
Volume 7, No. 2, March-April 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 30

GCP Constraint Based SAT Clause Generation in Polynomial Time

 Nidhi Dahale
FCA Department

Acropolis Institute of Technology and Research
Indore (M.P), India

 N.S. Chaudhari
Director and Professor

VNIT Nagpur and IIT Indore
Indore (M.P), India

 Maya Ingle

Professor and Sr. System Analyst
SCSIT DAVV

Indore (M.P), India

Abstract: Graph Colorability Problem (GCP) belongs to a subset of the large family of NP–Hard combinatorial problems. Till now
there exist very less deterministic methods to find the solutions to k- Color problem. Constraint analysis of the k-Color problem
and formulating the constraints to the SAT clauses provides another way to find the solution to this typical problem. The recent
advancement in the development of SAT solvers has really provided an easy approach to find the truth values for a SAT formula.
Thus, we have performed the formulations of the constraints of GCP into ALOC, AMOC and DCOL clauses. With our
formulations, we are able to generate the SAT clauses in polynomial time. The total SAT clauses that are being generated with
our formulations are | V | + | V |* k*(k-1) / 2 + (m*E).

Keywords: SAT, Graph Coloring, Encodings, Clauses, Polynomial Time

I. INTRODUCTION

A proper graph coloring emphasizes on coloring the
vertices of the graph G (V, E) in such a way that two vertices
(u, v) of a graph which share an edge must have different
colors. The minimum number of colors required to color the
vertices is known as Chromatic Number for that graph and is
denoted by ᵡ(G). In the proper k coloring environment, graph
G (V, E) is termed to be colored with available k colors if its
neighboring vertices have different colors. Deciding the k-
Colorability of a graph is an NP Complete problem [1] [2].

There exist a few deterministic methods that can solve the
k-Colorability of a graph in polynomial time. Satisfiability
(SAT) has been a major concern to solve the k-Colorability of
the graph in many ways. It has been observed that an encoding
exists on the vertices and edges of the graph with 3-color that
generates a Disjunctive Normal Form (DNF) clauses in SAT.
This DNF expression may be enhanced to a k-CNF formula by
using recursive method. Further, these k-CNF clauses with the
use of some non- recursive methods are converted into the 3-
CNF expression. It is observed that total clauses generated in
3-CNF formula for 3- colorable graphs are ((27*|V|) +
(256*|E|)) [3]. Using some generalizations and input of this
method are utilized to generates a total (kk (k-2)*|V|) + (22k+2
*|E|)) 3CNFSAT clauses and is also applied to solve the
Channel Assignment problem in cellular networks [4].

 The encodings provide a very important framework of
converting one problem instance to the other. In this paper, we
have introduced a new encoding from k-Color graphs to SAT
formula in polynomial time. This encoding results in the
generation of SAT clauses on the basis of GCP constraints.
We have also presented, algorithm COLSAT to formulate our
encoding. We discuss the background details of k-Color
problem and SAT in Section II. In Section III, our encoding

methodology, formulations along with COLSAT algorithm is
discussed. DIMACS provides a set of challenging datasets for
the k-Color problem [5] [6]. We cover the results of our
encodings on DIMACS benchmarks graphs in Section IV.
Finally, we conclude with conclusions in Section V.

II. BACKGROUND

We now discuss the background details of k-Color and

SAT problem in this section as follows:

2.1 k - Color Problem

 Graph Coloring Problem (GCP) is a very important
problem in the category of graph based NP-Hard
Combinatorial problems. Formally, a GCP is denoted by {< G,
k >} where G represents a graph and k denotes the minimum
colors required to color the vertices V. In other words, GCP
emphasizes the assignment of k colors to the vertices of the
graph such that adjacent vertices receive different colors.
Mathematically, a k-Coloring problem is defined on the basis
of a coloring function Ck. The coloring function Ck need to
assign k color values to the vertices of the graph. This
assignment is stated as Ck: V → {1, 2, … , k} [7].

