
Volume 7, No. 1, January-February 2016

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 1

ISSN No. 0976-5697

The Significance of Parameters’ Optimization in Fair Benchmarking of Software
Defects’ Prediction Performances

Hussam Ghunaim & Julius Dichter

Computer Science and Engineering Department
University of Bridgeport,

Bridgeport CT, USA

Abstract: Software engineering research in general and software defects’ prediction research in particular are facing serious challenges to their
reliability and validity. The major reason is that many of the published research outcomes contradict each other. This phenomenon is mainly
caused by the lack of research standards as it exists in many well-established scientific and engineering disciplines. The scope of this paper is to
focus on fair benchmarking of the defects’ prediction models. By experimenting three prediction algorithms, we found that the quality of the
resultant predictions would significantly fluctuate as parameters’ values changed. Therefore, any published research results not based on
optimized prediction algorithms methods can cause inaccurate and misleading benchmarking and recommendations. Thus, we propose
optimizing parameters as an essential research standard to conduct reliable and valid benchmarking. We believe if this standard were approved
by interested software quality practitioners and research communities, it will present a vital role in soothing the severity of this phenomenon.
The three prediction algorithms we used in our analysis were Support Vector Machine SVM, Multilayer Perceptron MLP, and Naïve Bayesian
NB. We used KNIME as a data mining platform to design and run all optimization loops on open source Eclipse 2.0 data set.

Keywords: Parameters’ optimization, defects prediction, data mining, benchmarking, performance quality, SVM, MLP, NB, KNIME, Eclipse,
machine learning

I. INTRODUCTION

Segaran [1] has defined optimization as a technique to test
all possible solutions of a typical problem. In software
defects’ prediction context, optimization means searching
within all possible values of a certain prediction models’
parameters. The outcomes of optimization process are the
optimized parameters that achieve an optimized predefined
objective function. The objective function can be set to be as
accuracy, true positives, false positives, etc. where positives
in this context means an object1

It has become common in software engineering research that
when a researcher publish some results, we can find many
other published works that contradict the findings and
ending up with completely different conclusions.
Consequently, a great confusion does exist within academia
research communities on one hand, and with software
development practitioners on the other hand. This problem
is critical because the main objective of conducting research
is to enhance the current techniques and methods used by
practitioners that are supposed to yield to a better software
quality. However, in real life, practitioners do not usually
search academic literature for better solutions to their
problems [

 being defective.

2]. Alternatively, the trending phenomenon today
is that practitioners tend to discuss their work difficulties
over expert blogs, knowledge databases, and many other
modern communication platforms. Software defects’
prediction is one of the software engineering fields that
suffer greatly from this phenomenon.

1 We used the term object to generalize the granularity level that might be
implemented using defects’ prediction models (i.e. either package, file/class
or module level.)

This kind of conflicts has led to serious challenges to
software engineering reliability and validity in general and
software defects prediction in particular. For a long time,
research communities have been trying to figure out the
reasons behind such phenomenon. One factor stands out of
the crowed is missing the agreed on standards to conduct
high quality research, while many other scientific and
engineering disciplines have developed a well-established
standards.

Shaw [3] has debated this problem by stating: “Physics,
biology, and medicine have well-refined public explanations
of their research processes. Even in simplified form, these
provide guidance about what counts as ‘good research’
both inside and outside the field. Software engineering has
not yet explicitly identified and explained either our
research processes or the ways we recognize excellent
work.”

Further, she added: “Many sciences have good explanations
of their research strategies . . . Acceptance of their results
relies on the process of obtaining the results as well as
analysis of the results themselves . . . Software engineering
does not have this sort of well-understood guidance.
Software engineering researchers rarely write explicitly
about their paradigms of research and their standards for
judging quality of results.”

Beecham et al. [2] have concluded that software engineering
research results does not meet practitioners’ expectations.
The reason is that practitioners usually look for best
practices to implement in their software development tasks.
Naturally, the current contradictions in software engineering
research outcomes have led practitioners to look for
different sources for knowledge and solutions to their
problems rather than look at academia literature.

