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Abstract: Graph Colorability Problem (GCP) belongs to a subset of the large family of NP–Hard combinatorial problems. Till now 
there exist very less deterministic methods to find the solutions to k- Color problem. Constraint analysis of the k-Color problem 
and formulating the constraints to the SAT clauses provides another way to find the solution to this typical problem. The recent 
advancement in the development of SAT solvers has really provided an easy approach to find the truth values for a SAT formula. 
Thus, we have performed the formulations of the constraints of GCP into ALOC, AMOC and DCOL clauses. With our 
formulations, we are able to generate the SAT clauses in polynomial time.  The total SAT clauses that are being generated with 
our formulations are | V | + | V |* k*(k-1) / 2 + (m*E).  
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I.  INTRODUCTION 
 

A proper graph coloring emphasizes on coloring the 
vertices of the graph G (V, E) in such a way that two vertices 
(u, v) of a graph which share an edge must have different 
colors.  The minimum number of colors required to color the 
vertices is known as Chromatic Number for that graph and is 
denoted by ᵡ(G). In the proper k coloring environment, graph 
G (V, E) is termed to be colored with available k colors if its 
neighboring vertices have different colors. Deciding the k-
Colorability of a graph is an NP Complete problem [1] [2].  

There exist a few deterministic methods that can solve the 
k-Colorability of a graph in polynomial time. Satisfiability 
(SAT) has been a major concern to solve the k-Colorability of 
the graph in many ways. It has been observed that an encoding 
exists on the vertices and edges of the graph with 3-color that 
generates a Disjunctive Normal Form (DNF) clauses in SAT. 
This DNF expression may be enhanced to a k-CNF formula by 
using recursive method. Further, these k-CNF clauses with the 
use of some non- recursive methods are converted into the 3-
CNF expression.  It is observed that total clauses generated in 
3-CNF formula for 3- colorable graphs are ((27*|V|) + 
(256*|E|)) [3]. Using some generalizations and input of this 
method are utilized to generates a total (kk (k-2)*|V|) + (22k+2 
*|E|)) 3CNFSAT clauses and is also applied to solve the 
Channel Assignment problem in cellular networks [4].       

  The encodings provide a very important framework of 
converting one problem instance to the other. In this paper, we 
have introduced a new encoding from k-Color graphs to SAT 
formula in polynomial time. This encoding results in the 
generation of SAT clauses on the basis of GCP constraints. 
We have also presented, algorithm COLSAT to formulate our 
encoding. We discuss the background details of k-Color 
problem and SAT in Section II. In Section III, our encoding 

methodology, formulations along with COLSAT algorithm is 
discussed. DIMACS provides a set of challenging datasets for 
the k-Color problem [5] [6].  We cover the results of our 
encodings on DIMACS benchmarks graphs in Section IV. 
Finally, we conclude with conclusions in Section V.  

 
II.  BACKGROUND 

 
We now discuss the background details of k-Color and 

SAT problem in this section as follows:  
  

2.1 k - Color Problem 

  Graph Coloring Problem (GCP) is a very important 
problem in the category of graph based NP-Hard 
Combinatorial problems. Formally, a GCP is denoted by {< G, 
k >} where G represents a graph and k denotes the minimum 
colors required to color the vertices V. In other words, GCP 
emphasizes the assignment of k colors to the vertices of the 
graph such that adjacent vertices receive different colors. 
Mathematically, a k-Coloring problem is defined on the basis 
of a coloring function Ck. The coloring function Ck need to 
assign k color values to the vertices of the graph. This 
assignment is stated as Ck: V → {1, 2, … , k} [7].  

