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Abstract: Software engineering research in general and software defects’ prediction research in particular are facing serious challenges to their 
reliability and validity. The major reason is that many of the published research outcomes contradict each other. This phenomenon is mainly 
caused by the lack of research standards as it exists in many well-established scientific and engineering disciplines. The scope of this paper is to 
focus on fair benchmarking of the defects’ prediction models. By experimenting three prediction algorithms, we found that the quality of the 
resultant predictions would significantly fluctuate as parameters’ values changed. Therefore, any published research results not based on 
optimized prediction algorithms methods can cause inaccurate and misleading benchmarking and recommendations. Thus, we propose 
optimizing parameters as an essential research standard to conduct reliable and valid benchmarking. We believe if this standard were approved 
by interested software quality practitioners and research communities, it will present a vital role in soothing the severity of this phenomenon. 
The three prediction algorithms we used in our analysis were Support Vector Machine SVM, Multilayer Perceptron MLP, and Naïve Bayesian 
NB. We used KNIME as a data mining platform to design and run all optimization loops on open source Eclipse 2.0 data set. 
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I. INTRODUCTION 

Segaran [1] has defined optimization as a technique to test 
all possible solutions of a typical problem. In software 
defects’ prediction context, optimization means searching 
within all possible values of a certain prediction models’ 
parameters. The outcomes of optimization process are the 
optimized parameters that achieve an optimized predefined 
objective function. The objective function can be set to be as 
accuracy, true positives, false positives, etc. where positives 
in this context means an object1

It has become common in software engineering research that 
when a researcher publish some results, we can find many 
other published works that contradict the findings and 
ending up with completely different conclusions. 
Consequently, a great confusion does exist within academia 
research communities on one hand, and with software 
development practitioners on the other hand. This problem 
is critical because the main objective of conducting research 
is to enhance the current techniques and methods used by 
practitioners that are supposed to yield to a better software 
quality. However, in real life, practitioners do not usually 
search academic literature for better solutions to their 
problems [

 being defective.  
 

2]. Alternatively, the trending phenomenon today 
is that practitioners tend to discuss their work difficulties 
over expert blogs, knowledge databases, and many other 
modern communication platforms. Software defects’ 
prediction is one of the software engineering fields that 
suffer greatly from this phenomenon.  
 

                                                           
1 We used the term object to generalize the granularity level that might be 
implemented using defects’ prediction models (i.e. either package, file/class 
or module level.) 

This kind of conflicts has led to serious challenges to 
software engineering reliability and validity in general and 
software defects prediction in particular. For a long time, 
research communities have been trying to figure out the 
reasons behind such phenomenon. One factor stands out of 
the crowed is missing the agreed on standards to conduct 
high quality research, while many other scientific and 
engineering disciplines have developed a well-established 
standards. 
 
Shaw [3] has debated this problem by stating: “Physics, 
biology, and medicine have well-refined public explanations 
of their research processes. Even in simplified form, these 
provide guidance about what counts as ‘good research’ 
both inside and outside the field. Software engineering has 
not yet explicitly identified and explained either our 
research processes or the ways we recognize excellent 
work.” 
 
Further, she added: “Many sciences have good explanations 
of their research strategies . . . Acceptance of their results 
relies on the process of obtaining the results as well as 
analysis of the results themselves . . . Software engineering 
does not have this sort of well-understood guidance. 
Software engineering researchers rarely write explicitly 
about their paradigms of research and their standards for 
judging quality of results.” 
 
Beecham et al. [2] have concluded that software engineering 
research results does not meet practitioners’ expectations. 
The reason is that practitioners usually look for best 
practices to implement in their software development tasks. 
Naturally, the current contradictions in software engineering 
research outcomes have led practitioners to look for 
different sources for knowledge and solutions to their 
problems rather than look at academia literature. 
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Additionally, Pfleeger [4] has stated that “practitioners, who 
are the audience for our evidence, must be able to 
understand our theories and findings in the context of their 
work and values.” This claim has also been supported as 
well by Kocaguneli and his colleagues [5]. 
 
The aim of this paper is to show the significant effect of 
optimizing the parameters of defects’ prediction models on 
the performance of these models and hence on researchers’ 
conclusions. Consequently, we strongly believe that 
adopting parameters optimization as a software engineering 
standard would increase the liability and validly of research 
outcomes.  
 
Optimization can be performed by implementing many 
methods, such as Random Searching, Hill Climbing, 
Simulated Annealing, etc. Discussing these techniques is out 
of this paper scope. For simplicity, we used Random 
Searching technique as the scope of this paper is to focus on 
the effects of parameters optimization rather than the 
efficiency of the selected optimization technique itself. 
 