Hussam Ghunaim et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,1-7

© 2015-19, IJARCS All Rights Reserved 2

Additionally, Pfleeger [4] has stated that “practitioners, who
are the audience for our evidence, must be able to
understand our theories and findings in the context of their
work and values.” This claim has also been supported as
well by Kocaguneli and his colleagues [5].

The aim of this paper is to show the significant effect of
optimizing the parameters of defects’ prediction models on
the performance of these models and hence on researchers’
conclusions. Consequently, we strongly believe that
adopting parameters optimization as a software engineering
standard would increase the liability and validly of research
outcomes.

Optimization can be performed by implementing many
methods, such as Random Searching, Hill Climbing,
Simulated Annealing, etc. Discussing these techniques is out
of this paper scope. For simplicity, we used Random
Searching technique as the scope of this paper is to focus on
the effects of parameters optimization rather than the
efficiency of the selected optimization technique itself.

The rest of the paper is organized as follows. Section II
discusses related work. Section III discusses the data set
used along with all preprocessing techniques implemented.
Section IV discusses the experiments design and
implementation using KNIME as data mining platform.
Section V discusses the findings of this paper.

II. RELATED WORK

Many approaches have been proposed in an attempt to
lessen the reliability and validity problems of the software
engineering. Evidence-Based Software Engineering (EBSE)
approach stands out of the crowed. The power of this
approach lies on providing empirical proves of results and
hence allow practitioners and all other interested
stakeholders to make informed decisions regarding adopting
the most suitable solution to their problems in hand.
Kitchenham et al. [6] have concluded in their paper that
EBSE has the potential to bridge the gap of software
engineering research quality.

Straus et al. [7] have summarized in their work in medicine
field the following essential requirements for what they
deemed as acceptable research standards.

• Best evidence must be sought after and presented to

answer research questions.
• Evidence must always be critically assessed for

reliability and validity. In other words, researchers must
show how close their results to the truth.

• Evidence must be applicable in the context of the
research domain in such a way that is useful to all
involved stakeholders. In our case, software defects
prediction models.

• Evidence must show the size of impact, which means the
size of the effect.

There are some inspiring contributions that can help in
developing applicable standards to software engineering
field. The Australian National Health and Medical Research
Council [8] have published guidelines to evaluate the quality

of evidences before including them in research, summarized
in fig 1. Additionally, White L.J. [9] has emphasized the
significance of this requirement by stating that “most [of
research papers] reviewers will no longer simply accept the
results of empirical study or full experiment, but insist upon
some sort of statistical analysis to demonstrate statistical
significance of the results.”

Research activities are a continuous endeavor. Therefore,
research communities should always search for better
standards to conduct research rather than simply adopting
what have become common (or default) practices. Myrtveit
et al. [10] have asserted the significance of evaluating our
confidence degree in reported evidence. Consequently, the
proposed parameter optimization by this paper can be seen
as a single step in the journey of a thousand miles of
standardizing software engineering research.

Some other researchers have implemented optimization with
wide range of scopes. For instance, Tosun et al. [11] have
applied an optimization method on Naïve Bayes NB
prediction algorithm. Their objective function was the
decision threshold. They reported a significant false positive
rate decrease, on average from 34% to 23%. Can et al. [12]
have applied Particle Swarm Optimization PSO technique to
optimize the Support Vector Machine SVM kernel function
parameters. Their results show a significant improvement in
SVM prediction performance when apply the optimized
parameters rather than the default values. A similar findings
were reported by Wahono et al. [13] by applying meta-
heuristics optimization method.

Arcuri et al. [14] conducted a large scale experiments on the
effects of parameters tuning on algorithms performance.
They concluded that such tuning process usually causing a
large variance in algorithms performance. However, they
also added, although using default values for setting up the
algorithms parameters is commonly acceptable, the
performance is always worst compared to the optimized
parameters performance. These results were supported by
Sayyad et al. [15] by their replicated study. Province [16]

• The strength of the evidence. This has three
elements: Level, Quality, and Statistical Precision.
Level relates to the choice of study design and is used
as an indicator to which bias has been eliminated by
design. Quality refers to the methods used by the
investigators to minimize bias within the study design.
Statistical Precision refers to the P value or the
confidence interval.

