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Abstract: The shortest path problem is one of the most 

fundamental problems applicable in various fields and has close 

relation to route navigation systems. This is actually quite an 

established technique for multi-criteria optimization. A literature 

review on this technique with focus on transportation network 

would be quite helpful for any research related to dynamicRoute 

Guidance systems (RGS). Route guidance helps us in providing 

the path directions based on changing traffic conditions. Given a 

set of origin-destination (O/D) pairs, there could be many 

possible routes for a driver. A useful routing system should have 

the capability to support the driver effectively in deciding on an 

optimum route to his preference. The algorithm is suitable for 

finding not only the shortest route but also better routes. The 

shortest travel time is estimated by applying various shortest 

path algorithms to the traffic network that has deterministic or 

dynamic link travel times. Because it is difficult to evaluate these 

shortest path-finding algorithms in real traffic situations, most of 

them are evaluated in the virtual traffic networks.  

Index terms: Route guidance, Dijkstra Algorithm, Navigation, 

Fuzzy Neural network. 

1. INTRODUCTION 

With the recent developments of advanced technologies like 

communications, microelectronics, sensors, and information 

technology, the provision of real-time information on traffic 

conditions to drivers has become technically possible. The new 

navigation systems will be able to utilize the real-time traffic 

information by simply adding a receiver.  

 One functionality of an in-vehicle navigation system is 

route planning. Here, we represent a road network in the form of 

nodes (representing junctions) and a set of links  

(representing roads). Given an origin-destination (O/D) pair, 

there could be many possible routes through the network. 

Generally, the cost functions are related to the links, which could 

be reflected by the travel time, distance, cost of travel, etc. the 

problem is understanding the complex evaluation process 

involved in the route choice and implementing a route selection 

function for the in-vehicle guidance system.  

 A route guidance system is a routing system that 

provides instructions to drivers based upon “optimum” route 

solutions. A driver can make the destination known to the 

system. The origin can be input or obtained directly from the use 

of a differential global positioning system (DGPS). A dynamic 

route guidance (DRG) system would route drivers using the 

current traffic conditions such as congestion and roadworks. The 

system can then provide actual routing advice based on real-time 

information regarding conditions and incidents of the traffic 

networks.  

 The effective transmission of packets is requirement for 

the provision of advanced communication performance makes 

finding shortest network paths essential. Routing data packets 

through the shortest path (SP) is an efficient approach to 

increase the Quality of Service (QoS) in expanding networks as 

it minimizes cost or delay while maximizing quality or 

bandwidth. Therefore, finding the SP is in routing a significant 

approach for the new and emerging technologies, particularly, 

video-conferring and video on demand which require high 

bandwidth, low delay and low delay jitter. A great number of 

algorithms have been developed for finding the “best” path 

through a network. 

 

Figure 1.1 Dijkstra Algorithm 

As a final example, traffic control systems often need to spread 

the traffic between two points over multiple paths in order to 

reduce congestion. So the optimal route is usually calculated by 
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means of Dijkstra type shortest path or by K-means shortest path 

algorithm or A* algorithm [1], [2].  

2. LITERATURE REVIEW 

The study on route choice has been under the topic of traffic 

assignment. To solve the traffic assignment problem, the rule by 

which drivers choose routes between their origin and destination 

of travel must be defined. Usually every driver wishes to 

minimize his personal travel cost. They have also assumed that 

time minimization is the only criterion for the driver‟s route 

choice. There are a number of factors related to route selection 

and they fall into four categories: the characteristics/attributes of 

the feasible routes, the character of the traveler, the nature of that 

particular trip (e.g., purpose, budget) and other circumstances 

(e.g., weather, day/night). One study of route choice factors 

among truck drivers on motorways in Austria has come up with 

the following order of importance: travel time, width of the road, 

travel distance, route angularity, and probability of delays, 

dangerous segments, and slope of the road, multilane, road 

safety, expected weather and traffic density on the road.  