  The most widespread utility of GCP is as an 
optimization problem. GCP as an optimization problem for a 
graph G (V, E) is defined as follows: Let there be V- set of 
graph vertices denoted by |V| = n, E- set of connected edges 
denoted by |E| = m and a minimum positive integer k such as k 
≤ n. Specifically, GCP is to find the minimum positive integer 
k and a coloring function Ck : V →  {1, 2, …  , k} such              
as c(u) ≠ c(v) where u, v are the vertices of                                      
the graph G (V, E ) [8].  
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 Many other variants of optimized GCP exist in 
literature such as Equitable Coloring, Sum Coloring, Contrast 
Coloring, Harmonious Coloring, Circular Coloring, 
Consecutive Coloring, List Coloring etc. In optimization 
version of the basic problem called GCP, a conflict–free 
coloring with minimum number of colors is searched [9].   
Intensive research conducted in this area resulted in a large 
number of exact and approximate algorithms, heuristics and 
metaheuristics. However, the reported results are often 
difficult to compare due to specific assumptions, different 
algorithms and their implementation details, tuning of 
parameters, computing platforms, test data sets etc. [10, 11, 
12, 13, 14].  

  Thus, graph Coloring and its generalizations are 
useful tools in modeling a variety of scheduling and 
assignment problems. There are several interesting practical 
problems that can be modeled by graph coloring. Aircraft 
Scheduling, Bioprocesses Tasks and Frequency Assignment 
are also not untouched with k-Color magic [15]. 
 
 2.2 SAT Problem 

 Let there be a function f: {0, 1} → {0, 1},                                   
i.e. f(x1, … , xm) ϵ {0,1}. There is an assignment 0’s and1’s, a1, 
… , am, to the variables x1, … , xm such that  f(a1, … , am) = 1. 
If there is such an assignment then f is satisfiable and a1, … , 
am is called as satisfying assignment. If no such assignment 
then f is unsatisfiable. Any function f: {0, 1} n → {0, 1} can be 
expressed in Conjunctive Normal Form (CNF) as                             
F = C0˄C1˄… ˄ Cm-1. A clause is a disjunction of literals as 
(Ci = li0˅…˅ li (s-1)). A literal is either a variable or a negated 
variable lij = vij or ⌐vij.             

There exists mainly four versions of SAT namely; Max-
SAT, K-SAT, 2-SAT and 3-SAT. The SAT problem converts 
to an optimization problem by maximizing the number of 
clauses that one assignment can satisfy. Such a SAT problem 
leads to Maximum Satisfiability Problem (MAX-SAT). K-
SAT has all clauses in CNF with k literal per clause. 2-SAT is 
the problem which is solvable in polynomial time, with each 
clause is restricted to two literals only. 3SAT is the first 
problem to be NP-Complete, with every clause has only three 
literals [16].  

 Vivid range of other naturally occurring decision and 
optimization problems can be transformed into SAT instances. 
This is possible due to revolutionary advances in the range of 
SAT solvers available for solving huge SAT instances. A class 
of algorithms called SAT solvers can efficiently solve a large 
enough subset of SAT instances. The advancement of the SAT 
solvers is one of the reasons for rise in the number of practical 
applications of SAT. Many practical applications of SAT 
occur in model checking, Automatic Test Pattern Generation, 
Combinatorial Equivalence, Planning in AI, Automated 
Theorem Proving, Software Verification, Haplotype Inference 
etc. [17]. 

III.    PROPOSED WORK 
 

Let there be a graph G (V, E) and a positive integer k as 
available colors to color the vertices of the graph. Where, V is 
a set of n vertices V{v1,v2, … , vn} and E is the set of m edges 
E{e1,e2, … , em}. An encoding is performed on a graph to 
obtain SAT formula. To perform the encoding constraint 
analysis of GCP and its formalization to obtain SAT clauses is 
executed. 