• Size of effect. The distance of the estimated treatment
effect from the null value and the inclusion of
clinically important effects in the confidence interval.

• Relevance of evidence. The usefulness of the
evidence in clinical practice, particularly the
appropriateness of the outcome measures used.

Fig (1): Evaluating quality of evidence guidelines published by the
Australian National Health and Medical Research Council. [8]

Hussam Ghunaim et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,1-7

© 2015-19, IJARCS All Rights Reserved 3

has experimented the effects of parameters optimization on
four machine learning algorithms, Bernouli Naive Bayes,
Random Forest, Logistic Regression, and Multinomial
Bayes. He found that all algorithms have achieved an
enhancement in their performance except Multinomial
Bayes

III. DATA SET

Before selecting and using a data set in scientific or
engineering research, it must meets the required
standardized constraints [17, 18], such as: “(1) developed by
a group, and not by an individual; (2) be as large as
industry size projects, and not a toy problem; (3) developed
by professionals, and not by students; and (4) developed in
an industry/government organization setting, and not in a
laboratory.” [19]

Therefore, we chose Eclipse software. First it meets all
required standards mentioned above. Second, it is popular
open source software. Thus, the base source code is
available in the public domain. However, Eclipse is large
software; consequently, we had to focus on a subset of the
base code to run experiments on. In our research we chose
Eclipse 2.0.

Prediction models can be run over a variety of granularity
levels, such as, packages, files or modules levels. As
granularity is not an affecting factor in our research, we
simply chose to run all designed experiments at packages
level. Eclipse 2.0 has 377 packages.

It is very common in software engineering that data sets are
unsuitable for immediate use. That is, data sets must pass
through preprocessing procedures before it is possible to use
them. Two preprocessing procedures have been conducted
on Eclipse 2.0 data set, normalization and balancing. Both
operations are important. Normalization is needed to avoid
dominance of some large metrics’ values. Balancing is
needed to avoid the dominance of non-defective cases over
defective cases. Such imbalance usually causes skew in data
sets. [20, 21] Nevertheless, this is a common phenomenon in
software defects’ data sets.

To solve the balancing problem we can use either over-
sampling or under-sampling techniques. However these
techniques usually result in over-fitting or under-fitting
problems in the processed data set. In this paper we chose to
implement SMOTE (Synthetic Minority Oversampling
Technique) [22-24]. This technique is desirable because it
considers all k-nearest neighbors when processing each
minority case. By doing this, over-sampling the minority is
highly unlikely to cause over-fitting in the processed data
set, as it the case in other techniques [20].

IV. EXPERIMENTATION

We have used KNIME2

2 http://www.knime.org

 as a data mining platform to design
and run all optimization loops. The experimented prediction
algorithms were Support Vector Machine SVM, Multilayer
Perceptron MLP, and Naïve Bayesian NB. Each of these

algorithms has its own set of parameters that can be
optimized.

Optimization loops simply rerun each algorithm for a range
of its parameters’ values chosen from a predefined search
space, table (I). Note that SVM was implemented using
three different kernels.

Optimization can implement wide range of searching
methods, such as, Random-Search and Grid-Search.
Random search was used and preferred over Grid-Search.
Bergstra et al. [25] have shown that random search would
result in identifying better optimized parameters than grid-
search. This choice makes sense since the scope of the
research to show the effect of parameters optimization on
prediction algorithms performance rather than determining
either global maxima or global minima within the
performance space.

To measure the performance quality of prediction models,
we chose Accuracy and F1-Score [26, 27].

