
Volume 6, No. 7, September-October 2015

International Journal of Advanced Research in Computer Science

 REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 29

Analysis of Large Graph Partitioning and Frequent Subgraph Mining on Graph Data

Appala Srinuvasu Muttipati
Research Scholar: Computer Science and Engineering

GITAM University
Andhra Pradesh, India

Dr. Poosapati Padmaja
Associate Professor: Information Technology

GITAM University
Andhra Pradesh, India

Abstract: Graph mining has attracted much attention due to explosive growth in generating graph databases. The graph database is one type of
database that consists of either a single large graph or a number of relatively small graphs. Some applications that produce graph database are
biological networks, semantic web and behavioural modelling. Frequent subgraph mining is playing an essential role in data mining, with an
objective of extracting knowledge in the form of repeated structures. Many efficient subgraph mining algorithms have been discovered in the last
two decades, yet most do not scale to the type of data, the so-called “Large-Scale Graph Data”. Many problems are so large or complex that it is
impractical or impossible to solve them on a single computer, especially with given limited memory. Scalable parallel computing algorithms
holds the key role for solving the problem in this context. Various algorithms and parallel frameworks have been discussed for graph
partitioning, frequent subgraph mining based on apriori and pattern growth approaches, and large-scale graph processing techniques. The central
objective of this paper is to initiate research and development of identifying frequent subgraph mining and strategies for graph data centres in
such a way that brings it parallel frameworks for achieving memory scalability, partitioning, load balancing, granularity, and technical
enhancement for future generations.

Keywords: graph partitioning; frequent subgraph mining; apriori; pattern growth; parallel framework.

I. INTRODUCTION

Graph-based representation of real world problem has
been obliging large due to their improving simplicity and
professional use in finding solutions. A graph has a newest
domain in the field of Knowledge discovery and data mining
(i.e. graph mining). Graph mining [1] is one of the most
investigated and growing research topics in data mining
domain. The applications of data mining include
Bioinformatics pattern mining [2], Network link analysis
[3], Financial analysis data [4], Chemical data analysis [5,6],
Drug detection, Biological network [7], Protein structure
interaction [8,9] and Social networking [10]. Long-
established data mining techniques such as pattern
matching, classification, clustering and frequent subgraph
discovery has been extended to graph scenario.

Nowadays, large graphs have increased a lot, migrating
from Gigabytes to Terabytes and even up to Petabytes of
data are being generated every day which gets processed
online through social networking sites, biological networks.
This type of data can be represented as a modeled graph,
where the nodes represent user and edges represent the
relation between them. Likewise, search engines manage
huge amounts of data by capturing from the internet. Most
common example to represent modeled graph is by
considering websites as nodes and URLs as edges.

The main motive of this paper is to partition a large graph
and identify frequent subgraph by mining techniques. Many
efficient graph partitioning [11] and frequent subgraph
mining algorithms [12] are existed that find frequent
subgraph/ patterns from single graph data or multiple sets of
graph data. Some of today’s frequent subgraph mining
source data may not fit on a single machine’s hard drive.
The exponential nature of the solution space compounds this
problem. Scalable parallel algorithms hold a key role in
addressing frequent subgraph in the context of large-scale
graph data.

The rest of the paper is organized as follows. Section II
presented a review on various graph partitioning methods
and related software tools. Section III, describes various
existed frequent subgraph mining algorithms based on
apriori-based and patterns growth approach which assist to
find the frequent subgraph in single graph data or multiple
set of graph data. Section IV, deal with the graph processing
framework which helps to process large-scale graphs.
Section V, authors discuss the parallel frameworks for
finding the frequent subgraph from Large-scale graphs. After
discussing future research directions, we concluded in
section VI.

II. GRAPH PARTITIONING

A graph G is a pair (N, E). Let N be a non-empty set of
vertices and E be a nonempty set of edges E ⊆ N×N such
that every edge e ϵ E relates to the pair of vertices (N1, N2).
The graph partitioning (GP) problem is NP-complete [13].
GP can be referred to as min-cut problem; it is defined as
dividing a graph into a smaller blocks or pieces. It can be
done in two ways edge based partitioning and vertex based
partitioning, Figure 1 shows an example of graph partition.

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 30

Figure 1. a) graph partitioning with edge cut b) graph partitioning with
vertex cut

Consequently, in general, it is not sufficient to compute
optimal partitioning for graphs of interesting size in a
realistic amount of time. This statement combines the
significance of the problem, which lead to the development
of numerous heuristic approaches. The partitioning
heuristics are divided into global and local search methods.
Global methods are sometimes called as construction
heuristics for the reason that they take graph description as
input and generate a balanced partition. Local search
methods are called improvement heuristics. They take a
graph and balanced partition as input and try to improve the
partition. Each partitioning algorithm has to include a global
search method. The Optimal method produces the optimal
results, although have exponential run time behaviour. The
heuristic methods are Linear, Scattered and Random are
exclusively depending on the node position in the given
node list [14].