 
3.1 Analysis of the Constraints of GCP Problem 

 The constraints are analyzed into three crucial variants as: 
At Least One Color (ALOC), At Most One Color (AMOC) 
and Different Color (DCOL). The constraint ALOC is use to 
color each vertex of the graph. In other words, no vertex 
should be left uncolored. AMOC is used to avoid the 
redundant color assignments to any vertex of the graph, as 
there exists a possibility of a vertex assigned with the multiple 
colors. DCOL is use to assign different colors to the adjacent 
or neighboring vertices of a graph. In order to perform 
encoding and obtain SAT clauses we initialize a Boolean 
variable xij, where 1 ≤ i ≤ |V| and 1 ≤ j ≤ k is true if the node vi 
is assigned a color j. This assignment generates k |V| variables 
for SAT formula. We formalize the constraints ALOC, AMOC 
and DCOL to obtain SAT clauses as follows: 
3.2. Categorize and Formalize the Constraints for SAT 
Clause Generation:  
 
(I). At Least One Color (ALOC) 

The intention is to have at least one color for each vertex. 
Out of all the variables available from the initialization at least 
one should be true. This generates one clause for each vertex, 
resulting a total of |V| clauses for the graph. The generalize 
representation of a clause for the vertex vi is as follows: 

 
˄ ( xi,1˅xi,2˅ … ˅xi,k )                            (eq.1) 

 
(II). At Most One Color (AMOC) 

There exists a possibility that SAT checker might come up 
with the assignment of more than two colors for a single 
vertex. To avoid such assignments, clauses are generated 
emphasizing the fact that vertex vi is assigned at most one 
color. It is asserted definitely, that if a vertex vi is assigned a 
color m, then it is not be assigned a color n i.e. c( m) ≠ c(n). 
This particular constraint gives rise to generation of simple 
two literal clauses of the form: (xi,m→ ⌐ xi,n) ≡  (⌐x i,m˅ ⌐xi,n). 
For k available colors, total ( k * (k-1)/2 ) SAT clauses are 
generated. For V vertices of a graph,                |V| *( k * (k-
1)/2) clauses is the contribution of AMOC constraint. The 
generalize representation for a SAT clause for the vertex vi is 
as follows: 

 ˄  ˄                (⌐xi,m˅ ⌐xi,n)                  (eq.2)    
1≤ m ≤ k   m+1≤n≤k 
 

 (III). Different Color (DCOL) 

This is the most important constraint for the k-Color 
problem. Basically, DCOL is based upon the most important 
aspect of k-color problem. It is based on condition that two 
vertex of a graph connected by an edge have different colors. 
If the vertex ( vi, vj ) are connected with an edge e, then vi and 
vj should not be colored with m. Thus for every edge (vi, vj) ϵ 
E, if vi is colored with m then the vj should not be colored with 
the color m. This constraint generates a two literal clause as 
(xi,m→ ⌐xj,m) ≡ (⌐x i,m ˅ ⌐xj,m). Further, when this constraint is 
placed for each color m, generates total (m * E) clauses for all 
edges of the graph. All the SAT clauses for the edge (vi,vj) are 
as follows: 

 
   ˄  (⌐xi,m˅ ⌐xi,m)                                             (eq.3)              

     
        1≤c≤k   
 
With these formulations, the total number of variables 

required to encode k-Color to SAT is      |V| k. Besides this, 
our formulations also generate ALOC, AMOC and DLOC 
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clauses as |V|, |V| *(k *(k-1)/2) and (m*E) respectively. Thus, 
the Total SAT clauses (TSC) generated with these 
formulations are as follows: 

 
 TSC  = | V | + | V |*( k*(k-1) / 2) + (m*E)            (eq.4)      
     
On the basis of the above defined constraints formulations 

an algorithm COLSAT is proposed. The algorithm takes an 
input graph G (V, E) and available colors k. COLSAT 
generates ALOC, AMOC and DCOL clauses in polynomial 
time as output.  