The rest of the paper is organized as follows. Section II 
discusses related work. Section III discusses the data set 
used along with all preprocessing techniques implemented. 
Section IV discusses the experiments design and 
implementation using KNIME as data mining platform. 
Section V discusses the findings of this paper. 

II. RELATED WORK 

Many approaches have been proposed in an attempt to 
lessen the reliability and validity problems of the software 
engineering. Evidence-Based Software Engineering (EBSE) 
approach stands out of the crowed. The power of this 
approach lies on providing empirical proves of results and 
hence allow practitioners and all other interested 
stakeholders to make informed decisions regarding adopting 
the most suitable solution to their problems in hand. 
Kitchenham et al. [6] have concluded in their paper that 
EBSE has the potential to bridge the gap of software 
engineering research quality.  
 
Straus et al. [7] have summarized in their work in medicine 
field the following essential requirements for what they 
deemed as acceptable research standards.  
 
• Best evidence must be sought after and presented to 

answer research questions.  
• Evidence must always be critically assessed for 

reliability and validity. In other words, researchers must 
show how close their results to the truth.  

• Evidence must be applicable in the context of the 
research domain in such a way that is useful to all 
involved stakeholders. In our case, software defects 
prediction models.  

• Evidence must show the size of impact, which means the 
size of the effect.  

 
There are some inspiring contributions that can help in 
developing applicable standards to software engineering 
field. The Australian National Health and Medical Research 
Council [8] have published guidelines to evaluate the quality 

of evidences before including them in research, summarized 
in fig 1. Additionally, White L.J. [9] has emphasized the 
significance of this requirement by stating that “most [of 
research papers] reviewers will no longer simply accept the 
results of empirical study or full experiment, but insist upon 
some sort of statistical analysis to demonstrate statistical 
significance of the results.”  

 
Research activities are a continuous endeavor. Therefore, 
research communities should always search for better 
standards to conduct research rather than simply adopting 
what have become common (or default) practices. Myrtveit 
et al. [10] have asserted the significance of evaluating our 
confidence degree in reported evidence. Consequently, the 
proposed parameter optimization by this paper can be seen 
as a single step in the journey of a thousand miles of 
standardizing software engineering research. 
 
Some other researchers have implemented optimization with 
wide range of scopes. For instance, Tosun et al. [11] have 
applied an optimization method on Naïve Bayes NB 
prediction algorithm. Their objective function was the 
decision threshold. They reported a significant false positive 
rate decrease, on average from 34% to 23%. Can et al. [12] 
have applied Particle Swarm Optimization PSO technique to 
optimize the Support Vector Machine SVM kernel function 
parameters. Their results show a significant improvement in 
SVM prediction performance when apply the optimized 
parameters rather than the default values. A similar findings 
were reported by Wahono et al. [13] by applying meta-
heuristics optimization method.  
 
Arcuri et al. [14] conducted a large scale experiments on the 
effects of parameters tuning on algorithms performance. 
They concluded that such tuning process usually causing a 
large variance in algorithms performance. However, they 
also added, although using default values for setting up the 
algorithms parameters is commonly acceptable, the 
performance is always worst compared to the optimized 
parameters performance. These results were supported by 
Sayyad et al. [15] by their replicated study. Province [16] 

• The strength of the evidence. This has three 
elements: Level, Quality, and Statistical Precision. 
Level relates to the choice of study design and is used 
as an indicator to which bias has been eliminated by 
design. Quality refers to the methods used by the 
investigators to minimize bias within the study design. 
Statistical Precision refers to the P value or the 
confidence interval. 

• Size of effect. The distance of the estimated treatment 
effect from the null value and the inclusion of 
clinically important effects in the confidence interval. 

• Relevance of evidence. The usefulness of the 
evidence in clinical practice, particularly the 
appropriateness of the outcome measures used.  

Fig (1): Evaluating quality of evidence guidelines published by the 
Australian National Health and Medical Research Council. [8] 
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has experimented the effects of parameters optimization on 
four machine learning algorithms, Bernouli Naive Bayes, 
Random Forest, Logistic Regression, and Multinomial 
Bayes. He found that all algorithms have achieved an 
enhancement in their performance except Multinomial 
Bayes 

III. DATA SET 

Before selecting and using a data set in scientific or 
engineering research, it must meets the required 
standardized constraints [17, 18], such as: “(1) developed by 
a group, and not by an individual; (2) be as large as 
industry size projects, and not a toy problem; (3) developed 
by professionals, and not by students; and (4) developed in 
an industry/government organization setting, and not in a 
laboratory.” [19]  
 
Therefore, we chose Eclipse software. First it meets all 
required standards mentioned above. Second, it is popular 
open source software. Thus, the base source code is 
available in the public domain. However, Eclipse is large 
software; consequently, we had to focus on a subset of the 
base code to run experiments on. In our research we chose 
Eclipse 2.0.  
 
