
Volume 7, No. 1, January-February 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 40

ISSN No. 0976-5697

Threat Modeling for a Secured Software Development

S. Shanmuga Priya
Senior Assistant Professor

Department of Computer Science and Engineering
New Horizon College of Engineering

Bangalore, Karnataka, India

S. S. Arya
Assistant Professor

Department of Computer Science and Engineering
New Horizon College of Engineering

Bangalore, Karnataka, India

Abstract: Security system evaluation is an important and essential activity which could be conducted at different stages in the life cycle of a
software development. Understanding the threats to the software is critical step in creating a secure product. Recent researches have
demonstrated that threat modeling can provide a basis for building flawless software that can withstand any potential attack. Threat modeling
plays an important role in developing secure software which describes a threat subjected on to a system and the harm that could arise on
vulnerabilities. The vulnerabilities or loop holes in the securities arise as flaws in requirement specification or designing or results in incomplete
implementation or throw out several bugs in testing stage. Increase in the complexity of the software, possibly introduces more design errors
which leads to security vulnerabilities and increases security attacks. Hence, it is insisted that the security issues must no more be considered as
non-functional requirements and isolated to single phase alone in Software Development Life Cycle (SDLC). These security issues can be well
identified using the threat modeling followed in almost all the phases in SDLC.

Keywords: Software Development Life Cycle (SDLC), Threat Modeling, Threat, Requirement, Design, Development, Testing.

I. INTRODUCTION

 Threat modeling aims at identifying the critical assets of
the system, analyze those, document it and prioritize the
system’s vulnerability issues. It also helps in identifying the
entry point and exit point of the system. The entry point is by
which an attacker could enter into the system for attacking and
through the exit point he leaves the system after attacking.
These entry point and exit point are needed to be identified
much in advance during the design so that there won’t be any
loopholes left for the attackers to invade the system. Threat
modeling must be addressed early in the Software
Development Life Cycle, so that the organization might
minimize or eliminate threats at a proper time and prevents it
getting dissipated to the subsequent phases. After collecting
the requirements from the user, the designer should take at
most attention while designing the software. The architect
must have a crucial thinking in all perspectives before
designing the software. The architect must understand the
assets of the system, the implementation details, the
architecture need to protect the system being attacked etc. The
designer must think in terms of the attacker, the possible assets
that can be attacked, the ways by which those assets can be
attacked are to be analyzed properly. After collecting the
various attack possibilities, a visualization diagram can be
drawn with the available information by focusing on the ways
by which an attacker could possibly attack the system. Most
probably, Data Flow Diagram (DFD) or UML is the obvious
choice in depicting the understandings about the system and is
used for producing the attack visualization as well as data
flow. DFD is preferred for a structured programming whereas
UML is used for the object oriented programming. However,
researchers are focusing on the technique of making the
visualization of DFD in UML. This might help the developer

to develop a secured code and tester tests the system in a more
effective way to give a secured system to the end user.

 The major aim of the attackers is to steal the valuable
information from the organization. As a result of these
attacks, it happens for the customer as well as the organization
to lose their confidential information and is no longer secure.
Hence, these criminal issues must be focused rite from the
initial stage of any Software Development Life Cycle. In the
SDLC, the security is considered as a non-functional
requirement and hence often it loses it identity and never finds
a consideration inside the development environment. In order
to build flawless software, it is recommended that the security
must be considered as a functional requirement. The different
stakeholders like the architects, developer, tester, project
manager, business manager are the major beneficiary from the
threat modeling.

 The paper is organized as follows. Section II list out the
security objectives, Section III gives the threats and security
policies, Section IV throws the insight on the threat modeling,
Section V suggests the various possibilities on when to do
threat modeling, Section VI briefs out the overall threat
modeling process, Section VII gives the threat modeling
throughout secured software development life cycle process,
Section VIII gives the threat modeling for security requirement
elicitation, Section IX gives the threat modeling for design
level security, Section X describes the security development
considerations, Section XI gives the security testing and
Section XII concludes.