A. Static Graph Partitioning
Hendrickson and Leland enthused by the work of

Stephen and Horst [15]. A multilevel approach to computing
an eigenvector needed for a spectral partitioning algorithm.
This work analyzes numerical problems in transferring
eigenvectors between levels. The above problem is solved
by transferring partitions between levels using multilevel
graph partitioning algorithm by Hendrickson and Leland
[16]. The algorithm contains three divisions: First division, a
sequence of graphs is constructed by collapsing together
selected vertices of the input graph in order to form a related
coarser graph. This newly constructed graph then proceeds
as the input graph for another round of graph coarsening and
so on until an adequately small graph is obtained. Second
division; computation of the spectral method was performed
on the coarsest of these graphs are very fast. Third division,
to project the coarse partition back through the sequence of
graphs, periodically improving it with a local refinement
algorithm for this local improvement phase authors use a
variant of a popular algorithm originally derived by
Kernighan and Lin [17], additionally it was improved by
Fiduccia and Mattheyses [18], though other methods could
be used very well. Figure 4 gives a detail construction of
multilevel graph partitioning phase and Table I provides
different methods for contraction, initial partitioning, and
refinement.

Figure 2. Multilevel Graph Partitioning

The two essential parts of multilevel approach [19-21] are
coarsening strategy and local improvement method. In
maintaining coarsening approach, the following aspects are
required.

• The matching algorithm has to be very fast so that
it is more time efficient than standard partitioning
methods applied to the initial graph.

• Since edges of high weights are usually connecting
dense areas of graph, the algorithm is supposed to
calculate a matching with a high edge weight in
order to avoid them from appearing in the coarse
graph and being cut.

• To speed up the coarsening process and to coarsen
on the whole graph simultaneously, the matching’s
on each level should have a high cardinality. The
maximum reduction is achieved by splitting
number of vertices in halves on each level. This is
only possible when a complete matching can be
found.

Table I: different method for multilevel phases

coarsening partitioning Uncoarsening
Random Matching
(RM),
Heavy Edge
Matching (HEM),
Modified Heavy
Edge Matching
(MHEM)
Light Edge Matching
(LEM),
Heavy Clique
Matching (HCM).

Coordinate sorting,
Geometric
partitioning,
Spectral Bisection
(SB),
Recursive Bisection
(RB),
Coordinate Nested
Dissection (CND),
Graph Growing
Partition (GGP),
Greedy Graph
Growing Partitioning
(GGGP).

Greedy Refinement
(GR),
Kernighan Lin
Refinement (KLR),
Boundary Greedy
Refinement (BGR),
Boundary Kernighan
Lin Refinement
(BKLR),
Combination of BGR
and BKLR,
Hill Climbing,
Helpful-Set,
Simulated annealing,
Tabu search,
Reactive search
optimization.

B. Parallel Graph Partitioning
The graph partitioning is performed in parallel

implementation [22] is necessary for various reasons.
• The large graphs can’t be computed in serial

implementation because of memory, which is often
not enough to allow the partitioning that can be
now solved on massively parallel implementation
and workstation clusters.

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 31

• A parallel graph partitioning algorithms can take an
advantage of the extensively higher amount of
memory available in parallel implementation to
partition very large graphs.

Parallel graph partitioning [23] is crucial for achieving
potential results in such an environment, within the context
of adaptive graph partitioning, where graph is already
distributed among processors, and however it must be
repartitioned as a result of dynamic nature of underlying
computation. In such cases, getting the graph into a single
processor for repartitioning will produce a serious
bottleneck that would adversely impact the measurability of
the general application.

Further work on parallel graph partitioning was
concentrated on geometric, spectral by Stephen and Simon
[24], and multilevel partitioning schemes by Karypis and
Kumar [25, 26]. Geometric graph partitioning algorithms
[27, 28] tend to be slightly easy to parallelize whereas
spectral and multilevel partitioners are complex to
parallelize. The parallel asymptotic run times are equivalent
as that of performing a parallel matrix-vector multiplication
on a randomly partitioned matrix. Because of this reason the
input graph is not well-distributed across the processors. If
the graph is first partitioned and then distributed across the
processors consequently, the parallel asymptotic run times
of spectral and multilevel partitioners drop to that of
performing a parallel matrix-vector multiplication on a well-
partitioned matrix. Primarily, performing these partitioning
schemes professionally in parallel needs a good partitioning
of the input graph. The static graph partitioning cannot
provide a good quality of input graph whereas the adaptive
graph partitioning can provide a high quality of input graph
partitioning which includes a low edge cut. For this reason,
parallel adaptive graph partitioners [29, 30] attend to run
considerably faster than static partitioners.