Prediction models can be run over a variety of granularity 
levels, such as, packages, files or modules levels. As 
granularity is not an affecting factor in our research, we 
simply chose to run all designed experiments at packages 
level. Eclipse 2.0 has 377 packages. 
 
It is very common in software engineering that data sets are 
unsuitable for immediate use. That is, data sets must pass 
through preprocessing procedures before it is possible to use 
them. Two preprocessing procedures have been conducted 
on Eclipse 2.0 data set, normalization and balancing. Both 
operations are important. Normalization is needed to avoid 
dominance of some large metrics’ values. Balancing is 
needed to avoid the dominance of non-defective cases over 
defective cases. Such imbalance usually causes skew in data 
sets. [20, 21] Nevertheless, this is a common phenomenon in 
software defects’ data sets. 
 
To solve the balancing problem we can use either over-
sampling or under-sampling techniques. However these 
techniques usually result in over-fitting or under-fitting 
problems in the processed data set. In this paper we chose to 
implement SMOTE (Synthetic Minority Oversampling 
Technique) [22-24]. This technique is desirable because it 
considers all k-nearest neighbors when processing each 
minority case. By doing this, over-sampling the minority is 
highly unlikely to cause over-fitting in the processed data 
set, as it the case in other techniques [20]. 
 

IV. EXPERIMENTATION 

We have used KNIME2

                                                           
2 http://www.knime.org 

 as a data mining platform to design 
and run all optimization loops. The experimented prediction 
algorithms were Support Vector Machine SVM, Multilayer 
Perceptron MLP, and Naïve Bayesian NB. Each of these 

algorithms has its own set of parameters that can be 
optimized.  
 
Optimization loops simply rerun each algorithm for a range 
of its parameters’ values chosen from a predefined search 
space, table (I). Note that SVM was implemented using 
three different kernels.  
 

 
Optimization can implement wide range of searching 
methods, such as, Random-Search and Grid-Search. 
Random search was used and preferred over Grid-Search. 
Bergstra et al. [25] have shown that random search would 
result in identifying better optimized parameters than grid-
search. This choice makes sense since the scope of the 
research to show the effect of parameters optimization on 
prediction algorithms performance rather than determining 
either global maxima or global minima within the 
performance space. 
 
To measure the performance quality of prediction models, 
we chose Accuracy and F1-Score [26, 27].  
 
 

                                                  (1) 
Where, 

                                   (2) 
 

                                (3) 
 

          (4) 
These two measurements are based on the confusion matrix 
that is constructed for each algorithm, table (II). The first 
column shows the actual (real) positive AP cases (defective 
objects) and the second column shows the actual (real) 
negative AN cases (non-defective objects). Similarly, the 
first row shows the predicted positives PP and the second 
row shows the predicted negatives PN. The bottom right cell 
shows the total number of cases experimented where it 

Table (I): Values ranges used in parameters’ optimization 
loops. 
Prediction 
Algorithm 

Optimized 
Parameters  Range of Used Values  

SV
M

 K
er

ne
ls 

 Penalty 1 – 1300 (step by 1) 

Po
ly

no
m

i
al

 

Bias 0.1 – 4.8 (step  by 0.4) 

Power 0.1 – 4.8 (step  by 0.4) 

Gama 0.1 – 4.8 (step  by 0.4) 

H
yp

er
Ta

ng
en

t 

Kappa 0.1 – 50 (step  by 1) 

Delta 0.1 – 50 (step  by 1) 

RBF Sigma 0.1 – 300 (step  by 0.2) 

MLP 
Neurons 1 – 15 (step  by 1) 

Hidden Layers 1 – 30 (step  by 1) 

NB Probability 0 – 5 (step  by 0.01) 
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should be always count to 1 (100%). Fig (2) depicts the 
meaning of the confusion matrix contingencies: tp (true 
positive), fp (false positive), fn (false negative) and tn (true 
negative). 
 
Table (II):  
Confusion matrix 

tp fp PP 

fn tn PN 

AP AN 1 

 
The reason of selecting these two measures in particular is 
that F1-Score considers both precision and recall in its 
calculations. Thus, it can be interpreted as a weighted 
average of both precision and recall. Therefore, it has the 
capability to measure the effectiveness of system outcomes. 
This explains the widespread usage of this measure in many 
fields such as, Artificial Intelligence and Machine Learning. 
On the other hand, accuracy considers both negative and 
positive cases alike and hence provides a balanced quality 
evaluation measure. [28] 
 

Table (III): The best and worst performance values for SVM, MLP, and NB algorithms. 