S. Shanmuga Priya et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,40-48

© 2015-19, IJARCS All Rights Reserved 41

II. SECURITY OBJECTIVES

 The six security objectives that must be measured in any
system to enforce security as given by Shawn Hernan et al. [1]
are:

a) Confidentiality (C), which includes protection of
the system against unauthorized information
disclosure,

b) Integrity (I), which includes preventing unauthorized
information changes that affects the software,

c) Availability (A), that includes providing the required
service for the legitimate user. In addition to the
basic CIA objectives,

d) Authentication,
e) Authorization and
f) Repudiations.

 Identifying security objectives helps in understanding
the goals of the attacker and the area that needs keen
observation to protect against the attack can also be explored.

III. THREATS AND SECURITY PROPERTIES

 A way to ensure that the software under construction
meets the security objectives is to employ threat modeling
using STRIDE classification (Microsoft Model) an acronym
for Spoofing, Tampering, Repudiation, Information disclosure,
Denial of service and Elevation of privilege [1]. The following
table gives the threats mapped to the objectives which protect
the software.

Table 1. Threat Mapping to Security Objectives

Threat Security Property

Spoofing Authentication
Tampering Integrity
Repudiation Non-Repudiation
Information Disclosure Confidentiality
Denial of Service Availability
Elevation of Privilege Authorization

IV. THREAT MODELING
 Threat modeling provides a systematic way in
identifying the threats that could affect the system. Identified
threats must be analyzed well in advance which aids to
uncover the vulnerabilities in the system. Analyzing the risks
of the threats, countermeasures could be provided that
addresses the threats and mitigates the risks. Swiderske and
Snyder [2] listed the purpose of threat modeling as:

a) Understand the threat profile of a system.
b) Provide a basis for secure design and implementation.
c) Discover vulnerabilities.
d) Provide feedback for the application security life

cycle.

A. Threat Modeling Approaches
 By threat modeling approach, threats are represented
using a separate model designed by professionals by taking
various security attacks and its consequences into account.
Generally there are three approaches to threat modeling in
practice. They are:

a) Software – Centric,
b) Attacker – Centric represented as Attack Trees [3,4]

and
c) Systems – Centric (or) Threat – Centric represented

as Fault Tree [3].

 Each of these approaches can be followed separately
depending upon the system under construction. However, in
order to have an effective solution, it is recommended to
follow a combination of all the three approaches, called a
hybrid approach in threat modeling.

B. Threat Visualization
 The threat visualization (representation) must be both
attacker – centric and system – centric. Drake Patrick Mirembe
and Maybin Myeba [4] have analyzed the various
representations of threat models. The various threat
representation techniques are:

a) Fault Trees
b) Attack Trees
c) Attack Suites
d) Attack Nets
e) Mitigation Tree.

a) Fault Trees
 Fault trees published in 1960, are a graphical
representation of system failures [2]. The nodes in the tree
represent the event and edges represented as a casual-effect
relationship between events. Leaf node is linked to the higher
nodes in the hierarchy via logic gates. Non-leaf nodes
represent hazards identified. The fault tree lacks in
expressiveness due to their inability to capture atomic details
about the threat like attacker tools, familiarity, skill,
motivation and goals.

b) Attack Trees
 Schneier was the first to coin the term attack tree [5].
He proposed attack tree as a formal way to describe the
security of the system based on varying attacks. The root node
represents the goal of an attacker and leaf nodes represent the
different ways by which the goal of an attacker could be
achieved. Nodes are decomposed by AND and OR
relationship. Values like cost that needed to be spared to
achieve the goal or probability to do a task can be assigned to
the nodes. The value of the root node says whether the
system’s goal is vulnerable to attack. Attacker’s
characteristics must be analyzed in order to determine which
part of the attack tree need close consideration from rest parts.
The advantage of attack tree is it helps to study the system
from attacker’s point of view and helps in analyzing the
system by evaluating the impact of applying countermeasures.
The major limitations of the attack tree are: the designer and
developer should have a sound knowledge about the attacker’s
characteristics to model the tree. Moreover, Schneier does not
discuss on how the attack trees could be linked to other
development artifacts such as designer, developer or tester of
the software.

c) Attack Suite
 Attack suite is the enhancement made to the attack trees
and defined by using algebraic semantics. The attack is
characterized as a finite non-empty, multi-set of components.