 The most widespread utility of GCP is as an
optimization problem. GCP as an optimization problem for a
graph G (V, E) is defined as follows: Let there be V- set of
graph vertices denoted by |V| = n, E- set of connected edges
denoted by |E| = m and a minimum positive integer k such as k
≤ n. Specifically, GCP is to find the minimum positive integer
k and a coloring function Ck : V → {1, 2, … , k} such
as c(u) ≠ c(v) where u, v are the vertices of
the graph G (V, E) [8].

Nidhi Dahale et al, International Journal of Advanced Research in Computer Science, 7 (2), March- April, 2016,30-34

© 2015-19, IJARCS All Rights Reserved 31

 Many other variants of optimized GCP exist in
literature such as Equitable Coloring, Sum Coloring, Contrast
Coloring, Harmonious Coloring, Circular Coloring,
Consecutive Coloring, List Coloring etc. In optimization
version of the basic problem called GCP, a conflict–free
coloring with minimum number of colors is searched [9].
Intensive research conducted in this area resulted in a large
number of exact and approximate algorithms, heuristics and
metaheuristics. However, the reported results are often
difficult to compare due to specific assumptions, different
algorithms and their implementation details, tuning of
parameters, computing platforms, test data sets etc. [10, 11,
12, 13, 14].

 Thus, graph Coloring and its generalizations are
useful tools in modeling a variety of scheduling and
assignment problems. There are several interesting practical
problems that can be modeled by graph coloring. Aircraft
Scheduling, Bioprocesses Tasks and Frequency Assignment
are also not untouched with k-Color magic [15].

 2.2 SAT Problem

 Let there be a function f: {0, 1} → {0, 1},
i.e. f(x1, … , xm) ϵ {0,1}. There is an assignment 0’s and1’s, a1,
… , am, to the variables x1, … , xm such that f(a1, … , am) = 1.
If there is such an assignment then f is satisfiable and a1, … ,
am is called as satisfying assignment. If no such assignment
then f is unsatisfiable. Any function f: {0, 1} n → {0, 1} can be
expressed in Conjunctive Normal Form (CNF) as
F = C0˄C1˄… ˄ Cm-1. A clause is a disjunction of literals as
(Ci = li0˅…˅ li (s-1)). A literal is either a variable or a negated
variable lij = vij or ⌐vij.

There exists mainly four versions of SAT namely; Max-
SAT, K-SAT, 2-SAT and 3-SAT. The SAT problem converts
to an optimization problem by maximizing the number of
clauses that one assignment can satisfy. Such a SAT problem
leads to Maximum Satisfiability Problem (MAX-SAT). K-
SAT has all clauses in CNF with k literal per clause. 2-SAT is
the problem which is solvable in polynomial time, with each
clause is restricted to two literals only. 3SAT is the first
problem to be NP-Complete, with every clause has only three
literals [16].

 Vivid range of other naturally occurring decision and
optimization problems can be transformed into SAT instances.
This is possible due to revolutionary advances in the range of
SAT solvers available for solving huge SAT instances. A class
of algorithms called SAT solvers can efficiently solve a large
enough subset of SAT instances. The advancement of the SAT
solvers is one of the reasons for rise in the number of practical
applications of SAT. Many practical applications of SAT
occur in model checking, Automatic Test Pattern Generation,
Combinatorial Equivalence, Planning in AI, Automated
Theorem Proving, Software Verification, Haplotype Inference
etc. [17].

III. PROPOSED WORK

Let there be a graph G (V, E) and a positive integer k as
available colors to color the vertices of the graph. Where, V is
a set of n vertices V{v1,v2, … , vn} and E is the set of m edges
E{e1,e2, … , em}. An encoding is performed on a graph to
obtain SAT formula. To perform the encoding constraint
analysis of GCP and its formalization to obtain SAT clauses is
executed.