 
 
3.3 Algorithm: COLSAT 
/* Input graph dataset G; use its vertices and edges, number of 
colors available k and a Boolean variable xij*/   

Step 1: for i = 1 to V do 
              for j = 1 to k do 
                    input( xij ) 
 
/* Initialize clauses */ 
            ALOC Clause ( ) = NULL; 
           AMOC Clause ( ) = NULL; 
          DCOL Clause ( ) = NULL; 
         Total Clause ( ) = NULL; 
                
/* Generate ALOC Clause and their Count */   
 
Step 2: for j = 1 to k do  
             begin 
              ALOC Clause = NULL; 
                for i = 1 to V do 
              begin 
             ALOC Clause = ˄ ( xi,1˅xi,2˅ … ˅xi,k ) 
                   end; 
               ALOC Clause = ALOC Clause + 1; 
                end; 
/* Generate ALOC Clause and their Count */   
 
Step 3: for j = 1 to k do  
             begin 
              AMOC Clause = NULL; 
                for i = 1 to V do 
              begin 
                       AMOC Clause = ˄ (⌐xi,m˅ ⌐xi,n)  
                   end; 
               AMOC Clause = AMOC Clause + 1; 
                end; 
 
/* Generate DCOL Clause and their Count */   
 
Step 4: for j = 1 to k do  
             begin 
              DCOL Clause = NULL; 
                for i = 1 to V do 
              begin 
             DCOL Clause = ˄   (⌐xi,m˅ ⌐xi,m)                       
                   end; 
               DCOL Clause = DCOL Clause + 1; 
                end; 
 
/* Generate Total Clause and their Count*/ 
     Step 5: 
     begin 

Total Clause = (ALOC Clause + AMOC Clause + DCOL 
Clause); 

       end; 
 

Example SCG: SAT Clause Generation  

 In this example COLSAT is applied on a G (V, E) that 
consists of 11 vertices and 20 edges connections. The value of 
k i.e. the available colors to color vertices of the graph is k = 3. 
The small scale Dimacs dataset to elaborate this case is as 
follows: 

(e1, e2), (e2, e3), (e3, e4), (e4, e5), (e5, e6), 
(e6, e7), (e7, e8), (e8, e9), (e1, e9), (e2, e10), 
(e3, e10), (e4, e10), (e5, e10), (e6, e10), 
(e6, e11), (e8, e11), (e9, e11), (e1, e11) 
(e10,  e11), (e1, e10). 
On the basis of the constraint based formulations for the k 

color problem, the ALOC, AMOC and DCOL constraints are 
generated as follows:  

The ALOC clauses are generated using the eq.1 for every 
vertex. With the formulations, the total ALOC clauses 
contribution is equal to 11. The ALOC clause generation for 
the Dimacs dataset is depicted in Table 1. Similarly, |V|*( 
k*(k-1)/2) total AMOC clauses for the given dataset 
expending eq.2 are generated. The generation of AMOC 
clauses is presented in Table 1. Subsequently, to generate 
DCOL clauses with our formulations eq. 3 is utilized. 
Noticeable feature behind the generation of DCOL clauses is 
the basis of edge connections among the number of vertices. 
The obvious result of the increase in the number of DCOL 
clauses is the dependency on the total number of edge 
connections. The DCOL clause generation                                          
is depicted in Table 2.  

IV.   RESULTS 
 

The implementation of our formulations are depicted on 
the datasets from Dimacs benchmark problems for k-Color 
graphs in Table 3. It must be observed that, Dimacs maintains a 
huge range of challenging datasets for k-Color graphs. Our 
results depict the generation of SAT clauses in polynomial time 
for k = 3 on nine different datasets. The generation of clauses 
for one of the data set containing 11 vertices and 20 edges has 
been elaborated in the example. Besides the total clauses 
generated, the results also state the number of variables required 
to generate the SAT clauses. Our results generate the ALOC, 
AMOC, DCOL clauses in polynomial time, providing it a novel 
structure.  Thus, analyzing and formalizing the GCP constraints 
leads a polynomial time generation of SAT clauses.    