S. Shanmuga Priya et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,40-48

© 2015-19, IJARCS All Rights Reserved 42

A universal set N containing components with various
combinations results into different attacks. The set N is given
as:

N = {x0, x1, x2, x3,…xn-1}
where xi, 0< i < n-1 gives the unique component. The major
drawback of the attack suite is it sometimes introduces more
complexity in representing the threat model and makes it hard
to understand. Hence it is widely not in use.

d) Attack Nets
 J. P. McDermott [6] has proposed the attack net
approach to penetration testing. Attack nets provide a
graphical means to show how a collection of flaws may be
combined to achieve a significant system penetration. An
attack net retains the essential benefits of attack tree and also
provides the alternatives and refinement of the attack tree
approach. Attack nets can model more sophisticated attacks
that may combine several flaws. They are used to organize the
development of plausible attack scenario.

e) Mitigation Tree
 Guifre Ruiz et al. [7] proposed a new data structure
know as mitigation tree to detect threats in software designs,
which is similar to attack trees but with a slight variation.
Attack trees are built in a destructive way, whereas mitigation
trees are built in a constructive way. Mitigation Tree has the
goal of mitigating the determined threat and each branch
contains the set of software specification or features, for the
design and implementation activities needed to accomplish the
goal of the root. In addition, each feature contains an
estimated cost of carrying it out.

V. WHEN TO DO THREAT MODELING

 Irrespective of the nature of the software being built
either simple or complex, security issues must be addressed as
early as possible, in every phases of the Software
Development Life Cycle (SDLC). Threat modeling must be a
continuous iterative process. The reasons are two folded.
First, it is impossible to identify all possible threats in single
pass. Secondly, the changing business requirements must be
enhanced and adapted as the system is being built.
 Figure 1 represents the threat modeling scope in any
software development life cycle. It emphasizes that threat
modeling must be an iterative process and it can be introduced
as early as possible. Threat modeling is not only associated
with design phase, it can also be considered as an important
part of requirement phase and can be executed continuously
throughout SDLC. In the design phase, threat modeling covers
the vulnerabilities that could be introduced due to lack in the
security requirement specification. In code development phase,
vulnerabilities could arise due to poor implementation. If the
security concerns are addressed earlier in software
development, it leads to effective, less cost, and less time
consumption in building a flawless secured system.

Figure 1 Threat Modeling in Software Development Life Cycle

VI. THREAT MODELING PROCESS
There are various threats modeling process in existence.

A. Suvda’s Threat Modeling Process
 Suvda Myagmar et al. [8] have investigated on threat
modeling which can be used as a foundation for specifying
security requirements, upon which rest of the security system
is built. They have also presented three case studies:
Software-Defined Radio, a network traffic monitoring tool and
a cluster security monitoring tool.

S. Shanmuga Priya et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,40-48

© 2015-19, IJARCS All Rights Reserved 43

Figure 2 System Security Engineering

 Figure 2 shows the view of system security engineering.
Threat modeling is used to identify all possible threats to a
system. In security requirement formation, the identified
threats are analyzed based on their dangerous impact and
decisions could be made whether to mitigate it or not. Based
on the risk associated secure mechanisms can be developed
which could be followed in rest phases of SDLC.

 The threat modeling proposed by Suvda Myagmar et al.
[8] consists of 3 high-level steps:

a) Characterizing the system,
b) Identifying assets and access points and
c) Identifying threats.

 Characterizing the system involves creation of a system
model after understanding the system components.
Identifying the assets and access point involves in identifying
the valuable assets of a system that must be secured and
identifies the potential ways by which the attacker might enter
and exit a system. The threat to a system can come from either
inside or outside the system, authorized or unauthorized that
could violate the security objectives.

B. Microsoft Threat Modeling Process
 Figure 3 gives the threat modeling process proposed by
Microsoft which can be performed as a six-stage process:

a) Identify Assets: It identifies valuable assets that the
system needs to protect.

b) Create an Architecture overview: It involves the tasks
as identifies what the application might do, create an
architecture diagram and identify the technologies
that could be used for implementing the system.

c) Decompose the application involves the tasks as:
Identify trust boundaries, identify data flow (DFD –
Use case diagram can be used), identify entry points,
identify privilege code and document the security
profile.

d) Identify the threats involves two basic approaches as:
Use STRIDE to identify threats and use categorized
threat list.

e) Document the treat : This could be achieved by filling
a template that shows several threat attributes, such as
threat description, threat target, risk associated, attack
techniques, countermeasure etc.

f) Rating the threat: It is achieved by calculating the
product of probability of the threat occurred and
damage potential.