3.1 Analysis of the Constraints of GCP Problem

 The constraints are analyzed into three crucial variants as:
At Least One Color (ALOC), At Most One Color (AMOC)
and Different Color (DCOL). The constraint ALOC is use to
color each vertex of the graph. In other words, no vertex
should be left uncolored. AMOC is used to avoid the
redundant color assignments to any vertex of the graph, as
there exists a possibility of a vertex assigned with the multiple
colors. DCOL is use to assign different colors to the adjacent
or neighboring vertices of a graph. In order to perform
encoding and obtain SAT clauses we initialize a Boolean
variable xij, where 1 ≤ i ≤ |V| and 1 ≤ j ≤ k is true if the node vi
is assigned a color j. This assignment generates k |V| variables
for SAT formula. We formalize the constraints ALOC, AMOC
and DCOL to obtain SAT clauses as follows:
3.2. Categorize and Formalize the Constraints for SAT
Clause Generation:

(I). At Least One Color (ALOC)

The intention is to have at least one color for each vertex.
Out of all the variables available from the initialization at least
one should be true. This generates one clause for each vertex,
resulting a total of |V| clauses for the graph. The generalize
representation of a clause for the vertex vi is as follows:

˄ (xi,1˅xi,2˅ … ˅xi,k) (eq.1)

(II). At Most One Color (AMOC)

There exists a possibility that SAT checker might come up
with the assignment of more than two colors for a single
vertex. To avoid such assignments, clauses are generated
emphasizing the fact that vertex vi is assigned at most one
color. It is asserted definitely, that if a vertex vi is assigned a
color m, then it is not be assigned a color n i.e. c(m) ≠ c(n).
This particular constraint gives rise to generation of simple
two literal clauses of the form: (xi,m→ ⌐ xi,n) ≡ (⌐x i,m˅ ⌐xi,n).
For k available colors, total (k * (k-1)/2) SAT clauses are
generated. For V vertices of a graph, |V| *(k * (k-
1)/2) clauses is the contribution of AMOC constraint. The
generalize representation for a SAT clause for the vertex vi is
as follows:

 ˄ ˄ (⌐xi,m˅ ⌐xi,n) (eq.2)
1≤ m ≤ k m+1≤n≤k

 (III). Different Color (DCOL)

This is the most important constraint for the k-Color
problem. Basically, DCOL is based upon the most important
aspect of k-color problem. It is based on condition that two
vertex of a graph connected by an edge have different colors.
If the vertex (vi, vj) are connected with an edge e, then vi and
vj should not be colored with m. Thus for every edge (vi, vj) ϵ
E, if vi is colored with m then the vj should not be colored with
the color m. This constraint generates a two literal clause as
(xi,m→ ⌐xj,m) ≡ (⌐x i,m ˅ ⌐xj,m). Further, when this constraint is
placed for each color m, generates total (m * E) clauses for all
edges of the graph. All the SAT clauses for the edge (vi,vj) are
as follows:

 ˄ (⌐xi,m˅ ⌐xi,m) (eq.3)

 1≤c≤k

With these formulations, the total number of variables

required to encode k-Color to SAT is |V| k. Besides this,
our formulations also generate ALOC, AMOC and DLOC

Nidhi Dahale et al, International Journal of Advanced Research in Computer Science, 7 (2), March- April, 2016,30-34

© 2015-19, IJARCS All Rights Reserved 32

clauses as |V|, |V| *(k *(k-1)/2) and (m*E) respectively. Thus,
the Total SAT clauses (TSC) generated with these
formulations are as follows:

 TSC = | V | + | V |*(k*(k-1) / 2) + (m*E) (eq.4)

On the basis of the above defined constraints formulations

an algorithm COLSAT is proposed. The algorithm takes an
input graph G (V, E) and available colors k. COLSAT
generates ALOC, AMOC and DCOL clauses in polynomial
time as output.

