
Volume 7, No. 1, January-February 2016 

International Journal of Advanced Research in Computer Science 

REVIEW ARTICLE 

Available Online at www.ijarcs.info 

 

© 2015-19, IJARCS All Rights Reserved                    69 

ISSN No. 0976-5697 

A Review: Software Metrics and Effort Estimation in Aspect Software Development 
Program 

 
Aarti Hans 

Department of Computer Science and Technology NCU 
University Gurgaon, 

Haryana, India 

Sonal Gahlot 
Department of Computer Science and Technology NCU 

University Gurgaon, 
Haryana, India

 
Abstract: In this paper, we present a survey of software effort estimation andSoftware size estimationwhich is key characteristicshas been 
designated for the determination of limiting the examinestandards. In SPMfield, managementis the always needed for the organization 
knowledge purpose. According to our topic, we had analyticallystudied2bestuseful techniques that are software effort estimation andsoftware 
size estimation. A modestanalysis of our models with currentuniversal models is presented in this survey paper. 

Keyword: Software cost management, SLOC, software metrics, etc. 

I. INTRODUCTION 

In effort estimation, various software cost estimation 
techniques are available to predict effort & cost for software 
developers. The estimation technique is not 
modesttechnique to sort for thepreciseestimation of the 
determinationessential to progress a software organization. 
Software metrics give the information about project based 
measurable its characteristics & also provide good criteria 
for measuring the similarity of several software products. In 
this survey paper we will make originalestimations on the 
base of a high equaloperator requirement.  

 

Figure 1: An architecture of Software cost estimation 

The aimof the estimation of software is tocalculategiven 
metrics & give a publicusual in standings of software that is 
metrics &characteristics that are connected to cost 
approximation [2, 3].The Software cost estimation scheme is 
a fundamental for theapproval or rejection of the progress of 
software project. Numerous Software cost estimation 
techniques hasbeen in training with their personalpowers 
and boundaries. Presently the object-oriented method for  

Software cost estimation is created on the Line of Code 
(LOC), its function points, functions and classes etc. 

A. Process &Size oriented metric in LOC 

Most commonly used size oriented metric is LOC, this 
software is used to metric measure and lines of code of the 
programming code of the computer source program. The 
main objective of LOC is to predict the programming 
productivity and effort to develop the program. It is widely 
used technique for estimating lines of source code per 
programmer month [2]. This approach was first developed at 
the time when most of the programming was performed on 
line-oriented languages e.g. Assembly, FORTRON and 
COBOL. But with the advent of the era of C++ and Java, 
where program may consists of macros, declaration 
statements, comments, etc. and other related issues made the 
usability of this technique problem some. And the most 
common anomaly related to LOC is, when will be the one 
program language needsto extra lines of code than another 
to device the similar functionality, efficiencyevaluations will 
be unusual [2]. 

B. Function of  oriented metric  

Function of oriented metricis use for the measurement to 
complete functionality delivery by the computer system as 
control factor. Function Point (FP) is mostly used function-
oriented metric [4, 5, and 6]. Four models based on FP are 
ISO certified [7]. The anomaly mentioned above existed due 
to the implementation language is avoided by introducing 
"functionality" as the deciding factor. Computation of the 
Function Point is constructedfor thefeatures of the software's 
factsarea and its difficulty [1]. FP investigation was the first 
author namely Allan Albrecht that presentedthe function 
point in 1979. Functional requirements of users are 
categorized into five measurement parameters i.e.  

1. External inputs 

2. External outputs  

3.External inquiries 



Aarti Hans et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,69-71 

© 2015-19, IJARCS All Rights Reserved                    70 

4. Internal logical files and  

5. External logical files.  

Ones requirements are categorized, then their respective 
complexity is associated with each functional requirement, it 
is based on subjective judgment of the organization. 
Formula for computing the Function Point = count total X 
[0.65 + 0.01 X ∑ (Fi)] Where, calculation total is sum of 
totallyaccessesgotten from the practicalnecessities, Fi (1 to 
14) are importancealteration factors. The constant standards 
in calculation and the premiumissues that are functional to 
evidenceareatotals are resolute empirically. 