Figure 3 Microsoft Threat Modeling Process

 At Microsoft, DREAD (acronym for Damage potential,
Reproducibility, Exploitability, Affected users,
Discoverability) model is used to calculate the risk and threats
and are rated as High (1), Medium (2) and Low (3). Based on
the obtained rating, decisions can be made on whether to
mitigate the threat or not.

C. An Approach to Threat Modeling in Web Application
Security Analysis

 In [9], Sreenivasa Rao and Kumar proposed a study on
question-driven approach to Threat Modeling. This approach
helps in identifying security design problems in the application
design process. An application overview was created to
identify relevant threats. This was achieved by using
deployment diagram. Further, in order to identify the threats
more clearly, an in depth knowledge and understanding of the
application is essential. To do these, the role of the
application, key usage scenarios, technologies involved in
building the application and various application security
mechanisms were identified in detail. The application must be
decomposed in order to understand the data flow through the
application from entry to exit, entry points and exit points
must be identified through which an attacker must enter and
leave a system. The threats and attacks to an application were
identified by using two basic approaches: starting with
common threats and attacks, then using a query-driven

S. Shanmuga Priya et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,40-48

© 2015-19, IJARCS All Rights Reserved 44

approach in which the STRIDE model could be used to post
questions related to the architecture and design of the
application. Threat identification task involves in identifying
the common threats and attack, then identify threats along use
case and data flow.

VII. THREAT MODELING THROUGHOUT SECURED
SOFTWARE DEVELOPMENT LIFE CYCLE PROCESS

 According to studies made, the security design flaws are
widespread. These defects give a high impact in business and
are easily exploitable which brings threat to the entire system.
It is estimated that fixing the design flaws is costly. IBM
Systems Sciences Institute studies say that the cost spent on
fixing flaw during design phase is 7 times cheaper than fixing
flaws during implementation and 100 times cheaper than
during production. So following secured software
development process at the beginning is a cost effective
solution. The various phases in Security Software
Development Life Cycle (SSDLC) are:

a) Security Requirement Elicitation
b) Design Level Security
c) Security Development Consideration
d) Security Testing

Threat Modeling finds its place in all the phases of SSDLC.

VIII. THREAT MODELING FOR SECURITY REQUIREMENT
ELICITATION

 Requirement Engineering is considered as the main
building block for any software, as this phase directly deals
with the customer in understanding the needs that a product
must satisfy. The requirements vary depending upon the
project to be built. Traditional requirement engineering
considers the functional requirements and it pay less attention
to the non-functional requirements like security, reliability,
robustness, and scalability, so on. The security issues that
could arise in a software product are mostly attended when
there is a demand, if any, from the customer. Most probably
after the product is deployed, the end user after starting to use
the product might come out with certain defects in concern
with security. These security issues must be considered as
functional properties of the system being built and must be
addressed in the beginning stage itself. As this security
requirement elicitation phase is considered to be the
foundation of a product on which the other phases are built, it
is advisable to have a strong foundation.

A. Categories of Security Requirements
 In [10] Paco Hope and Peter White classified security
requirements into three categories as:
 a) Functional Security Requirements is a security
description, which could be derived from misuse case that is
integrated into each functional requirement. Representatively,
this requirement category also says what shall not happen.

 b) Non – Functional Security Requirements usually
derived from the architectural principles and the standard
practices followed. This brings out the properties that are
security related architectural requirements, like "robustness" or
"minimal performance and scalability".

 c) Derived Security Requirements is just like a hybrid
combination that is derived from functional and non-functional
security requirements.

 In [9] Malik Imran Daud, has categorized the security
requirements as:

a) Functional Security Requirements,
b) Non-Functional Security Requirements,
c) Derived Security Requirements,
d) User Stories (Agile Software), and
e) Abuse Case.

B. Threat Modeling for Security Requirement Elicitation
 In [8] Suvda Myagmar et al. proposed threat modeling
and used it for specifying security requirements. Threat
modeling involves identifying the various threats possible on a
system and a deep understanding on the identified threats. The
loopholes that leads to vulnerability, if exists in a system could
be possibly exploited by the attackers. These issues must be
well identified in the beginning itself possibly during
gathering and analysis of security requirements, so that a
decision can be made on whether to mitigate or accept the
risks involved with those identified threats. This early analysis
aids to turn out for a secured system.