3.3 Algorithm: COLSAT
/* Input graph dataset G; use its vertices and edges, number of
colors available k and a Boolean variable xij*/

Step 1: for i = 1 to V do
 for j = 1 to k do
 input(xij)

/* Initialize clauses */
 ALOC Clause () = NULL;
 AMOC Clause () = NULL;
 DCOL Clause () = NULL;
 Total Clause () = NULL;

/* Generate ALOC Clause and their Count */

Step 2: for j = 1 to k do
 begin
 ALOC Clause = NULL;
 for i = 1 to V do
 begin
 ALOC Clause = ˄ (xi,1˅xi,2˅ … ˅xi,k)
 end;
 ALOC Clause = ALOC Clause + 1;
 end;
/* Generate ALOC Clause and their Count */

Step 3: for j = 1 to k do
 begin
 AMOC Clause = NULL;
 for i = 1 to V do
 begin
 AMOC Clause = ˄ (⌐xi,m˅ ⌐xi,n)
 end;
 AMOC Clause = AMOC Clause + 1;
 end;

/* Generate DCOL Clause and their Count */

Step 4: for j = 1 to k do
 begin
 DCOL Clause = NULL;
 for i = 1 to V do
 begin
 DCOL Clause = ˄ (⌐xi,m˅ ⌐xi,m)
 end;
 DCOL Clause = DCOL Clause + 1;
 end;

/* Generate Total Clause and their Count*/
 Step 5:
 begin

Total Clause = (ALOC Clause + AMOC Clause + DCOL
Clause);

 end;

Example SCG: SAT Clause Generation

 In this example COLSAT is applied on a G (V, E) that
consists of 11 vertices and 20 edges connections. The value of
k i.e. the available colors to color vertices of the graph is k = 3.
The small scale Dimacs dataset to elaborate this case is as
follows:

(e1, e2), (e2, e3), (e3, e4), (e4, e5), (e5, e6),
(e6, e7), (e7, e8), (e8, e9), (e1, e9), (e2, e10),
(e3, e10), (e4, e10), (e5, e10), (e6, e10),
(e6, e11), (e8, e11), (e9, e11), (e1, e11)
(e10, e11), (e1, e10).
On the basis of the constraint based formulations for the k

color problem, the ALOC, AMOC and DCOL constraints are
generated as follows:

The ALOC clauses are generated using the eq.1 for every
vertex. With the formulations, the total ALOC clauses
contribution is equal to 11. The ALOC clause generation for
the Dimacs dataset is depicted in Table 1. Similarly, |V|*(
k*(k-1)/2) total AMOC clauses for the given dataset
expending eq.2 are generated. The generation of AMOC
clauses is presented in Table 1. Subsequently, to generate
DCOL clauses with our formulations eq. 3 is utilized.
Noticeable feature behind the generation of DCOL clauses is
the basis of edge connections among the number of vertices.
The obvious result of the increase in the number of DCOL
clauses is the dependency on the total number of edge
connections. The DCOL clause generation
is depicted in Table 2.

IV. RESULTS

The implementation of our formulations are depicted on
the datasets from Dimacs benchmark problems for k-Color
graphs in Table 3. It must be observed that, Dimacs maintains a
huge range of challenging datasets for k-Color graphs. Our
results depict the generation of SAT clauses in polynomial time
for k = 3 on nine different datasets. The generation of clauses
for one of the data set containing 11 vertices and 20 edges has
been elaborated in the example. Besides the total clauses
generated, the results also state the number of variables required
to generate the SAT clauses. Our results generate the ALOC,
AMOC, DCOL clauses in polynomial time, providing it a novel
structure. Thus, analyzing and formalizing the GCP constraints
leads a polynomial time generation of SAT clauses.

