
��������	�
����	�
������������

��������������
������������������������������� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(���������

© 2010, IJARCS All Rights Reserved 360

ISSN No. 0976-5697

The Design of Server and the role of Threads in Parallel Processor Applications

Dr. GSVP Raju
Associate Professor

CS&ST Dept

Andhra University, India

ards2003@rediffmail.com

Abstract: The availability of low cost and high performance workstations connected by a high speed network has made distributed computing an

attractive mechanism to exploit parallelism at functional level present in user or application programs. A distributed system cab be used efficiently by

its end users only if its software presents a single system image to the users. It is observed that in an attempt to exploit any functional level

parallelism, a programmer writing user level application programs would be ease while using the threads rather than the processes. Spreading

execution of processes or threads over several processors can exploit parallelism and thus achieve improved performance. As compared to a process,

a level application programs would be ease while using threads rather than processes. Spreading execution of processes or threads over several

processors can exploit parallelism and thus achieve improved performance. As compared to a process, a thread is lighter in terms of overhead

associated with creation, context switching, inter process communication and other routing function. This paper describes a prototype for design of

server and role of threads in parallel processor applications

Keywords: Serve, thread, parallel processing, RPC

I. INTRODUCTION

Distributed computing is the method of computer

processing in which different parts of a program run

simultaneously on two or more computers that are

communicating with each other over a network. distributed

computing is a type of segmented or parallel computing But

the latter term is most commonly used to refer to processing in

which different parts of a program run simultaneously on two

or more processors that are part of the same computer. While

both types of processing require that a program be segmented

divided into sections that can run simultaneously, distributed

computing also require s that the division of the program take

into account the different environments on which the different

sections of the program will be running. For example, two

computers are likely to have different file systems and

different hardware components. An example of distributed

component is BOINC, a framework in which large problems

can be divided into many small problems which are distributed

to many computers. Later the small results are assembled into

a larger solution .Distributed computing is a natural result of

the use of networks to allow computers to efficiently

communicate. But distributed computing is distinct from

computer networking or fragmented computing. The latter

refers to two or more computers interacting with each other,

but not typically sharing the processing of a single program.

he Worldwide Web is an example of a network, but not an

example of distributed computing. There are numerous

technologies and standards used to construct distributed

Computations, including some in which are specially designed

and optimized for that purpose, such as Remote Procedure

Call (RPC). The widest possible range and types of computers,

the protocol or communication channel should not contain or

use any information that may not be understood by certain

organization. Organizing the interaction between each

computer is of prime importance. In order to be able to use

machines. Special care must also be taken that messages are

indeed delivered correctly and that invalid messages are

rejected which would otherwise bring down the system and

perhaps the rest of the network. Another important factor is

the ability to send software to another computer in a portable

way so that it may execute and interact with the existing

network. This may not always be possible or practical when

using differing hardware and resources, in which case other

methods must be used such as cross-compiling or manually

porting these software.

A. Goals and advantages

The Goals and advantages can be listed as Openness,

Monotonicity, Pluralism, Unbounded non determinism and

different architectures are

[a] Client-server

[b] 3-tier architecture

[c] N-tier architecture

[d] Tightly coupled (clustered)

[e] Peer-to-peer

[f] Space based

II. SYSTEM ANALYSIS

Remote procedure call defines a powerful technology for

creating distributed client/server program. The RPC run-time

stubs and libraries manage of the processes relating to network

protocols and communication. It also be used create client and

server programs for heterogeneous network environments that

include such as systems as Unix and Apple.

GSVP Raju et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011, 360-365

© 2010, IJARCS All Rights Reserved 361

A. Connecting the Client and the Server

To communicate client and server programs must

establish a communication session across the network or

networks that connect them. Once they establish the

connection, the client can call remote procedures in the server

programs as if they were local to the client program.

[a] Protocol Sequence:

When network operating systems communicate with each

other, they must listen and speak the same language. These

languages are called protocol sequences. Client can server

programs must use protocol sequences that the network

connecting them.

[i] Server Program:

The server program runs on the server host computer.

However, much literature on client/ server computing refers to

both the server program and the server host computer as the

“server”.

[ii] End Point:

Server programs listen to a port or a group of ports on the

server host computer for client requests. Server host systems

maintain a database of these ports, which are called end points

in RPC. The database is called the endpoint map.