 In [13] Lee M. Clagett gave the threat modeling process
initiated by identifying the system assets and possible threats
to those assets. A threat exists when an entry point leads to the
access of an asset. Attacks to achieve the threat can be
represented using different diagrams that help in producing a
visual effect. Possible diagrams could be misuse case [25, 26],
abuse case [14, 15] use case diagrams, state chart diagram,
petri nets etc. This representation of attacks on a system paves
a way to decide whether the threat could be mitigated or not.

 As security is constantly changing one, there are various
difficulties in gathering the security requirements. Few things
that must be taken into account during gathering and analyzing
requirements are software security requirements must be state
in positive tone, must be stated in language and platform
independent way, and must be verifiable and testable.

IX. THREAT MODELING FOR DESIGN LEVEL SECURITY
 The design level security is the next phase followed by
security requirement elicitation. The architects play a major
role in designing the system. The other stakeholders involving
in this phase are designers and developers. The stakeholders
make a complete study on the requirement specification. They
bring out the secure design elements, the architecture, secure
design reviews needed at different levels, and conduct threat
modeling as per the specified requirements. Every time
traceability is done between the requirement gathered and the
design being carried out in order to ensure that the design goes
as per the customer demand. The designer is supposed to
prepare a design specification that technically focuses on how
the system is to be implemented. The various functional and
non-functional requirement specifications are necessarily to be
tackled in bringing out the essential security features to be
implemented. This gives a guideline to the developers to
implement a secure software and trustworthy system. Figure 4
shows the overview of design phase of secure software

S. Shanmuga Priya et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,40-48

© 2015-19, IJARCS All Rights Reserved 45

development life cycle that must be considered effectively and
efficiently.

Figure 4 Overview of design phase of secure software development life cycle

[16]

A. Security Design Principles
 Various security design principles are followed up
which need to be known in advance as they provide a clear
guideline on how to design the secured system. Few general
guidelines are:

a) From the security requirement specification, analyze
and identify the valuable assets of the system that
need to be protected.

b) Make a clear understanding on the goal of the system
to be implemented.

c) Understand the mechanism and the environment in
which the developed software is going to be in use.

d) Identify the threats that are possible on the software.
e) Understand the threat and categorize them as active

threat or passive threat, so that according to the
nature, the threats can be resolved by prioritizing it.

f) Carefully make an analysis on the malware (i.e.,
Virus, Trojans, Worms or other malicious software)
in existence could compromise the software or data
associated could be damaged. If so, make additional
steps in solving the issues.

g) Identify the vulnerabilities and analyze the
consequences of those.

h) Identify the enemies of the system, in what way they
could attack the system, the various skills that an
attacker must possess in order to attack the system,
the various possible entry point that exist for
attacking the system and the various possible exit
point by which the attacker could leave after
attacking the system must be analyzed.

 The Security Design Principles as described by Saltzer
and Schroeder [17] are:

a) Principle of Least Privilege,
b) Principle of Fail-Safe Defaults,
c) Principle of Economy of Mechanism aka KISS

Principle,
d) Principle of Complete Mediation,
e) Principle of Least Common Mechanism and
f) Principle of Psychological Acceptability.

B. Threat Modeling for Design Level Security
 Threat modeling is an iterative process followed for
modeling security threats. It helps to identify design flaws that
could be exploited by the attackers and also facilitate in taking
the countermeasures to be implemented that could mitigate the
identified threats. The threat modeling can be followed in all
the SSDLC phases, but it must be considered more serious and
essential in designing phase. The major steps of threat
modeling in the design level security are:

a) Identify security problems,
b) Investigate potential threats,
c) Investigate potential vulnerabilities, and
d) Provide solutions for the identified vulnerabilities.

 The architect, designers and the program managers could
get participated in threat modeling, so that they all could share
their views from their side and provide solutions from their
point of view and could come out with a feasible solution that
could be put into practice. These when put into practice, helps
in planning for security test easily, helps in reducing the
software support cost as well, because the vulnerabilities were
identified well in advanced during the design phase itself and
developed accordingly. Such product when gets into
production, security defects might be reduced greatly which in
turn might improve the quality of the product and brings
customer satisfaction.