V. CONCLUSION

 A novel approach of encoding color graphs to CNF SAT

clauses has been accomplished. With our formulations we
made it possible to reduce the instances of one problem to
another. The graph datasets are reduced to CNF clauses by our
COLSAT algorithm. The polynomial generation of SAT
clauses on the basis of GCP constraints was shaped by us. It
was also established, that the various constraints ALOC,
AMOC and DCOL of GCP laid a foundation to generate
strictly correlated SAT clauses.

Nidhi Dahale et al, International Journal of Advanced Research in Computer Science, 7 (2), March- April, 2016,30-34

© 2015-19, IJARCS All Rights Reserved 33

Table 1: ALOC and AMOC Clauses for Example SCG

Vertex ALOC Clauses AMOC Clauses

1 (x1,1˅x1,2˅x1,3) (⌐x1,1 ˅ ⌐x1,2) ˄ (⌐x1,1 ˅ ⌐x1,3) ˄ (⌐x1,2 ˅ ⌐x1,3)

2 (x2,1˅2,2˅x2,3) (⌐x2,1 ˅ ⌐x2,2) ˄ (⌐x2,1 ˅ ⌐x2,3) ˄ (⌐x2,2 ˅ ⌐x2,3)

3 (x3,1˅x3,2˅x3,3) (⌐x3,1 ˅ ⌐x3,2) ˄ (⌐x3,1 ˅ ⌐x3,3) ˄ (⌐x3,2 ˅ ⌐x3,3)

4 (x4,1˅x4,2˅x4,3) (⌐x4,1 ˅ ⌐x4,2) ˄ (⌐x4,1 ˅ ⌐x4,3) ˄ (⌐x4,2 ˅ ⌐x4,3)

5 (x5,1˅x5,2˅x5,3) (⌐x5,1 ˅ ⌐x5,2) ˄ (⌐x5,1 ˅ ⌐x5,3) ˄ (⌐x5,2 ˅ ⌐x5,3)

6 (x6,1˅x6,2˅x6,3) (⌐x6,1 ˅ ⌐x6,2) ˄ (⌐x6,1 ˅ ⌐x6,3) ˄ (⌐x6,2 ˅ ⌐x6,3)

7 (x7,1˅x7,2˅x7,3) (⌐x7,1 ˅ ⌐x7,2) ˄ (⌐x7,1 ˅ ⌐x7,3) ˄ (⌐x7,2 ˅ ⌐x7,3)

8 (x8,1˅x8,2˅x8,3) (⌐x8,1 ˅ ⌐x8,2) ˄ (⌐x8,1 ˅ ⌐x8,3) ˄ (⌐x8,2 ˅ ⌐x8,3)

9 (x9,1˅x9,2˅x9,3) (⌐x9,1 ˅ ⌐x9,2) ˄ (⌐x9,1 ˅ ⌐x9,3) ˄ (⌐x9,2 ˅ ⌐x9,3)

10 (x10,1˅x10,2˅x10,3) (⌐x10,1 ˅ ⌐x10,2) ˄ (⌐x10,1 ˅ ⌐x10,3) ˄ (⌐x10,2 ˅

⌐x10,3)

Total 11 33

VI. REFERENCES

[1] Garey, R. Johnson D. S. “Computers and Intractability - A Guide
to the Theory of NP Completeness”, Freeman, 1979.

[2] Karp R. M. “Reducibility Among Combinatorial Problems”, In:
Miller R. E. and Thatcher J. W. (Eds.), Complexity of
Computer Computations, Plenum Press, 1972, pp. 85–103.

[3] Alexander Tsiatas, “Phase Transitions in Boolean Satisfiability
and Graph Coloring”, May 2008, Department of Computer
Science, Cornell University.

 (www.cseweb.ucsd.edu/users/atsiatas/phase.pdf)

[4] Prakash C. Sharma and Narendra S. Chaudhari, “A Graph
Coloring Approach for Channel Assignment in Cellular
Network via Propositional Satisfiability”, International
Conference on Emerging Trends in Networks and Computer
Communications (ETNCC) at Udaipur, 22-24 April 2011, pp.
23-26.