 (1)
Where,

 (2)

 (3)

 (4)
These two measurements are based on the confusion matrix
that is constructed for each algorithm, table (II). The first
column shows the actual (real) positive AP cases (defective
objects) and the second column shows the actual (real)
negative AN cases (non-defective objects). Similarly, the
first row shows the predicted positives PP and the second
row shows the predicted negatives PN. The bottom right cell
shows the total number of cases experimented where it

Table (I): Values ranges used in parameters’ optimization
loops.
Prediction
Algorithm

Optimized
Parameters Range of Used Values

SV
M

 K
er

ne
ls

 Penalty 1 – 1300 (step by 1)

Po
ly

no
m

i
al

Bias 0.1 – 4.8 (step by 0.4)

Power 0.1 – 4.8 (step by 0.4)

Gama 0.1 – 4.8 (step by 0.4)

H
yp

er
Ta

ng
en

t

Kappa 0.1 – 50 (step by 1)

Delta 0.1 – 50 (step by 1)

RBF Sigma 0.1 – 300 (step by 0.2)

MLP
Neurons 1 – 15 (step by 1)

Hidden Layers 1 – 30 (step by 1)

NB Probability 0 – 5 (step by 0.01)

Hussam Ghunaim et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,1-7

© 2015-19, IJARCS All Rights Reserved 4

should be always count to 1 (100%). Fig (2) depicts the
meaning of the confusion matrix contingencies: tp (true
positive), fp (false positive), fn (false negative) and tn (true
negative).

Table (II):
Confusion matrix

tp fp PP

fn tn PN

AP AN 1

The reason of selecting these two measures in particular is
that F1-Score considers both precision and recall in its
calculations. Thus, it can be interpreted as a weighted
average of both precision and recall. Therefore, it has the
capability to measure the effectiveness of system outcomes.
This explains the widespread usage of this measure in many
fields such as, Artificial Intelligence and Machine Learning.
On the other hand, accuracy considers both negative and
positive cases alike and hence provides a balanced quality
evaluation measure. [28]

Table (III): The best and worst performance values for SVM, MLP, and NB algorithms.

Prediction
Algorithm

Optimized
Parameters

Accuracy
Difference

F1-Score
Difference

Best Worst Best Worst

SV
M

 K
er

ne
ls

 − Penalty 0.614 0.386 37.1% 0.761 0.557 26.8%

Po
ly

no
m

ia
l

− Bias
− Power
− Gama

0.807 0.368 54.4% 0.824 0.032 96.1%

H
yp

er
Ta

ng
en

t

− Kappa
− Delta

0.632 0.368 41.8% 0.774 0.539 30.4%

RBF − Sigma 0.623 0.377 39.5% 0.768 0.548 28.7%

MLP − Neurons
− Hidden Layers 0.921 0.368 60.0% 0.914 0.548 40.0%

NB − Probability 0.763 0.368 51.8% 0.785 0.535 31.9%

V. RESULTS DISCUSSIONS

All experiments showed that all prediction algorithms’
performances fluctuated significantly due to the change of
their parameters values. Table (III) summarizes the best and
worst values for accuracy and F1-Score measures achieved
by the SVM, MLP and NB algorithms. All results were
normalized for easy comparison. Where 1 represents the
best performance and 0 represents the worst performance. A
Difference Percentage was calculated to show the
fluctuation range from worst to best performances for each
algorithm. To further scrutinize the results, fig (3)3

3 When more than one parameter were optimized, serial numbers were used
to label the horizontal axis, as it was not possible to write all optimized
parameters labels on the horizontal axis.

 depicts
the behavior of the three defects prediction algorithms’
performances due to the change of their parameters values.

When conducting comparisons between different software
defects’ prediction models, a researcher might conclude that
implementing SVM with polynomial kernel performs best
compared to other prediction algorithms. This belief can be
supported by fig (3, b) by reporting best SVM prediction
performance and reporting the other algorithms’ worst
performances. This kind of selective approach will lead to
the possibility for another researcher to conclude the
opposite by reporting different performance statistics.

Statistically speaking, both researchers will have a strong
ground to build and defend their conclusions. However,
from a software practitioner point of view, this kind of
research will be useless as it will not help at all to make an
informed decision to choose which the best tool to solve
practical problems is. Therefore, this paper proposes the
implementation of parameters’ optimization in research as a
research standard to have more reliable and valid software
engineering research outcomes.