 Many researchers advocates that it is best practice to
follow a diagrammatic representation by using any formal
model (mathematical model) like Petri Nets or semi formal
model like UML diagrams (especially State Chart Diagram,
Activity Diagram, Use Case Diagram, Sequence Diagram)
could be followed in producing the architecture diagram of the
system during design phase. These models give a mental
model i.e., visual representation of the system that is going to
be developed. One of the major advantages of this
diagrammatic representation is it helps all the stake holders to
understand the system uniquely rather than everyone having
their own illusion of what the system is completely about. The
systematic approach followed to create a threat model was
proposed by Meire J.D et al. [18]. It is an iterative approach
which can be used throughout the SSDLC. The Figure 5 shows
the iterative threat modeling process.

S. Shanmuga Priya et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,40-48

© 2015-19, IJARCS All Rights Reserved 46

Figure 5 Iterative threat modeling process [16]

 The five threat modeling steps given are:
a) Identify security objectives,
b) Create an application overview,
c) Decompose your application,
d) Identify threats, and
e) Identify vulnerabilities.

C. Security Patterns for Design Phase
 In [19], Joseph Yoder and Jeffrey Barceló were first to
adapt design patterns for information security. Even the design
needs to be documented and it’s a good practice to document
list out what the system is required to do as well as what the
system is not supposed to do. This gives a clear idea for the
developer to implement the system perfectly by considering
both does and don’ts of the system. It also helps the tester to
test the system efficiently by developing test cases which
covers both does and don’ts of the system. The security
patterns produced are:

a) Single Access Point,
b) Check Point,
c) Role,
d) Session,
e) Full View with Errors,
f) Limited View,
g) Secure Access Layer,
h) Level Privilege,
i) Journaling, and
j) Exit Gracefully.

 At the end of the design, the attack surface is analyzed.
When the attack surface area is high, above process is repeated
until the attack surface is reduced to the minimum level.

 In [20] Nobukazu Yoshioka et al. proposed security
patterns for each phase of SSDLC in terms of security
concepts. They have also shown the patterns for requirement

phase, design phase and implementation phase. They have also
added the methodologies that help in developing secure
software when those security patters are adopted.

X. SECURITY DEVELOPMENT
CONSIDERATIONS

 When the architecture designed for the SSDLC
produced by using the threat modeling gives a good layout for
the next phase, development. During this phase, the program
developer implements the code and test the developed code.
When the security requirements and the designing are laid out
properly, but if the software is poorly coded, it leads to
vulnerabilities that could result in non-secure software which
is an undesirable one. The threat modeling gives important
guidance and the developers must pay attention to ensure the
code correctness. Developer must focus on the testing to
ensure that the possible threats identified during the threat
modeling in design phase are blocked or mitigated. This kind
of testing will improve to block the entry and exit point for the
attackers. In connection to these developments, the developer
must have an eye on the various other possible threat attacks in
order to produce an up to date product.

A. Impementation Elements of Secure Development Life
Cycle

 In [21], Steve Lipner and Michael Howard have given
the essential elements for Secure Development Life Cycle
which can be applied in the implementation phase. When the
coding standards are followed, it helps the developers to avoid
the flaws being injected into the software which in turn can
lead to secured, flawless, vulnerable free software.

 In [22] Agrawal and Khan gave a software vulnerability
detection and analysis framework (SVDAF) which is
independent to development life cycle. The produced
framework aims on vulnerability analysis which is used to
analyze the vulnerability inputs that can be supplied at each
phases and a report on these vulnerabilities are given as a
feedback to the SDLC so that the inputs can be modified
accordingly.

 The common security bugs that could occur in the
construction phase are:

a) Incorrect or incomplete input validation,
b) Poor or missing exception handling,
c) Race Condition,
d) Buffer Overflows,
e) SQL Injection,
f) Cross-Site Scripting (XSS), and
g) Integer Overflow.