[5] DIMACS Implementation Challenges, http://dimacs.rutgers
.edu/Challenges/.

[6] Graph Coloring Instances, http://mat.gsia.cmu.edu/
COLOR/instances.html.

[7] M. Anathanarayanan, S.Lavanya, “Fuzzy Graph Coloring Using
α Cuts”, International Journal of Engineering and Applied
Sciences, March , 2014,Vol.4,No.90.

[8] Jensen, T. R.—Toft, B., “Graph coloring problems”, Wiley
Interscience, 1995.

[9] Kubale, M. (Ed.), “Graph Colorings, American Mathematical
Society, 2004. DOI: 10.1090/conm/352

[10] Croitoriu, C.—Luchian, H.—Gheorghies, O.—Apetrei A, “A
new Genetic Graph Coloring Heuristic”, Computational
Symposium on Graph Coloring and Generalizations
COLOR’02.In: Constraint Programming, Proceedings of the
International Conference, P’02, 2002.

[11] Filho, G. R.,—Lorena, L. A. N.,“Constructive Genetic
Algorithm and Column Generation: An Application to Graph
Coloring”, Proc. Asia Pacific Operations Research
Symposium, APORS’2000, 2000.

[12] Fleurent, C.—Ferland, J. A., “Genetic and Hybrid Algorithms
for Graph Coloring”, Annals of Operations Research Vol. 63,
1996, pp. 437–461.DOI: 10.1007/BF02125407.

[13] Khuri, S.Walters, T.Sugono, “Grouping Genetic Algorithm for
Coloring Edges of Graph”, Proc. 2000 ACM Symposium on
Applied Computing, 2000, pp. 422–427. DOI:
10.1145/335603.335880.

[14] Kubale M, “Introduction to Computational Complexity and
Algorithmic Graph Coloring”, GTN, Gda´nsk, 1998.

[15] Daniel Marx, “Graph Colouring Problems and their
Applications in Scheduling”, Periodica Polytechnica Ser El.
Eng Vol.48, No.1, pp. 11-16 (2004).

[16] E´en, N., S¨orensson N., “An extensible SAT-solver” In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003, LNCS, vol.
2919, pp. 502–518. Springer, Heidelberg (2004).

[17] A. Slater, Investigations into Satisfiability Search”, PhD thesis,
NICTA, Australian National University, Acton, Australia,
2003.

[18] N.Een and A. Biere, “Effective Preprocessing in SAT through
Variable and Clause Elimination”, In Proceedings of the
Eighth International Conference on Theory and Applications
of Satisfiability Testing (SAT'05).

Table 2: DCOL Clause Generation for Example SCG

Edge DCOL Edge DCOL

(e1, e2) (⌐x1,1 ˅ ⌐x2,1) ˄ (⌐x1,2 ˅ ⌐x2,2) ˄ (⌐x1,3 ˄ ⌐x2,3) (e3, e10) (⌐x3,1 ˅ ⌐x10,1) ˄ (⌐x3,2 ˅ ⌐x10,2) ˄ (⌐x3,3 ˄ ⌐x10,3)

(e2, e3) (⌐x2,1 ˅ ⌐x3,1) ˄ (⌐x2,2 ˅ ⌐x3,2) ˄ (⌐x2,3 ˄ ⌐x3,3). (e4, e10) (⌐x4,1 ˅ ⌐x10,1) ˄ (⌐x4,2 ˅ ⌐x10,2) ˄ (⌐x4,3 ˄ ⌐x10,3)

(e3, e4) (⌐x3,1 ˅ ⌐x4,1) ˄ (⌐x3,2 ˅ ⌐x4,2) ˄ (⌐x3,3 ˄ ⌐x4,3) (e5, e10) (⌐x5,1 ˅ ⌐x10,1) ˄ (⌐x5,2 ˅ ⌐x10,2) ˄ (⌐x5,3 ˄ ⌐x10,3)