II. SLOC 

Source Lines of Code (SLOC or LOC) is one of the most 
widely used sizing metrics in industry and literature. It is the 
key input for most of major cost estimation models such as 
COCOMO, SLIM, and SEER-SEM. Although the SEI and 
the IEEE have established SLOC definitions and guidelines 
to standardize counting practice, inconsistency in SLOC 
measurements still exists in industry and research. This 
problem causes the incomparability of SLOC metric among 
organizations and the inaccuracy of cost estimation 

The estimated SLOC in a proposed software system is used 
as input to many cost estimation models as described 
previously in this report. But how are the SLOC accurately 
estimated in the early stages of the software development 
lifecycle? A SLOC estimate of a software system can be 
obtained from experience, the size of previous systems, the 
size of a competitor’s system, and breaking down the system 
into smaller pieces and estimating the SLOC of each piece. 

Putnam suggests that for each piece, three distinct estimates 
should be made: 

 Smallest possible SLOC – a   
 Most likely SLOC – m   
 Largest possible SLOC – b 

Then the expected SLOC for piece Ei can be estimated by 
adding the smallest estimate, largest estimate, and four times 
the most likely estimate and dividing the sum by 6. This 
calculation is represented by the following formula: 

 

The expected SLOC for the entire software system E is 
simply the sum of the expected SLOC of each piece: 

 

Where n is the total number of pieces. 

Requirement of Software Effort Estimation in Project 

In software organization cost, time & accurate 
powercompulsory to progress a software etc. is a most 
challenging part of any organization. The 
determinationapproximation model can be on paper in the 
resultingoverall nonlinear form 

 Where  

PM = power or effort estimate in person months 

A = multiplicative constant 

Size = predictable size of the software or system, dignified 
in KSLOC. Aggregate size has limitedpreservativeproperties 
on the effort. Size is mentioned to as an additive factor. 

EM = effort multipliers. These aspects have universaleffects 
on the cost of the completeorganization. 

E = it is well-defined as a function of scale factors. 

Similar to the energy or effort multipliers, the scale factors 
have universalpropertiesthrough the scheme but their special 
effects are related with the size of developments. They have 
neweffect on the cost of larger-sized schemes than smaller-
sized schemes. The estimation process itself is not very well 
defined at many software industries. In any organization an 
accurate estimation is the first step to an effective estimate. 
If size of project increase, then necessary accuracy is a very 
essential that is difficult to estimate.Estimating the effort 
with a large value of consistency is a difficult which has not 
been resolved yet. 

 

Figure 2: Accuracy of Estimating 

III.  RELATED WORK 

James C. Benneyan [1] in this research author proposed the 
SPC (statistical process control)approaches have 
establishedthe very developingimportance in the healthcare 
unrestricted to help advance clinical and 
organizationalprocedures. 

Anton Ellis et al. [4]projected a technique forrepresenting 
object oriented source code metrics onto the sub-
characteristics of maintainability declared in ISO 9126.  



Aarti Hans et al, International Journal of Advanced Research in Computer Science, 7 (1), Jan-Feb 2016,69-71 

© 2015-19, IJARCS All Rights Reserved                    71 

Oman and Hagemeister [5] in this paper Maintainability 
Index (MI) proposed that work as an accuratelyconcludes 
the maintainability of software schemeconstructed upon the 
position of the source code.  

Welker and Oman [6], suggested measuring maintainability 
in terms of cyclomatic complexity, lines of code(LOC) and 
lines of comments. The intending to this object is to 
provethat how automatic software maintainability 
investigation can be used to lead a software-related 
assessmentmanufacture. Author has used metrics-based 
software maintainability simulations to 11 manufacturing 
software systems and used the outcomes for fact-finding and 
process-selection decisions. The outcomesspecify that 
automatic maintainability calculation can be used to 
maintenance buy-versus-build decisions, pre- and post-
reengineering study. 

Hayes et al. [7]projected a perfect approach that 
approximate Adaptive software maintenance effort in terms 
of difference lines of code (DLOC) i.e. number of added, 
deleted and updated lines.  

Polo et al. [8], has developed for the use of number for 
adaptationrequirements, mean effort per variationapplication 
and type of improvement to survey maintainability. 