XI. SECURITY TESTING
 In traditional testing, the software tester might have
some limitations in testing. But in security testing for a
product, the tester must not have any boundaries in testing in
order to uncover different classes of the errors. A good tester
must take minimum time to discover the errors with minimum
effort. It is advisable for the software tester to play the role of
an attacker while testing the software. The tester can give
inputs like the manner how an attacker do so that he could
break the system. This kind of testing could help in making a
tight secured code so that it might prevent the attackers being

S. Shanmuga Priya et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,40-48

© 2015-19, IJARCS All Rights Reserved 47

intruding the system. Security testing must be risk-based rather
than being requirement based. The tester must be trained with
security aspects of the software, only then it will be easy for
him to test the software. Lack of security awareness won’t
bring all the expected security acts into existence. The security
testing must not be limited to the testing phase alone, instead it
must be followed throughout the SDLC phases. Concentrating
in the security issues at early stage is more costly in software
development so sometimes security bugs remain undetected.
But early stage concentration in these issues might cut down
the later cost involved in mending the software after
production.

 The various security testing methods that are widely in
focus are:

a) Vulnerability Assessment,
b) Negative Testing,
c) Penetration Testing,
d) Ethical Hacking,
e) Fuzz Testing, and
f) Fault Injection

 Aaron Marback et al. [23] gave a security testing
approach which is three step activities. First a threat model
was constructed using threat tree for visualization; secondly
security test sequences were generated from the threat tree and
finally by taking the valid and invalid inputs in to account
executable test cases were created.

 Linzhang et al. [24] proposed threats modeled for
achieving a linkage between the models (used for designing,
done by using UML Sequence Diagram), code implementation
and the security testing. They extracted threat traces from
design-level model, made a decision on the kind of
information collected during runtime, produced instrumented
code for it by using the guide information, and later carried out
security testing. The execution traces were analyzed and
verified whether it contains any security violation. If it
contains any reports were prepared and actions were proposed
to mitigate the threat in the proposed system.

XII. CONCLUSION
 There are different software engineering approaches like
waterfall model, spiral model, prototyping model, rapid
application development model, incremental model are
followed for developing software. Even though these are
efficient software application development, somewhere around
the corner, security issues were neglected and hence much of
the products fail in the market. Security issues become a major
concern in SSDLC. This paper depicts the necessity of
implementing threat modeling as a security-analysis
methodology and spotted out its importance in each SSDLC
phases. This could give awareness to the software builders the
importance of threat modeling for making flawless software.

XIII. REFERENCES

[1] Shawn Hernan, Scott Lambert, Tomasz Ostwald, Adam
 Shostack, “Uncover Security Design Flaws using the
 STRIDE Approach” msdn .microsoft.com, Nov. 2006.
 Available:http://msdn.microsoft.com/en-us/magazine/
 cc163519 .aspx

[1] F. Swiderski and W. Snyder. Threat Modeling. Microsoft
Press, 2004.

[2] Drake Patrick Mirembe and Maybin Myeba, Fault Tree
Analysis Tool, Jan 2008.

[3] Drake Patrick Mirembe, Maybin Muyeba, "Threat
Modeling Revisited: Improving Expressiveness of
Attack," Second UKSIM European Symposium on
Computer Modeling and Simulation, pp.93-98, 2008.

[4] Bruce Schneier, “Modeling Security Threats: Attack
Trees”, Dr. Dobb’s Journal of Software Tools 24, pp.1-9,
December 1999.

[5] McDermott, J.P. “Attack Net Penetration Testing.”,
Proceeding of the Workshop on New Security Paradigm,
Sept. 2000.

[6] Guifre Ruiz, Elisa Heymann, , Eduardo Cesar and Barton
P. Miller, “Automating Threat Modeling through the
Software Development Life-Cycle”, Sep. 2012.
http://research.cs.wisc.edu/mist/papers/Guifre-
sep2012.pdf

[7] Suvda Myagmar, Adam J. Lee, and William Yurcik,
"Threat Modeling as a Basis for Security Requirements",
IEEE Symposium on Requirements Engineering for
Information Security (SREIS '05), Paris, France, Aug
2005.

[8] B. Sreenivasa Rao and N. Kumar, “An Approach to
Threat Modeling in Web Application Security Analysis”,
Journal of Computer Applications ISSN: 0974 – 1925,
Volume-5, Issue EICA2012-5, February 10, 2012.

[9] Paco Hope and Peter White, “Software Security
Requirement the Foundation for Security”, Cigital Inc.,
Available: http://sqgne.org/presentations/2007-08/Hope-
Sep-2007.pdf.