Fig (2): Depiction of the meaning of the confusion matrix
contingencies: tp (true positive), fp (false positive), fn (false
negative) and tn (true negative)

Hussam Ghunaim et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,1-7

© 2015-19, IJARCS All Rights Reserved 5

(a) SVM prediction performance caused by optimizing the Penalty parameter.

(b) SVM-Polynomial-Kernel prediction performance caused by optimizing the Bias, Power, and Gama parameters.

(c) SVM-HyperTangent-Kernel prediction performance caused by optimizing Kappa and Delta parameters.

(d) SVM-RBF-Kernel prediction performance caused by optimizing Sigma parameter.

(e) MLP prediction performance caused by optimizing Neurons and Hidden Layers parameters.

(f) NB prediction performance caused by optimizing Probability parameter.

Fig (3): Prediction algorithms performances caused by running parameters’ optimization loops.

Hussam Ghunaim et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,1-7

© 2015-19, IJARCS All Rights Reserved 6

That is, it becomes essential before publishing conclusions
based on the performance of whatever software defects’
prediction models, a researcher must show that he/she has
performed an optimization process to ensure that the
reported performance is optimized for each examined
prediction models, especially new and novel models.

This approach proposed by this paper is opposed to the
common practice by researchers, which is simply applying
the default values of defect prediction models parameters. In
many cases, using default values will not suit all data sets
and results in poor performance [14, 29]. Thus, unfair
benchmarking would be resulted.

VI. CONCLUSIONS

In this paper we showed the significance of optimizing
software defects prediction models parameters. This
significance has two folds. First, it optimizes the
performance of prediction models. In contrast with the
common practice that simply implements the default values
of a prediction algorithm’s parameter(s). Using default
values might work in some scenarios, however, it will not
report the best performance of the selected prediction
algorithm. Second, conducts fair benchmarking between
different prediction models in a useful way for a practitioner
who tries to make an informed decision on which prediction
model suits best a particular problem in hand.

Parameter(s) optimization is presented by this paper as a
proposed powerful standard to increase the liability and
validity of the software engineering research in general and
software defects prediction models in particular. As it has
become common in software engineering research to find
conflicted published results and conclusions, optimizing
prediction models parameters would present a vital role in
soothing the severity of this phenomenon.

VII. REFERENCES

[1] Segaran, T., Programming collective intelligence:
Building smart web 2.0 applications. 2007: " O'Reilly
Media, Inc.".

[2] Beecham, S., P. O'Leary, S. Baker, I. Richardson, and J.
Noll, Making software engineering research relevant.
IEEE Computer Society, 2014. 47(4): p. 80-83.

[3] Shaw, M., What makes good research in software
engineering? International Journal on Software Tools
for Technology Transfer, 2002. 4(1): p. 1-7.

[4] Pfleeger, S.L., Albert einstein and empirical software
engineering. Computer, 1999. 32(10): p. 32-38.

[5] Kocaguneli, E., T. Zimmermann, C. Bird, N. Nagappan,
and T. Menzies. Distributed development considered
harmful? in Software Engineering (ICSE), 2013 35th
International Conference on. 2013.

[6] Kitchenham, B.A., T. Dyba, and M. Jorgensen.
Evidence-based software engineering. in Software
Engineering, 2004. ICSE 2004. Proceedings. 26th
International Conference on. 2004.

[7] Straus, S.E., W.S. Richardson, P. Glasziou, and R.B.
Haynes, Evidence-based medicine: How to practice and
teach ebm. 2005.

[8] Council, A.N.H.A.M.R., How to use the evidence:
Assessment and application of scientific evidence.

Series on preparing clinical practice guidelines. 2000,
Canberra, Australia: NHMRC: Canberra.

[9] White, L.J., The importance of empirical work for
software engineering papers. Software Testing,
Verification and Reliability, 2002. 12(4): p. 195–196.

[10] Myrtveit, I., E. Stensrud, and M. Shepperd,
Reliability and validity in comparative studies of
software prediction models. Software Engineering,
IEEE Transactions on, 2005. 31(5): p. 380-391.