[iii] Binding:

Client programs create a to the server to establish a

communication session. A binding contains all of the

information the client applications needs.

[b] Selecting a Protocol Sequence

A protocol sequence is the language that a network

operating system uses to talk over the network to other

computers. In more specific terms, RPC applications must

specify a string that represents a combination of an RPC

Protocol, a transport protocol and a network protocol. RPC

applications can use the rpc protocol to invoke procedures

offered by server programs running on the computer that the

client program uns on. This is by far, the most efficient

method for calling functionality in a different process on the

same computer.

End point attribute: The endpoint attribute specifies a

well- known port or ports (communication endpoints) on

which servers of the interface listen for calls.

Protocol – sequence: It specifies a character string that

represents valid combination of an RPC protocol (such as

“ip”).

End-point: It specifies a string that represents the endpoint

designation for the specified protocol family. The syntax of

the port string is specific to each protocol sequence.

[c] HOW THE Server Prepares for a Connection:

When a server program begins execution, it must first

register the interface it contains with the RPC run-time library.

It then creates the necessary binding information. The server

program must also register the end point or end points it listen

to. It can then begin listening for client calls.

Figure 1: Client Establishes a Connection

[d] How the client establishes a connection:

To establish a connection client/server communication

session with a server program, client applications with explicit

handles need to create a binding handle. After they do, the

RPC run-time library finds the computer that hosts the server

program. It then finds the endpoint that the server program is

listening to and directs the call to it. The following diagram

illustrates this process.

Figure 2: Client Connects to a Server Program

III. INTERFACE-RPC

A separate, novel RPC system is built on top of the Tube

itself. In general, distributed applications built using RPC

consist of a number of clients and servers that communicate

with each other using predefined and fixed interfaces. Clients

are linked in with compiled communication stubs generated

from the interface definitions .When clients’ use stubs that are

compiled once from a definition to communicate directly with

a server, some constraints are imposed on the server. If clients

are not to fail (or perform marshalling incorrectly), the server

must neither change the signatures not remove any of the

procedures it offers. Whilst the server can impose versioning

and force clients to rebind, neither approach gives the client

information about exactly what the server is doing.

Moving (some part of) the server into the client allows it

to give information about any changes made in service

provision through up-calls in the client’s environment,

Facilitating server-driven per-client adaptation that takes into

account client state. This also allows for per-client

optimization of communication with a server .Supporting

plain-text reference by clients of server procedures at run-time

allows a server to change its interface without having to worry

about the underlying RPC mechanism breaking .When this is

GSVP Raju et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011, 360-365

© 2010, IJARCS All Rights Reserved 362

combined with a system of negotiation between client and

server over the (declarative) naming of services on offer then

changes in service provision could provoke a client to re-

negotiate its interface with the server.

This re-negotiation introduces a dynamic interface

between the parties and represents an advertisement published

by a server for clients to take hints from. By relaxing the

requirement that a client contracts a service with a fixed

interface, more flexibility can be achieved. However, it does

break the notion of fixed classes of communication between

clients and servers.

Tube RPC supports the mode of operation by allowing an

RPC server to send clients a closure which, when run, installs

itself there and acts as the server’s proxy in the client. The

client is freed from having to know how to contact and

communicate directly with the server-it conducts all dialogue

with the proxy. This allows the server to define at run-time

what it offers to clients: it can update the implementation of its

proxies at any time, by downloading code to each client, to

add or change facilities.

There is work to done into the interface between clients

and the server proxies. Clients must be written so that they re

able to adapt aw the proxy informs them of new

circumstances. The Tube RPC mechanism is now in place, and

we will experiment with changing interfaces and shifting the

balance between client and server. As well as coping with

typing problems, we will ensure that clients which want to use

a simple mode of operation that does not require downloading

of proxies can do so. We will implement some real

applications using this technique and cope with auditing

interface change through coins of clients and servers. We are

proposing Tube RPC as one possible abstraction over mobile

code; our experiments are at a very early stage.

A further extension is to replace the publishing of server

addresses in a trader with the publication of small pieces of

code; instead of client looking up the address of a server and

then explicitly binding to it, it downloads the code from the

trader and executes it. The code is responsible for contacting

the server and retrieving the proxy that the client can use in

further communication. This abstracts particular methods of

contact away from clients. Servers publish methods of contact

and then give clients tailored proxies for communication.