Since the run time of most parallel geometric partitioning
schemes does not seem to affect the initial distribution of the
graph, they will primarily be accustomed to working out a
partitioning for the partitioning algorithm. That is a rough
partitioning of the input graph which is often computed by a
faster geometric approach. This partitioning can be used to
reallocate graph before performing parallel multilevel or
spectral partitioning. Use of this "boot-strapping" approach
will significantly increase the parallel efficiency of the
additional correct partitioning scheme by providing it with
data region [23].

C. Dynamic Graph Partitioning
Currently, huge research is carrying on dynamic graph

partitioning due to the real world applications and scalable
graphs. Dynamic graph partitioning cannot do in single
memory because it has the feature of dramatically increasing
of node/vertices in a graph (billion nodes). For that reason it
holds the concept of distributed memory system, helps to
place graphs in various machines and processing. For
partitioning a dynamic graph, it needs clustering, load
balancing and some local heuristic methods which obtain
good results. Few authors presented an articles are How to
Partition a Billion-node graph presented by [31]. Streaming
graph partitioning method was by [32], parallel graph
partitioning for complex Networks by [33]. Spinner
technique for Scalable graph partitioning for the cloud by

[34]. The Figure 3 describes distributed memory system and
label propagation.

• Distributed graphs A distributed memory system is
a right communication for online query processing
over a billion node graph. To organize a graph on a
distributed memory system, have to divide the
graph into multiple partitions and store each
partition in one machine (without any overlapping).
Network communication is necessary for accessing
non-local partitions of the graph. Hence, how the
graph is partitioned might cause the major impact
on load balancing and communication [31].

• Label Propagation (LP) A local inhabitant of LP as
follows. First assign a unique label id to each
vertex. Next, update the vertex label iteratively. At
every, iteration a vertex takes the label that is
ubiquitous in its neighborhood as its own label. The
process terminates when labels no longer change.
Vertices that have the identical label belong to the
identical partition.

There are two reasons to assume label propagation for
partitioning [31].

1) Label propagation mechanism is lightweight. It
does not cause intermediary results, and it does not
need sorting or indexing the data as in many
existing graph partitioning algorithms.

2) Label propagation is able to discover inherent
community structures in real networks: Given the
reality of local closely connected substructures, a
label tends to propagate within such structures.
Since most real-life networks exhibit clear
community structures, a partitioning algorithm
based on label propagation may divide the graph
into consequential partitions. Compared to
maximal match, LP is more semantic-aware and is
a better coarsening scheme.

Figure 3. (a) A graph with 3 machines {m1, m2, m3}, each machine carries 4
vertices and the partition graphs as {A, B, C, D}, {E, F, G, H}, {I, J, K, L}.
(b) Coarsened by maximal match. (c) Coarsened by LP

D. Classifiation of graph partitioning algorithms
The main challenges of partitioning a graph data are: (i)

quality graph partitioning (ii) multilevel paradigm (ii) load
balancing. Graph partitioning algorithms use different
approaches to eliminate these challenges. Figure 4 shows
different algorithms are classified based on the
implementation of graph partitioning approaches.

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 32

Figure 4. Classification of Graph Partitioning Methods

E. Software tools
Hendrickson and Leland [35] are the first to launch graph

partitioning tool Chaco and to implement the multilevel
graph partitioning. By adopting this multilevel Karypis and
Kumar [36-39] has proposed parallel multilevel k-way
partitioning scheme, fast and high quality multilevel
schemes, parallel algorithm for multilevel graph partitioning,
MeTiS, hMeTiS tool which offer good partitions. Karypis,
Schloegel and Kumar [40] were developed ParMeTiS tool
for parallel graph partitioning. Recently Sander and Schulz
[41] was developed KaHIP tool in which Karlsruhe Fast
Flow Partitioning (KaFFPa) is a multilevel graph partitioning
algorithm by Sander and Schulz [42] uses novel local
improvement algorithm based on max-flow and min-cut
computations and more localized FM searches and, on the
other hand, uses more sophisticated global search strategies
transferred from multi-grid linear solvers. KaFFPa
Evolutionary [43] is a distributed evolutionary algorithm to
solve the graph partitioning problem. Pellegrini developed
Scotch [44-46], uses recursive multilevel bisection and
incorporate sequential and parallel graph partitioning
methods. Chris Walshaw developed Jostle [47], a well-
known sequential and parallel graph partitioning techniques.
Party [48] developed by Robert, has implemented algorithms
are Bubble/Sharp-optimization and Helpful Sets.
Meyerhenke developed a software packages DibaP and
PDibaP [49]. The tools mainly focus on hypergraph
partitioning are Parkway [50] by Trifunovic, Zoltan [51] by
Devine et al., and Cataiyure et al., proposed PaToH [52]
produces high-quality partitioning.