[11] Tosun, A. and A. Bener. Reducing false alarms in
software defect prediction by decision threshold
optimization. in Proceedings of the 2009 3rd
International Symposium on Empirical Software
Engineering and Measurement. 2009. IEEE Computer
Society.

[12] Can, H., X. Jianchun, Z. Ruide, L. Juelong, Y.
Qiliang, and X. Liqiang. A new model for software
defect prediction using particle swarm optimization and
support vector machine. in Control and Decision
Conference (CCDC), 2013 25th Chinese. 2013. IEEE.

[13] Wahono, R.S., N. Suryana, and S. Ahmad,
Metaheuristic optimization based feature selection for
software defect prediction. Journal of Software, 2014.
9(5): p. 1324-1333.

[14] Arcuri, A. and G. Fraser, Parameter tuning or
default values? An empirical investigation in search-
based software engineering. Empirical Software
Engineering, 2013. 18(3): p. 594-623.

[15] Sayyad, A.S., K. Goseva-Popstojanova, T.
Menzies, and H. Ammar. On parameter tuning in search
based software engineering: A replicated empirical
study. in Replication in Empirical Software Engineering
Research (RESER), 2013 3rd International Workshop
on. 2013. IEEE.

[16] Province, B.N., The effects of parameter tuning on
machine learning performance in a software defect
prediction context. 2015, WEST VIRGINIA
UNIVERSITY.

[17] Wohlin, C., P. Runeson, M. Höst, M.C. Ohlsson, B.
Regnell, and A. Wesslén, Experimentation in software
engineering. 2012: Springer Science & Business Media.

[18] Votta, L.G., A. Porter, and D. Perry. Experimental
software engineering: A report on the state of the art. in
ICSE. 1995.

[19] Gao, K., T.M. Khoshgoftaar, H. Wang, and N.
Seliya, Choosing software metrics for defect prediction:
An investigation on feature selection techniques.
Software: Practice and Experience, 2011. 41(5): p. 579-
606.

[20] Chawla, N.V., Data mining for imbalanced
datasets: An overview, in Data mining and knowledge
discovery handbook. 2005, Springer. p. 853-867.

[21] Riquelme, J., R. Ruiz, D. Rodríguez, and J.
Moreno, Finding defective modules from highly
unbalanced datasets. Actas de los Talleres de las
Jornadas de Ingeniería del Software y Bases de Datos,
2008. 2(1): p. 67-74.

[22] Pelayo, L. and S. Dick. Applying novel resampling
strategies to software defect prediction. in Fuzzy
Information Processing Society, 2007. NAFIPS'07.
Annual Meeting of the North American. 2007. IEEE.

Hussam Ghunaim et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,1-7

© 2015-19, IJARCS All Rights Reserved 7

[23] Witten, I.H. and E. Frank, Data mining: Practical
machine learning tools and techniques. 2005: Morgan
Kaufmann.

[24] Chawla, N.V., K.W. Bowyer, L.O. Hall, and W.P.
Kegelmeyer, Smote: Synthetic minority over-sampling
technique. Journal of artificial intelligence research,
2002: p. 321-357.

[25] Bergstra, J. and Y. Bengio, Random search for
hyper-parameter optimization. The Journal of Machine
Learning Research, 2012. 13(1): p. 281-305.

[26] Powers, D.M., Evaluation: From precision, recall
and f-measure to roc, informedness, markedness and
correlation. 2011.

[27] Fenton, N. and B. Kitchenham, Validating software
measures. Software Testing, Verification and
Reliability, 1991. 1(2): p. 27-42.

[28] Kitchenham, B.A., L.M. Pickard, S.G. MacDonell,
and M.J. Shepperd. What accuracy statistics really
measure [software estimation]. in Software, IEE
Proceedings-. 2001. IET.

[29] Bartz-Beielstein, T. and S. Markon. Tuning search
algorithms for real-world applications: A regression tree
based approach. in Evolutionary Computation, 2004.
CEC2004. Congress on. 2004. IEEE.

	Introduction
	Related work
	Data Set
	Experimentation
	Results Discussions
	Conclusions
	References