This allows not easily changing the initial arrangement of

clients and servers. At one extreme, the complete server

functionality could be published in the trader so that clients

would actually download and install servers locally. At the

other extreme, the code published in the trader would be a

simple network connection to the real server executing

somewhere else. Subsequently, by using downloadable

proxies, applications can dynamically be rearranged – for

instance, a server could download (replicate) itself to all its

clients and the terminate.

A. Uses and Future Applications

The Tube was first used for experimenting with REPs that

traverse a number of nodes in order to deliver and collect

events. The system was at an early stage of development and

this first application involved the transfer of drawing events

for the update of shared drawing spaces. Whilst no further use

of REPs to deliver events is planned (because of the relatively

high latency involved in marshalling and interpretation), this

approach has evolved into the use of REPs to configure

different sites for client-specific event generation and

notification. The Tube has extended our existing distributed

system with support for a scripting language. These allow us

to prototype object implementations, object interfaces and

their calling semantics.

In the future, we wish further to integrate the Tube with a

traditional RPC system, in particular to allow Tube RPC

objects to be given interface definitions so that other, third

party components can access their methods. We would then be

able to snapshoot at any time the interfaces of Tube RPC

objects into a series of IDL files. A system could be

prototyped until the balance between client and server

elements of each component was correct and the snapshots of

their interfaces taken in order to gain a high-level view. We

believe it to be a general and powerful mechanism that we

intend to exploit in any application involving the Tube in

order to evaluate its mode of operation. We have also started

to investigate the use of mobile code in Computer Supported

Collaborative Working (CSCW) applications. Mobile

management entity objects are used to group a user’s objects

into those participating into particular instances of an

application. When interfaced with an Active Badge event

system, the objects are able to follow a user from room to

room.

IV. THREADS ROLE IN DESIGN OF SERVER

Knowing how to properly use threads should be part of

every computer science and engineering student repertoire.

This is an attempt to help you become familiar with multi-

threaded programming with the POSIX (Portable OS

Interface) threads, or pthreads. This partl explains the different

tools defined by the pthread library, shows how to use them,

and gives examples of using them to solve real life

programming problems.

A. Threads

Technically, a thread is defined as an independent stream

of instructions that can be scheduled to run as such by the

operating system. A thread is a semi-process that has its own

stack, and executes a given piece of code. Unlike a real

process, the thread normally shares its memory with other

threads (where as for processes we usually have a different

memory area for each one of them). A Thread Group is a set

of threads all executing inside the same process. They all share

the same memory, and thus can access the same global

variables, same heap memory, same ser of file descriptors, etc.

All these threads execute in parallel (i.e. using time slices, or

if the system has several processors, then really in parallel).

B. PThreads

Historically, hardware vendors have implemented their

own proprietary versions of threads, These implementations

differed substantially from each other, making it difficult for

programmers to develop portable threaded applications. In

order to take full advantage of the capabilities provided by

threads, a standardized programming interface was required,

GSVP Raju et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011, 360-365

© 2010, IJARCS All Rights Reserved 363

For UNIX systems, this interface have been specified by the

IEEE POSIX 1003. 1c standard (1996). Implementations

which adhere to this standard are referred to as POSIX

threads, or P threads. Most hard vendors now offer P threads

in addition to their proprietary threads.

C. Efficiency of Threads

If implemented correctly, threads have some advantages

over processes, Compared to the standard fork (), threads carry

a lot less overhead. Remember that fork () produces a second

copy of the calling process. The parent and the child are

completely independent, each with its own address space, with

its own copies of its variables, which are completely

independent of the same variables in the other process.

Threads share a common address space, thereby avoiding a lot

of the inefficiencies of multiple processes.

[a] The kernel does not need to make a new independent

copy of the process memory space, file descriptors, etc.

This saves a lots of CPU time, making thread creation ten

to a hundred times faster than a new process creation.

Because of this, you can use a whole bunch of threads and

not worry about the CPU and memory overhead incurred.

This means you can generally create threads whenever it

makes sense in your program.

[b] Less time to terminate a thread than a process.

[c] Context switching between threads is much faster then

context switching between processes (context switching

means that the system switches from running one thread

or process, to running another thread or process)

[d] Less communication overheads – communicating

between the threads of one process is simple because the

threads share the addresses space the address space. Data

produced by one thread is immediately available to all the

other threads.