2.1 Route selection by fuzzy logic method 

By looking at the problem of route choice between two 

alternative routes, the driver‟s perceived travel time on each 

route is treated as a fuzzy inference. The model consists of rules 

which indicate the degree of preference for each route given the 

approximate travel time of the two routes. The approach 

considers only the travel time criterion and cannot be easily 
generalized to multiple routes and is based on the driver‟s 

perception of attributes of the network, attractiveness of alternate 

routes as well as models for reaction to information. An example 

of a fuzzy rule is given at 2.1.1. Such an approach works for a 

particular O/D set and does not seem general enough for 

different O/D pairs. Also, for an O/D pair, the inclusion of an 

additional feasible route means an entirely new set of fuzzy 

rules. 

2.1.1 Fuzzy Rule 

IF   the perceived travel time on route 1 IS medium AND the 

perceived travel time on route 2 IS very high, THEN 

attractiveness of route 1 IS I will probably take route 1 AND I 

will definitely not take route 2.     

3. ROUTE SELECTION BY 

DECISION ANALYSIS 

NAVIGATION SYSTEM 

Fig. 3.1 describes such a navigation system. The core of such a 

system is an adaptive route selection algorithm based on a 

hybrid fuzzy-neural (FN) approach. Each feasible route has a set 

of attributes associated with it. The attributes are correlated and 

the final decision by the driver is perceived as a nonlinear 

function of the attributes.  

 

Figure 3.1 Navigation System 

3.1 System Description 

3.1.1 Route Characteristics 

 It is perceived that a driver may select a route based on 

many different factors which include: 

 Travel distance 

 Travel time 

 Degree of congestion (number of cars on the road)  

 Toll (express/highway)  

 Degree of difficulty of travel (width of the road, 

number of lanes, and number of pedestrians and 

bicycles on the road, etc.) 

 Scenery (for long distance trip) 

3.1.2 Route Attributes 

It is perceived that a feasible route has many different attributes. 

These attributes coincide with the factors which are used by the 

driver in route selection. Below is a set of some of the most 

important attributes feasible route [3]. Note that each attribute 

has a range from zero (0) to one (1). 

 Travel Distance: 1 denotes the route with the shortest 

travel distance, relative to the set of feasible routes. 0 

can be used to denote routes which are x km longer 

than the shortest route, where x is a system parameter.  

  

The attribute value for other route can be decided based on a 

linear scale.  
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 Travel Time: 1 denotes shortest travel time, relative to 

the set of feasible routes. 0 can be used to denote routes 

which are minutes longer than the quickest route, where 

y is a system parameter. Again, the attribute value for 

other routes can be decided based on a linear scale.  

 Degree of Congestion: 0 denotes no congestion at all 

whereas 1 denotes the worst situation.  

 Toll (Expressway or Highway): 0 denotes no toll and 

no highway at all. 1 denotes the worst situation.  

 Difficulty of Travel: 0 denotes the ideal road situation, 

very easy to drive. 1 denotes the worst situation.  

 Scenery: 1 denotes the best scenery. 

 

3.1.3 Driver‟s Dynamic Settings 

 The introduction of these panel weights gives 

a quick and convenient means for a driver to specify 

his requirements to the routing algorithm. Effectively, 

the value of each route attribute is multiplied by its 

associated panel weight before weight before passing 

to the route selection algorithm [3], [4]. For example, 

if a driver is very much concerned with avoiding 

congestion, and has the usual concern of arriving the 

destination by a quick route, the settings can be 

arranged as the panel shown above. In this way, the 

road attributes “toll”, “difficulty of travel”, and 

“scenery” will not be taken into consideration by the 

routing algorithm. On the other hand, the “degree of 

congestion” attribute should be given more weight 

than “travel time” and “travel distance”. The 

suggested values for pi are as follows.  