(e4, e5) (⌐x4,1 ˅ ⌐x5,1) ˄ (⌐x4,2 ˅ ⌐x5,2) ˄ (⌐x4,3 ˄ ⌐x5,3) (e6, e10) (⌐x6,1 ˅ ⌐x10,1) ˄ (⌐x6,2 ˅ ⌐x10,2) ˄ (⌐x6,3 ˄ ⌐x10,3)

(e5, e6) (⌐x5,1 ˅ ⌐x6,1) ˄ (⌐x5,2 ˅ ⌐x6,2) ˄ (⌐x5,3 ˄ ⌐x6,3). (e6,e11) (⌐x6,1 ˅ ⌐x11,1) ˄ (⌐x6,2 ˅ ⌐x11,2) ˄ (⌐x6,3 ˄ ⌐x11,3).

(e6, e7) (⌐x6,1 ˅ ⌐x7,1) ˄ (⌐x6,2 ˅ ⌐x7,2) ˄ (⌐x6,3 ˄ ⌐x7,3) (e8,e11) (⌐x8,1 ˅ ⌐x11,1) ˄ (⌐x8,2 ˅ ⌐x11,2) ˄ (⌐x8,3 ˄ ⌐x11,3)

(e7, e8) (⌐x7,1 ˅ ⌐x8,1) ˄ (⌐x7,2 ˅ ⌐x8,2) ˄ (⌐x7,3 ˄ ⌐x8,3) (e9,e11) (⌐x9,1 ˅ ⌐x11,1) ˄ (⌐x9,2 ˅ ⌐x11,2) ˄ (⌐x9,3 ˄ ⌐x11,3)

(e8, e9) (⌐x8,1 ˅ ⌐x9,1) ˄ (⌐x8,2 ˅ ⌐x9,2) ˄ (⌐x8,3 ˄ ⌐x9,3) (e1,e11) (⌐x1,1 ˅ ⌐x11,1) ˄ (⌐x1,2 ˅ ⌐x11,2) ˄ (⌐x1,3 ˄ ⌐x11,3)

(e1, e9) (⌐x1,1 ˅ ⌐x9,1) ˄ (⌐x1,2 ˅ ⌐x9,2) ˄ (⌐x1,3 ˄ ⌐x9,3) (e10,e11) (⌐x10,1 ˅ ⌐x11,1) ˄ (⌐x10,2 ˅ ⌐x11,2) ˄ (⌐x10,3 ˄ ⌐x11,3)

(e2, e10) : (⌐x2,1 ˅ ⌐x10,1) ˄ (⌐x2,2 ˅ ⌐x10,2) ˄ (⌐x2,3 ˄ ⌐x10,3) (e1,e10) (⌐x1,1 ˅ ⌐x10,1) ˄ (⌐x1,2 ˅ ⌐x10,2) ˄ (⌐x1,3 ˄ ⌐x10,3)

http://www.cseweb.ucsd.edu/users/atsiatas/phase.pdf�

Nidhi Dahale et al, International Journal of Advanced Research in Computer Science, 7 (2), March- April, 2016,30-34

© 2015-19, IJARCS All Rights Reserved 34

Table 3: ALOC, AMOC, DCOL and Total Clauses Generated for K=3 on Dimacs Datasets.
S.No Dataset V E Total

Variables
Generated

ALOC
Clauses

AMOC
Clauses

DLOC
Clauses

Total
Clauses

1. myciel 13 11 20 33 11 33 60 104
2. myciel 14 23 71 69 23 69 213 305
3. queen5_5 25 160 75 25 75 480 580
4. queen6_6 36 290 108 36 108 870 1014
5. myciel 15 47 236 141 47 141 708 896
6. queen7_7 49 476 147 49 147 1428 1624
7. myciel 16 95 755 285 95 285 2265 2645
8. mugg100 100 166 300 100 300 498 898
9. miles250 128 387 384 128 384 1161 1673