On the other hand, because threads in a group all use the

same memory space, if one of them corrupts the contents of its

memory, other threads might suffer as well. With processes,

the operating system normally protects processes from one

another, and thus if one corrupts its own memory space, other

processes won’t suffer.

D. Thread applications:

The thread applications can include

[a] A responsive user interface

[b] A graphical interface

[c] A server thread

V. A REMOTE PROCEDURE CALL LIBRARY

A remote procedure call (RPC) library provides client

applications with transparent access to a server Services that

the server provides to the client could include computational

services access to a file system, access to Part of an operating

system, or most other functions used in typical client / server

framework.

The crucial requirement of an RPC system is that it

provides a client with reliable, transparent access to a server.

A remote procedure call to a server looks exactly the same to

client application as a local procedure call. This is a very

power full concept. The application programmer does not need

to be aware pf the fact that he is accessing a remote computer

when executing an RPC function. The client application

makes a procedure call exactly as it would make any local

procedure call. The procedure invoked by the client is called a

stub. It flattens the arguments passed to it, packs them with

additional information needed by the server, and passes this

entire packet to the client network interface. It is important to

note that the client application need note that the client

application need not know that this stub exists. The stub is

generated by the RPC library and provides the illusion of a

local procedure call. As far as the client is concerned the stub

is actually executing the procedure call.

Figure 3: RPC Call

The network interface then executes a protocol to reliably

transfer the stub-generated packet to the appropriate server. In

step four the server’s network interface calls the server stub.

The server stub unpacks the received request and executes

the remote procedure on the server. The returned data is then

passed back to the server stub, which packages it and has the

server network interface transmit it back to the client network

interface. The client network interface then passes the packet

to the client stub, which is now responsible for unpacking the

received packet and returning the desired data to the client

application. The design of the network interfaces between the

client and the server plays a major role. How an RPC library

generates Stubs is a very interesting and complex research

area but does not fall within the scope of this project. When

generating the stubs one needs to consider such issues as

authentication (this could also occur at the network layer),

how to pass parameters (this is especially difficult when

pointer are used), which server the RPC call should be made

as well as Many more issues.

A. RPC network interfaces

The most important requirement of the RPC network

interfaces is that they provide reliable operation. This is

especially challenging in this project because UDP is the

network protocol that will be used. This is an unreliable

protocol that is it can re-order, drop, duplicate and corrupt

packets (corrupted packets are dropped). In addition, it, is only

able to transmit packets of limited size. Because our RPC

library should be capable of handling arbitrarily large packets,

the network interfaces will have to be capable of breaking

large packets into smaller sub-packets and recombining them

at the receiving end.

Once might why one would ever want to use UDP for an

implementation since reliable protocols such as TCP are

available. The reason for this choice of network Protocol is

that a carefully designed implementation on top of UDP can

GSVP Raju et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011, 360-365

© 2010, IJARCS All Rights Reserved 364

avoid much of the overhead associated with network

operations that use TCP. Some people even argue that RPC

should not be built on top of UDP or even IP. Instead, an

entirely new protocol should be used to avoid the time spent

on name-resolution (across network boundaries) which is

accrued when IP or UDP are used. This latency can be

eliminated since RPC is usually performed within a small

subnet, not across boundaries. All in all, UDP Provides

convenient and sufficiently efficient protocol for our library

and was chosen for that reason. One important aspect of our

RPC library is that it provides at most once semantics. This

means that any RPC call will be executed no more than once,

but possibly not all. It would be desirable to have a RPC

protocol that provides exactly –once semantics. However, it is

extremely difficult to achieve this because of the need to

continuously check-point the work that has been done to

ensure that execution can be resumed in case of a server crash.

At-most once semantics will ensure that an RPC call is

not executed multiple times(which could easily occur in a

trivial RPC implementation because of the message

duplication in the network).Only in rate circumstances, such

as a server crash will the RPC request not be executed at all.

From the client’s perspective the most desirable property of

the RPC library is that it executes quickly Small RPC requests

have to be handled very efficiently to hide as much latency as

possible and large RPC calls have to be handled efficiently so

that they execute quickly, while not using too many resources.

In particular, the RPC library should try to use the network

resources efficiently. In many applications the network is a

bottleneck and so network bandwidth should not be wasted.