In one more research Hayes and Zhao [9], projected a 
maintainability model that classifies software components as 
“easy to preserve‟ and „not easy to preserve‟. The model 
assistances the originators to classify the components those 
are not easy to keep up, earlierincorporating them. From the 
review of writings it has been perceived that 
numerousinvestigatorsplannedsome models for 
maintainability approximation, but in maximum of these 
revisions, maintainability approximationrest on on the 
proceduresoccupied after the coding phase. Because of this, 
maintainability forecasts are complete in the finalphases of 
SDLC, and it developed very hard to recover the 
maintainability at that phase. 

IV. CONCLUSION 

In this paper we surveyed on software estimation method, 
providing numerous accepted estimation models. The cost 
of software maintenance accounts for a large portion of the 
overall cost of a software system. Therefore, we need to 
effectively manage software maintenance activities. As in 
the conventional software systems, we can apply 
measurement based approach to estimating and predicting 
maintenance efforts.It was observed that little work has been 
done in maintainability of the web applications and open 
source software. The values of understandability, 
modifiability and maintainability are of immediate use in the 
software development process. 

V. FUTUREWORK 

In future work, we can implement a semi-formal description 
of a fixed of undeveloped metrics to size crosscutting in 
structures that use characteristics. Our metricsclassify 
features inside a crosscutting range that ranges from varied 
to similar according to the comparative number and types of 
crosscuts structuresappliance. 
These classification assistancesmeasuring the real use of 
aspects for feature application and delivers a 
measurableoutline to measure and analyze the effect of 
aspects for product line growth. We will put on our metrics 
to a nontrivial product line case study applied using Aspect 
oriented and communicate our results to the 
constantvaluation using MATLAB tool. 
 
 

VI. REFERENCES 

[1] James C. Benneyan, ―Design, use, and performance of 
statistical control charts for clinical process improvement‖, 
North-eastern University, Boston MA, September 16, 2001. 

[2] Patrick Naughton& Herbert Schildt “java: The complete 
reference”, McGraw-Hill Professional, UK, 2008. 

[3]Mike O‟Docherty, "Object -Oriented Analysis and Design 
Understanding System Development with UML 2.0", John 
Wiley & Sons Ltd, England, 2005. 

[4] P. Antonellis, D. Antoniou, Y. Kanellopoulos, C. Makris, E. 
Theodoridis, C. Tjortjis, and N. Tsirakis, “A Data Mining 
Methodology for Evaluating Maintainability According 
toISO/IEC-9126 Software Engineering Product 
Quality.Standard,” Proc. 11th IEEE Conference onSoftware 
Maintenance and Reengineering (CSMR2007), 21 – 23 
Mar.2007, Amsterdam, Netherlands, 2007. 

[5] P.W. Oman and J.R. Hagemeister, “Construction and Testing of 
Polynomials Predicting Software Maintainability,” Journal of 
Systems and Software, vol. 24, no. 3, pp. 251- 266, 2013. 

[6] K.D. Welker and P.W. Oman, “Software Maintainability 
Metrics Models in Practice,” Journal of Defense Software 
Engineering, vol. 8, no. 11, pp. 19 - 23, 1995. 

[7] J.H. Hayes, S.C. Patel, and L. Zhao, “A Metrics-Based 
Software Maintenance Effort Model,” Proc. 8th European 
Conference on Software Maintenanceand Reengineering 
(CSMR'04), 24 – 26 Mar. 2004, pp. 254 – 258,IEEE 
Computer Society, 2004. 

 [8] M. Polo, M. Piattini, and F. Ruiz, “Using Code Metrics to 
Predict Maintenance of Legacy Programs: a Case Study,” 
Proc. of InternationalConference on Software Maintenance, 
ICSM 2001, pp. 202-208, IEEE Computer Society, Florence 
Italy, 2001.  

[9] J.H. Hayes and L Zhao, “Maintainability Prediction: a 
Regression Analysis of Measures of Evolving Systems,” Proc. 
21st IEEE InternationalConference on Software Maintenance, 
26 - 29 Sept. 2005, pp. 601 -604, 2005. 

 