“Don‟t care”               0.0 

“Not important”         0.4 

“Normal”                   0.7 

“Important”               1.0 

3.1.4 Decision Support 

 It is perceived that at a particular instance of 

time, a number of different feasible routes which have 

different set of attributes should be considered by the driver. 

The driver has to make a decision based on the relative 

importance of the different factors for route selection. Each 

decision is based on a combination of different  

 

factors. There could be some heuristics in route selection, but 

some preferences could be difficult to express in words. The 

objective here is to design an optimum route search function in 

an in-car navigation system so that it will have the following 

characteristics.  

 It can model the behavior of the driver by storing his 

preference and previous decisions/choices.  

 It can adapt and learn from the recent decisions of the 

driver.  

4. FUZZY-NEURAL APPROACH 

4.1. Artificial Neural Network 

Neural networks can be developed to model the driver behavior. 

It is chosen for this study for their ability to learn from 

examples, to generalize, to predict and to cope with incomplete 

input data. A neural network is a parallel distributed information 

processing system. It consists of a large number of highly 

interconnected processing elements known as neurons. Each 

neuron has a number of inputs and one output which branches 

out to inputs of other neurons. The output of a neuron is a 

nonlinear function of the sum of all inputs through the weighted 

links. Hence, the knowledge of a network is distributed 

throughout the weighted links. 

4.2. A Hybrid Approach 

A hybrid FN approach can combine the advantages of both 

approaches. This will further enhances the intelligence of the 

DRG system, especially in the modelling of the driver behavior. 

The ideas are as follows 

 A rule-based fuzzy system is developed which 

represents model of the driver. 

 The rule-based fuzzy system is then implemented using 

a neural network. A method of constructing a neural 

network which is equivalent to the fuzzy system is 

developed. It is constructed so that the procedures and 

membership functions of the fuzzy system can be 

retrieved from the implementation of the neural 

network.  

 A special learning algorithm is then used to learn and 

adapt itself to the recent choices of the driver. The 

weights of the network will be adjusted. The derivation 

of the learning algorithm is based on a gradient descent 

algorithm.  

Fig.3.2 Decision support to the Driver 
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 After the training procedures, the modified membership 

functions of the fuzzy systems can be retrieved. This 

fuzzy system with modified membership functions 

represents the latest model of the driver. The model of 

the driver can also be represented by a set of weights of 

the equivalent neural networks.  

5. DYNAMIC AND STOCHASTIC 

SHORTEST PATH IN TRAFFIC 

NETWORKS 

 The dynamic and stochastic shortest path problem 

(DSSPP) has been the subject of extensive research in the 

transportation area for many years. In this problem the link 

travel time is assumed to be a time-dependent random variable. 

With the advent of Advanced Transportation Management 

Systems (ATMS), which are designed to improve transportation 

system performance, an opportunity exists for extending the 

DSSPP and implementing it on an actual transportation network. 

In ATMS, real-time travel time information is obtained directly 

from probe vehicles. Probe vehicles are outfitted with special 

automatic vehicle identification (AVI) equipment of geographic 

positioning system (GPS) units. One of the important advantages 

of probe vehicles is that the travel time of the individual vehicles 

over each link in their route can be measured and recorded, 

which has been impossible with the inductive loop data.  

Fu and Rilett (1998) et al. proposed approximation 

models which estimates route travel time mean and variance 

using the mean and variance of link travel time as a function of 

time of day. The route travel time variance is defined with 

respect to individual drivers and therefore, in practice, it is 

appropriate for estimating individual travel time only for 

“previous” time periods [5], [6]. Strictly speaking it is not 

applicable for a forecasting application unless the travel time 

uncertainty of the forecasting model explicitly considers the 

mean link travel time forecasting error and individual variance.  

5.1 Problem Definition 

Consider a traffic network composed of a set of nodes and links. 

A generalized cost is associated with each link in the network. 