The network interface of the RPC would b used in a

typical stub. On the left side of the figure are the procedure

calls made by the client and the right are made by the server.

The arrows between client and server indicate message being

sent over the network.(note: more detailed descriptions of the

protocols and data structures used will be given in the design

and implementation section)

Figure 4: Network interface Usage

The first step the client and server need to perform

isinitialization of their sockets and associated parameters. The

server calls the RPC library bind-service to its appropriate

socket (the socket is identified by one of the parameters).

Bind_service is also responsible for initialization of several

internal data structures. The client calls the function

setup_srvinfo to initialize its socket. At this point, an internal

structure to uniquely identify a client RPC request is also

initialized. Once initialization of the server has been

completed , the server will execute the get_request

command. This command will block until a request from a

client arrives. The server is now ready to receive RPC

requests.

After the client has been initialized , it makes a call to

rpc. This sends the RPC request (along with any parameter

values) over the network to the server. After get_request has

received the client request, it returns the request as well as

client identifier(this is used to reply to the client) to the

stub. The stub decode the request ,executes the remote

procedure and then makes a call to put_ reply. This takes

the value returned by the remote procedure call and sends it

to the client. The server then runs get_request again to

receive the next RPC request. Once the client , that is the

call to rpc, receives the server’s response, an

acknowledgement of receipt is sent back to the server and

the received value is passed on to the client stub which in

turn decodes it and passes it on to the client application.

The client can now make additional calls to rpc or close

the rpc service by calling teardown_srvinfo.

B. Multi–Threaded(VS)Single0–threaded Implementation:

The first major decision that had to be made when

designing the RPC network interface library was whether it

should be multi-threaded or not. On the client side , a

single thread clearly sufficient since the client should block

until the rpc call returns. Things are not as clear on the

server side. Here it would be nice to have one server thread

that reads all the data from the network. Another thread could

examine the incoming data and spawn a new thread

depending on the action that needs to be performed. Either a

thread to perform the RPC call on the server should be

spawned or a thread to send reply to the client should be

spawned. Such a multi-threaded server would clearly by

much more efficient than a single-threaded implementation.

This is because the server needs to perform are mostly

blocking instructions or system calls with much idle

time(because of I/O delays).A uni-processor and especially a

multi-processor server , would thus benefit from a multi-

threaded implementation and most commercial RPC systems

are almost certainly multi-threaded. However, we chose to

make the server a single threaded process because it makes

the design significantly easier. It is not clear to me , if or

how , one can share a single socket to communicate with

clients among several threads. Many also need to be

studied. In order to make the design simpler we choose a

single threaded design.

VI. CONCLUSIONS

This is an efficient and reliable network interface for an

RPC library. It provides at-most once semantics, does not

waste excessive amounts of network bandwidth , and tries to

hide some of the latency at the Server side by multiplexing

operations while it is waiting for acknowledgements. Small

refinements to the protocol would lead to a more efficient

implementation ,but most changes seem to involve

GSVP Raju et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011, 360-365

© 2010, IJARCS All Rights Reserved 365

considerable design complexity. It is good balance between

complexity and performance. This remote procedure

mechanism is basis for mark up language like xml soap etc.

This is similar to doors concept in UNIX programming so this

can be used for Unix systems. The remote procedure call

model can be used on same machine to provide security by

using large grained protection model provided by them. This

protocol is used for designing real time systems.

VII. REFERENCES

[1] Andrew D.Birrell and Bruce Jay Nelson- Implementing

Remote Procedure call.ACM Transaction on computer

systems.

[2] Java;the complete reference,7th edition,Herbert

schildt,TMH.[3]Understanding OOP with Java,updated

edition,T.Budd,pearson education.

[4] An Introduction to OOP,second edition,T.Budd,pearson

education.

[5] Introduction to Java programming 6th edition,Y.Daniel

Liang,pearson education.

[6] Operating System Concepts-Abraham Silberchatz,Peter

B.Galvin,Greg Gagne 7th Edition,John Wiley.

[7] Operating systems-A concept based Approach-

D.M.Dhamdhere,2nd Edition,TMH.

[8] Operating Systems-Internal and Design Principles

Stallings,Fifth Edition-2005,Pearson education/PHI.

[9] Operating System A Design Approach-Crowley,TMH.