[10] Malik Imran Daud, “Secure Software Development
Model: A Guide for Secure Software Life Cycle”,
Proceedings of the International MultiConference of
Engineers and Computer Scientists, Vol. I, IMECS, Hong
Kong, March 17-19, 2010.

[11] Suvda Myagmar, Adam J. Lee, and William Yurcik,
“Threat Modeling as a Basis for Security Requirements”,
IEEE Symposium on Requirements Engineering for
Information Security (SREIS), August 2005.

[12] Lee M. Clagett, “Security Requirements for the
Prevention of Modern Software Vulnerabilities and a
Process for Incorporation into Classic Software
Development Lifecycles”, Thesis dissertation.

[13] Chun Wei (Johnny), Sia, “Misuse Cases and Abuse Cases
in Eliciting Security Requirements”, 25 Oct 2005.

[14] Martyn Fetcher, Howard Chivers, Jim Austin,
“Combining Functional and Security Requirements’
Processes”, ROLLS ROYCE PLC-REPORT-PNR, Vol.
93025, 2005.

[15] Swapnesh Taterh, Yadav K. P., Sharma S. K., “Threat
Modeling and Security Pattern used in Design Phase of
Secure Software Development Life Cycle”, International
Journal of Advanced Research in Computer Science and
Software Engineering, Vol. 2, Issue 4, April 2012.

[16] Saltzer, Jerome H. and Schroeder, Michael D., “The
Protection of Information in Computer Systems”,
Proceedings of the IEEE 63, pp. 1278-1308, September
1975.

[17] Meier J.D., Alex Mackman, Blaine Wastell, “Threat
Modeling Web Applications Patterns & Practices
Library”, Microsoft Corporation, May 2005. Available:
http://msdn.microsoft.com/en-us/library/ff648006.aspx.

[18] Joseph W. Yoder and Jeffrey Barcalow (1997),
“Architectural Patterns for Enabling Application
Security”, Proceedings of 4th Conference on Patterns
Languages of Programs (PLoP'97) Monticello, Illinois.

[19] Nobukazu Yoshioka, Hironori Washizaki and Katsuhiasa
Maruyama, “A Survey on Security Ptterns –– Progress in
Informatics”, No.5, pp.35-47, 2006.

[20] Steve Lipner and Michael Howard, “The Trustworthy
Computing Security Development Lifecycle”, Security
Engineering and Communications, Security Business and
Technology Unit, Microsoft Corporation, March 2005.

http://www.suvda.com/papers/threat_sreis05.pdf�

S. Shanmuga Priya et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,40-48

© 2015-19, IJARCS All Rights Reserved 48

[21] Agrawal A. and Khan R. A., “A Framework to Detect and
Analyze Software Vulnerabilities – Development Phase
Perspective”, International Journal of Recent Trends in
Engineering, Vol. 2, No. 2, November 2009.

[22] Aaron Marback, Hyunsook Do, Ke He, Samuel
Kondamarri and Dianxiang Xu, “A Threat Model-Based
Approach to Security Testing”, Software-Practice and
Experience, Vol. 43, pp. 241–258.

[23] Linzhang Wang, Eric Wong, Dianxiang Xu, “A Threat
Model Driven Approach for Security Testing”, 29th
International Conference on Software Engineering
Workshops(ICSEW'07), 2007.

[24] Alexander .I, “ Misuse Cases: Use Cases with Hostile
Intent”, IEEE Software 2003, Vol. 20(1), pp.58–66.

[25] Sindre .G, Opdahl .A,” Eliciting Security Requirements
with Misuse Cases”, In Proceedings of TOOLS Pacific,
pp. 120–131, 2000.

	Introduction
	security objectives
	threats and security properties
	threat modeling
	Threat Modeling Approaches
	Threat Visualization

	when to do threat modeling
	threat modeling process
	Suvda’s Threat Modeling Process
	Microsoft Threat Modeling Process
	An Approach to Threat Modeling in Web Application Security Analysis

	threat modeling throughout secured software development life cycle process
	threat modeling for security requirement elicitation
	threat modeling for design Level Security
	SECURITY DEVELOPMENT CONSIDERATIONS
	Impementation Elements of Secure Development Life Cycle

	security testing
	conclusion
	References