Prediction 
Algorithm 

Optimized 
Parameters  

Accuracy 
Difference 

F1-Score 
Difference 

Best Worst Best Worst 

SV
M

 K
er

ne
ls 

 − Penalty 0.614 0.386 37.1% 0.761 0.557 26.8% 

Po
ly

no
m

ia
l 

− Bias 
− Power 
− Gama 

0.807 0.368 54.4% 0.824 0.032 96.1% 

H
yp

er
Ta

ng
en

t 

− Kappa 
− Delta 

0.632 0.368 41.8% 0.774 0.539 30.4% 

RBF − Sigma 0.623 0.377 39.5% 0.768 0.548 28.7% 

MLP − Neurons 
− Hidden Layers 0.921 0.368 60.0% 0.914 0.548 40.0% 

NB − Probability 0.763 0.368 51.8% 0.785 0.535 31.9% 

V. RESULTS DISCUSSIONS 

All experiments showed that all prediction algorithms’ 
performances fluctuated significantly due to the change of 
their parameters values. Table (III) summarizes the best and 
worst values for accuracy and F1-Score measures achieved 
by the SVM, MLP and NB algorithms. All results were 
normalized for easy comparison. Where 1 represents the 
best performance and 0 represents the worst performance. A 
Difference Percentage was calculated to show the 
fluctuation range from worst to best performances for each 
algorithm. To further scrutinize the results, fig (3)3

                                                           
3 When more than one parameter were optimized, serial numbers were used 
to label the horizontal axis, as it was not possible to write all optimized 
parameters labels on the horizontal axis. 

 depicts 
the behavior of the three defects prediction algorithms’ 
performances due to the change of their parameters values.  
 

When conducting comparisons between different software 
defects’ prediction models, a researcher might conclude that 
implementing SVM with polynomial kernel performs best 
compared to other prediction algorithms. This belief can be 
supported by fig (3, b) by reporting best SVM prediction 
performance and reporting the other algorithms’ worst 
performances. This kind of selective approach will lead to 
the possibility for another researcher to conclude the 
opposite by reporting different performance statistics.  
 
Statistically speaking, both researchers will have a strong 
ground to build and defend their conclusions. However, 
from a software practitioner point of view, this kind of 
research will be useless as it will not help at all to make an 
informed decision to choose which the best tool to solve 
practical problems is. Therefore, this paper proposes the 
implementation of parameters’ optimization in research as a 
research standard to have more reliable and valid software 
engineering research outcomes.  
 

Fig (2): Depiction of the meaning of the confusion matrix 
contingencies: tp (true positive), fp (false positive), fn (false 
negative) and tn (true negative) 
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(a) SVM prediction performance caused by optimizing the Penalty parameter. 

  
(b) SVM-Polynomial-Kernel prediction performance caused by optimizing the Bias, Power, and Gama parameters.  

  
(c) SVM-HyperTangent-Kernel prediction performance caused by optimizing Kappa and Delta parameters. 

  
(d) SVM-RBF-Kernel prediction performance caused by optimizing Sigma parameter. 

  
(e) MLP prediction performance caused by optimizing Neurons and Hidden Layers parameters. 

  
(f) NB prediction performance caused by optimizing Probability parameter. 

Fig (3): Prediction algorithms performances caused by running parameters’ optimization loops. 
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That is, it becomes essential before publishing conclusions 
based on the performance of whatever software defects’ 
prediction models, a researcher must show that he/she has 
performed an optimization process to ensure that the 
reported performance is optimized for each examined 
prediction models, especially new and novel models.  
 
This approach proposed by this paper is opposed to the 
common practice by researchers, which is simply applying 
the default values of defect prediction models parameters. In 
many cases, using default values will not suit all data sets 
and results in poor performance [14, 29]. Thus, unfair 
benchmarking would be resulted.  

VI. CONCLUSIONS 

In this paper we showed the significance of optimizing 
software defects prediction models parameters. This 
significance has two folds. First, it optimizes the 
performance of prediction models. In contrast with the 
common practice that simply implements the default values 
of a prediction algorithm’s parameter(s). Using default 
values might work in some scenarios, however, it will not 
report the best performance of the selected prediction 
algorithm. Second, conducts fair benchmarking between 
different prediction models in a useful way for a practitioner 
who tries to make an informed decision on which prediction 
model suits best a particular problem in hand. 
 
Parameter(s) optimization is presented by this paper as a 
proposed powerful standard to increase the liability and 
validity of the software engineering research in general and 
software defects prediction models in particular. As it has 
become common in software engineering research to find 
conflicted published results and conclusions, optimizing 
prediction models parameters would present a vital role in 
soothing the severity of this phenomenon.  
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