The travel time will be used to represent this generalized cost. It 

is assumed that the link travel times on some or all of the links in 

the network are random variables. In addition, the probability 

distributions of the link travel times are dependent on the time of 

a day. Furthermore, this paper assumes that the link travel times 

are continuous random variables and the only available 

information about their distribution is their respective means and 

variances. The problems is to find the minimum path from an 

origin to a destination with a given departure time in the 

network. This problem is referred as to the DSSPP. 

 Figure 5.1 is a representation of a path between an 

origin node„s‟ and a destination node „g‟. Equations 5.1 and 5.2 

represent the approximate relationship between the mean and 

variance of the arrival times at a pair of successive nodes (node i 

and node j) on a path in a dynamic and stochastic network.  
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Where, 

 Ti = a random variable indicating the arrival time or departure 

time at node i; 

 TiE = the expected arrival time at node i; 

Var  Ti = the variance of the arrival time at node i; 

 T = the mean travel time on link (i, j) as a function of time 

of day, T. 𝜇′𝑎𝑛𝑑 𝜇′′ are respectively the first order and second 

order derivatives of 𝜇; 

 T = the standard deviation of the travel time on link (i, j) as 

a function of time of day T; 

' first order derivative of  ; 

 

Fig 5.1 A path from original node s to destination node g including link (i,j) 

From equation (5.1) and (5.2), the following properties of the 

DSSPP may be observed. If the mean link travel time as a 

function of time (µ(T)) of at least one link in a network is non-

linear, the standard shortest path algorithms may fail to find the 

expected shortest path between two nodes in the network.  

 This observation may be illustrated by the use of the 

example network shown in Figure 5.2. The network is composed 

of two sub paths (p1 and p2) from the origin node s to an 

intermediate node i, and one link (i,j) from node i to the 

destination node j. Assume that the travel time on p1 is 

deterministic and that the travel time on p2 is stochastic. The 

travel time on link (i,j), µ(T), is deterministic but changes with 

time in a non-linear fashion as shown in Figure 5.2. if the 

expected arrival time at node i through p1 (Ti
p1

), is marginally 

less than through p2 (Ti
p2

) then subpath p1 is the minimum 

expected route from node s to node i. On other hand, it can be 

seen in equation (5.1) that the expected minimum arrival time at 

node j not only depends on the expected arrival time at node i, 

but also on the variance of the arrival time at node i and the 
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second derivative of the mean travel time on link (ij). Given that 

the travel time on link (ij) is concave and hence its second 

derivative is negative and so it is possible that sub path p2 is on 

the expected minimum path from s to j. In short, Bellman‟s 

“principle of optimality” which states that any subpath of a 

shortest path must be a shortest path, does not hold in a DSSPP 

[7]. 

 

Fig 5.2 A simple dynamic and stochastic network. 

Link  Travel Times 

A  100 minutes, departing time = 0 

B  90 minutes (probability = 0.5), departing time 

= 0 

  120 minutes (probability = 0.5), departing time 

= 0 

C  30 minutes if arrival time at node i < 95 

minutes 

  100 minutes if arrival time at node i ≥ 95 

minutes  

5.2 Heuristic Algorithm to calculate the 

expected shortest path 

 The heuristic algorithm was developed to identify 

optimal routes.  Theheuristic algorithm proposed in this paper 

uses this fact to identify the best route without significant 

additional computation efforts. The algorithm is based on the k-

shortest path algorithm and has a parameter K indicating that K 

shortest paths will be examined [8]. The algorithm proceeds as 

follows:  

 Step 1: Find the shortest, the second shortest and up to 

Kth shortest paths from origin node to destination node, based 

on the mean travel times over links in the network. These are 

stored in ascending order in list A. 

 Step 2: Set k=1 and take the Kth shortest path from A, 

call it P. Calculate the expected travel time over P by using 

equations (5.1) and (5.2) denoted by Lopt.  