V.  CONCLUSION 
  
 A novel approach of encoding color graphs to CNF SAT 

clauses has been accomplished. With our formulations we 
made it possible to reduce the instances of one problem to 
another. The graph datasets are reduced to CNF clauses by our 
COLSAT algorithm. The polynomial generation of SAT 
clauses on the basis of GCP constraints was shaped by us. It 
was also established, that the various constraints ALOC, 
AMOC and DCOL of GCP laid a foundation to generate 
strictly correlated SAT clauses.  
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Table 1: ALOC and AMOC Clauses for Example SCG  
   

Vertex ALOC Clauses AMOC Clauses 

1 (x1,1˅x1,2˅x1,3) (⌐x1,1 ˅ ⌐x1,2) ˄ (⌐x1,1 ˅ ⌐x1,3) ˄ (⌐x1,2 ˅ ⌐x1,3) 

2 (x2,1˅2,2˅x2,3) (⌐x2,1 ˅ ⌐x2,2) ˄ (⌐x2,1 ˅ ⌐x2,3) ˄ (⌐x2,2 ˅ ⌐x2,3) 

3 (x3,1˅x3,2˅x3,3) (⌐x3,1 ˅ ⌐x3,2) ˄ (⌐x3,1 ˅ ⌐x3,3) ˄ (⌐x3,2 ˅ ⌐x3,3) 

4 (x4,1˅x4,2˅x4,3) (⌐x4,1 ˅ ⌐x4,2) ˄ (⌐x4,1 ˅ ⌐x4,3) ˄ (⌐x4,2 ˅ ⌐x4,3) 

5 (x5,1˅x5,2˅x5,3) (⌐x5,1 ˅ ⌐x5,2) ˄ (⌐x5,1 ˅ ⌐x5,3) ˄ (⌐x5,2 ˅ ⌐x5,3) 

6 (x6,1˅x6,2˅x6,3) (⌐x6,1 ˅ ⌐x6,2) ˄ (⌐x6,1 ˅ ⌐x6,3) ˄ (⌐x6,2 ˅ ⌐x6,3) 

7 (x7,1˅x7,2˅x7,3) (⌐x7,1 ˅ ⌐x7,2) ˄ (⌐x7,1 ˅ ⌐x7,3) ˄ (⌐x7,2 ˅ ⌐x7,3) 

8 (x8,1˅x8,2˅x8,3) (⌐x8,1 ˅ ⌐x8,2) ˄ (⌐x8,1 ˅ ⌐x8,3) ˄ (⌐x8,2 ˅ ⌐x8,3) 

9 (x9,1˅x9,2˅x9,3)  (⌐x9,1 ˅ ⌐x9,2) ˄ (⌐x9,1 ˅ ⌐x9,3) ˄ (⌐x9,2 ˅ ⌐x9,3) 

10 (x10,1˅x10,2˅x10,3) (⌐x10,1 ˅ ⌐x10,2) ˄ (⌐x10,1 ˅ ⌐x10,3) ˄ (⌐x10,2 ˅ 

⌐x10,3) 

Total 11 33 
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Table 2: DCOL Clause Generation for Example SCG 

Edge DCOL Edge DCOL 

(e1, e2) (⌐x1,1 ˅ ⌐x2,1) ˄ (⌐x1,2 ˅ ⌐x2,2) ˄ (⌐x1,3 ˄ ⌐x2,3) (e3, e10) (⌐x3,1 ˅ ⌐x10,1) ˄ (⌐x3,2 ˅ ⌐x10,2) ˄ (⌐x3,3 ˄ ⌐x10,3) 

(e2, e3) (⌐x2,1 ˅ ⌐x3,1) ˄ (⌐x2,2 ˅ ⌐x3,2) ˄ (⌐x2,3 ˄ ⌐x3,3). (e4, e10) (⌐x4,1 ˅ ⌐x10,1) ˄ (⌐x4,2 ˅ ⌐x10,2) ˄ (⌐x4,3 ˄ ⌐x10,3) 

(e3, e4) (⌐x3,1 ˅ ⌐x4,1) ˄ (⌐x3,2 ˅ ⌐x4,2) ˄ (⌐x3,3 ˄ ⌐x4,3) (e5, e10) (⌐x5,1 ˅ ⌐x10,1) ˄ (⌐x5,2 ˅ ⌐x10,2) ˄ (⌐x5,3 ˄ ⌐x10,3) 

