks, Addison-Wesley Publishing Co.,
1999.

Volume 2, No. 1, Jan-Feb 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 225

ISSN No. 0976-5697

[13] Lopes C.V., Hursch W., Separation of Concerns, Technical
Repport NU-CCS-95-03, Northeastern University, Boston,
February 1995.

[14] Tarr P., Harrison W., Ossher H., Finkelstein A., Nuseibeh B.,
Perry D., Summary of Workshop on MultiDimensional
Separation of Concerns in Software Engineering, ISCE 2000.

[15] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes
C.V., Loingtier J.M., Irwin J., « Aspect Oriented
Programming », ECOOP 97,1997.

[16] Fradet P., Südholt M, « AOP: towards a generic framework
using program transformation and analysis », Workshop
Aspect Oriented Programming, ECOOP 98, 1998.

[17] David P.C., Ledoux T., Bouraqadi-Saâdani N.M.N. « Two-
Step Weaving with Reflexion using AspectJ », Workshop
Advanced Separation of Concern, OOPSLA 01, 2001.

[18] Ségura-Devillechaise M., Menaud J.M., Muller G., Lawall
J.L., « Web Cache Prefetching as an Aspect : Towards a
Dynamic-Weaving Based Solution», AOSD 03, 2003.

[19] Herzum P., Sims O., “Business Component Factory: a
Comprehensive Overview of Component-Based Development
for the Enterprise”, Wiley Computer Publishing, 1999.

[20] Heineman G., Councill W., “Component-Based Software
Engineering: Putting the Pieces Together”, addison-Wesley,
2001

[21] Hassine I., “Specification et formalisation des demarches de
developpement a base de composants metier : la demarche
Symphony”, These de doctorat, Institut National
Polytechnique de Grenoble, Grenoble, 2005.

[22] Cauvet C., Ramadour P., « Les composants metier dans

l'ingenierie des systemes d'information », Vuibert (Ed.),
Composants : concepts, techniques et outils, 2005.

[23] Barbier F., Atkinson C., "Business Components", Business
Component-Based Software Engineering, Kluwer, vol. 705,
Chap. 1, pp. 1-26, 2002.

[24] Bass L., Buhman C., Comella-Dorda S., Long F., Robert J.,
Seacord R., Wallnau K., “Volume I: Market Assessment of
Component- Based Software Engineering”, Carnegie
University, Software Engineering Institute, TECHNICAL
REPORT CMU/SEI- 2000-TR-008, ESC-TR-2000-007, Mai,
2000.

[25] Ambler S.W., “Process Patterns: building Large Scale
Systems using Object Technology”, SIGS Books, Cambridge
University Press, Decembre, 1998.

[26] Andro T., Chauvet J.-M., « Objets metier », Eyrolles, Paris,
232 pp., 1998

[27] Cherbakov L., Galambos G., Harishankar R., Kalyana S.,
Rackham G., “Impact of service orientation at the business
level”, IBM Systems Journal 44(4): 653-668, 2005.

[28] Herzum P. and Sims O., “The Business Component
Approach”, OOPSLA'98 Business Object Workshop, Octobre,
Canada, 1998.

[29] Schmid H.A., “Business entity and process components”,
Springer (Editor) OOPSLA'99, Business Object Design and
Implementation, Denver, USA, 2 Novembre, 1999.

[30] H. Ossher and P.L. Tarr ― Hyper/JTM: Multi-dimensional
separation of concerns for JavaTM. In Proceedings of the
ICSE 2000, International Conference on Software
Engineering, Limerick, Ireland, June 2000.

	INTRODUCTION
	RELATED WORKS
	1TBusiness Components
	1TWhat is the Separation of Concerns?
	1TAspect Approaches
	1TModeling Requirements of A Business Process

	BASIC CONCEPTS
	1TBasic Crosscutting Concern
	1TInitial Aspect
	1TEvolution Principle of Initial Aspects
	1TSome Mathematical Characteristics
	1) Commutativity at the Extremity
	2) Associativity at the Extremity

	CONSTRUCTION APPROACH OF ASPECT ORIENTED BUSINESS COMPONENT.
	1TConstruction of Business Components Oriented Aspect
	1TBusiness Requirement Model to Aspect Oriented Business Component Model Transition
	1TSome Axioms on Adaptability of Aspect Oriented Business Components
	if we note the restriction of in the hyperspace is called restriction of in hyperspace ;
	if aspect-oriented business component, then there exists a nonempty set of business components such that where: are any business component, and the composition operator of for each business component of apply (i). Intermediate aspect-orient...
	if ,we note the extension of in hyperspace is called the extension in the hyperspace ;
	if is an aspect-oriented business component, then there exists a nonempty set of business components such that where: are any business aspects, and the composition operator of for each business component of apply (i). Intermediate aspect orien...

	CONCLUSION AND FUTURE WORK
	REFERENCES