 Step 3: If k>K: P is the “optimal” path, Lopt is the 

minimum expected travel time, Stop. 

                   Otherwise, go to step 4. 

 Step 4: Set k=k+1, take the kth shortest path from A, 

call it Pk. Calculate the expected travel time over Pk, by using 

equations (5.1) and (5.2), denoted by Lk.  

If Lk < Lopt. : P= Pk and Lopt = Lk. Go to Step 3.  

 There were three issues that needed to be addressed 

before this algorithm could be implemented. The first issue was 

to identify the technique for finding the K shortest paths. Here 

we use k-shortest path algorithm due to its well-known 

efficiency. The second issue was to identify the value of K. 

From a practical point of view the appropriate K value can be 

based on an empirical sensitivity study. The use of larger value 

for K will increase the chances of finding the optimum expected 

shortest path, but at same time will require a greater 

computational effort.  

 Finally, the proposed heuristic requires applying the 

approximation formulae presented in section 5.1, which are 

derived based on the assumptions that the mean and standard 

deviation of the link travel time are continuous functions of time 

of day and have at least second order derivatives. A second order 

polynomial was therefore used to smooth the mean and variance 

of the link travel times under recurrent traffic congestion. 

6. CONCLUSION 

The standard shortest path algorithms may fail to find the 

minimum expected paths in a dynamic and stochastic network. 

The solution error by the standard shortest path algorithm was 

shown to be relatively small (5 seconds on average) primarily 

because of the simplicity of the network and more importantly, 

because the dynamic travel times changed relatively slowly with 

time. It is anticipated that a greater impact would be found 

during incident conditions. While theoretically incorrect the use 

of standard shortest path algorithms in dynamic and stochastic 

traffic networks may be applicable from a practical perspective. 

This will be especially true if the change of travel time in the 

network is moderate. The route selection algorithm is oriented 

on the driver‟s preference. An FN approach is used to represent 

the correlation of the attributes with the driver‟s route selection. 

A recommendation or route ranking can be provided to the 

driver. Based on a training of the FN net on the driver‟s choice, 

the route selection function can be made adaptive to the 

decision-making of the driver. The methodology paves the way 

for more intelligent navigation systems.  

REFERENCES 

[1] Yen, J.Y. “Finding K shortest loopless paths in a network,” 

Management science, Vol.17 No. 11,1971. 

[2] D. shier, “ On Algorithms for finding the k shortest paths in a 

network.” Networks. Vol.9,1979. 

[3] E.Kaufman, J.Lee and R.L. Smith, “Anticipatory traffic 

modeling and route guidance in intelligent vehicle highway 

systems.” IVHS technical report 91-01, university of Michigan, 

Feb.,1990. 

[4] P. W. Bonsall and T. Parry, “Drivers requirement for route 

guidance,” in proc. 3 international conf. road traffic control, may 

1990. 



Ashok Kuppusamy et al, International Journal of Advanced Research in Computer Science, 7 (6) (Special Issue) November 2016,139-144 

 

978-93-85670-72-5 © 2016 (RTCSIT)   

  144 

[5] L. Fu and L.L Rilett, “Estimation of travel time distribution 

parameters in a dynamic and stochastic Network”, working 

paper, University of Alberta, 1995, unpublished. 

[6] Fu.L., Rilett, L.R., “Expected shortest paths in dynamic and 

stochastic traffic networks”. Transportation research B 

32(7),1998. 

[7] Kaufman, D.E and R.L. Smith. “Minimum travel time paths 

in dynamic network with application to intelligent vehicle/ 

highway systems”. Technical report 90-11, intelligent vehicle 

highway system program, the university of Michigan, 1990. 

[8] A.W. Brander and M.C.Sinclair. “A Comparative study of k-

shortest path algorithms”. Proc. 11
th

 UK performance 

engineering workshop for computer and telecommunication 

systems, September, 1995. 

 