(e4, e5) (⌐x4,1 ˅ ⌐x5,1) ˄ (⌐x4,2 ˅ ⌐x5,2) ˄ (⌐x4,3 ˄ ⌐x5,3) (e6, e10) (⌐x6,1 ˅ ⌐x10,1) ˄ (⌐x6,2 ˅ ⌐x10,2) ˄ (⌐x6,3 ˄ ⌐x10,3) 

(e5, e6) (⌐x5,1 ˅ ⌐x6,1) ˄ (⌐x5,2 ˅ ⌐x6,2) ˄ (⌐x5,3 ˄ ⌐x6,3). (e6,e11) (⌐x6,1 ˅ ⌐x11,1) ˄ (⌐x6,2 ˅ ⌐x11,2) ˄ (⌐x6,3 ˄ ⌐x11,3). 

(e6, e7) (⌐x6,1 ˅ ⌐x7,1) ˄ (⌐x6,2 ˅ ⌐x7,2) ˄ (⌐x6,3 ˄ ⌐x7,3) (e8,e11) (⌐x8,1 ˅ ⌐x11,1) ˄ (⌐x8,2 ˅ ⌐x11,2) ˄ (⌐x8,3 ˄ ⌐x11,3) 

(e7, e8) (⌐x7,1 ˅ ⌐x8,1) ˄ (⌐x7,2 ˅ ⌐x8,2) ˄ (⌐x7,3 ˄ ⌐x8,3) (e9,e11) (⌐x9,1 ˅ ⌐x11,1) ˄ (⌐x9,2 ˅ ⌐x11,2) ˄ (⌐x9,3 ˄ ⌐x11,3) 

(e8, e9) (⌐x8,1 ˅ ⌐x9,1) ˄ (⌐x8,2 ˅ ⌐x9,2) ˄ (⌐x8,3 ˄ ⌐x9,3) (e1,e11) (⌐x1,1 ˅ ⌐x11,1) ˄ (⌐x1,2 ˅ ⌐x11,2) ˄ (⌐x1,3 ˄ ⌐x11,3) 

(e1, e9) (⌐x1,1 ˅ ⌐x9,1) ˄ (⌐x1,2 ˅ ⌐x9,2) ˄ (⌐x1,3 ˄ ⌐x9,3) (e10,e11) (⌐x10,1 ˅ ⌐x11,1) ˄ (⌐x10,2 ˅ ⌐x11,2) ˄ (⌐x10,3 ˄ ⌐x11,3) 

(e2, e10) :  (⌐x2,1 ˅ ⌐x10,1) ˄ (⌐x2,2 ˅ ⌐x10,2) ˄ (⌐x2,3 ˄ ⌐x10,3) (e1,e10) (⌐x1,1 ˅ ⌐x10,1) ˄ (⌐x1,2 ˅ ⌐x10,2) ˄ (⌐x1,3 ˄ ⌐x10,3) 
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Table 3: ALOC, AMOC, DCOL and Total Clauses Generated for K=3 on Dimacs Datasets. 
S.No Dataset V E Total  

Variables 
Generated 

ALOC 
Clauses 

AMOC 
Clauses 

DLOC 
Clauses 

Total  
Clauses 

1. myciel 13 11 20 33 11 33 60 104 
2. myciel 14 23 71 69 23 69 213 305 
3. queen5_5 25 160 75 25 75 480 580 
4. queen6_6 36 290 108 36 108 870 1014 
5. myciel 15 47 236 141 47 141 708 896 
6. queen7_7 49 476 147 49 147 1428 1624 
7. myciel 16 95 755 285 95 285 2265 2645 
8. mugg100 100 166 300 100 300 498 898 
9. miles250 128 387 384 128 384 1161 1673 

 
 
 
 
 
 
 
 

 
 
 

   