III. FREQUENT SUBGRAPH MINING

The problem of frequent subgraph mining [53] is to find
frequent subgraphs over a collection of graphs. Frequent
subgraph mining delivers meaningfully structured
information such as hot web access patterns, common
protein structures, and Computational Molecular Biology
[54]. Frequent subgraph mining can also be used in fraud
detection to catch similar fraud translation patterns from
millions of electronic payments. Furthermore, a graph is a
general data structure which covers almost all previous well-

researched frequent patterns, thus, it can unify the mining
process into the same framework. Therefore, frequent
subgraph mining has raised great interests.

In fact, this issue is precisely described here. If D is the
entry dataset, the frequent subgraph mining intends to mine
graphs with more support value in association with
predetermined threshold. The graph support Gsup is denoted
by sup(Gsup) and is given as

 𝑆𝑆𝑆𝑆𝑆𝑆�𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 � =
∑ 𝐺𝐺𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛

Whereas n is the total number of graphs in the graph dataset
[55].

A. Apriori based approach
Apriori-based frequent substructure mining algorithms share
similar characteristics with Apriori based frequent item set
mining algorithms [56]. The search used for frequent graphs
starts with graphs of tiny “size” and proceeds in a bottom-up
approach. Iteration at every time increases the size by one
out of newly discovered frequent substructures. These latest
substructures are first generated by joining two similar but
slightly different frequent subgraphs that were discovered
already. The frequency of newly formed graphs is then
checked. The Apriori-based algorithms have considerable
overhead when two size-k frequent substructures are joined
to generate a size (k+1) graph candidates [57, 58].

The apriori based algorithms suffer two additional costs:
• Costly subgraph isomorphism test. Since subgraph

isomorphism is an NP-Complete problem, no
polynomial algorithm can solve. Thus, testing of
false candidates (false test or false search) degrades
the performance a lot.

• Costly candidate generation. The generation of
size(k+1) subgraph candidates from size k frequent
subgraphs are more complicated and costly than
that of item sets as observed by Kuramochi and
Karypis [59]

Apriori based algorithms include WARMER [60], AGM
[61], FSG [62], FARMER [63], FFSG [64], HSIGRAM
[65], GREW [66], SPIN [67], Dynamic GREW [68], ISG
[69], MUSE [70], Weighted MUSE [71], MUSE-P [72] and
UGRAP [73]. Few of the algorithms are discussed below
Table II gives the information about remaining apriori based
algorithms overview.

FFSM [64] is a novel subgraph mining algorithm by
Huang et al. FFSM is utilized a vertical search schema with
in an algebraic graph framework and utilizes a restricted join
operation to generate candidates and stores embeddings to
avoid explicit subgraph isomorphism testing. The
experimental results were done on synthetic and real
datasets exhibited that FFSM achieves a substantial
performance over the state-of-the art subgraph mining
algorithm approach.

HSIGRAM [65] uses adjacency matrix representation of
graph and use iterative merging for subgraph generation.
The aim of the HSIGRAM id to find the maximal
independent set of graph, which are constructed out of the
embeddings of a frequent subgraph so as to evaluate its
frequency.

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 33

Table II: Comparison of FSM based on Apriori approach

Algorithm Nature of the graph Search Strategy Isomorphic test Nature of output Reference

WARMR Static Breadth First Approximate Complete Dehaspe et al., (1999) [60]
AGM Static Breadth First exact complete Inokuchi et al., (2000) [61]

FSG Static Breadth First Exact incomplete Kuramochi and Karypis, (2001) [59]

FARMER Static Breadth First Approximate complete Nijssen and kok (2002) [62]

FFSG Static Depth First exact complete Huan et al., (2003) [63]

HSIGRAM Static Breadth First Adjustable complete Jiang et al., (2004) [64]

GREW Static Greedy Exact incomplete Kuramochi and Karypis, (2004) [65]

SPIN Static Depth First exact incomplete Huan et al., (2004) [66]

Dynamic GREW Dynamic graphs Depth First Exact incomplete Kuramochi et al., (2006) [67]

ISG Static Breadth First exact complete Thomas et al., (2009) [68]

MUSE Static Depth First exact complete Li et al., (2009) [69]

Weighted MUSE Static Depth First exact complete Jamil et al., (2011) [70]

MUSE-P Static Depth First exact complete Li et al., (2010) [71]

UGRAP Static Depth First exact complete Papapetrou et al., (2011) [72]

 Zou et al., (2010) proposed an algorithm for Mining
Frequent Subgraph Patterns from Uncertain Graph Data. In
many real applications, graph data is liable to uncertainties
because of incompleteness and imprecision of data. Mining
such uncertain graph data is semantically different from and
computationally more challenging than mining conventional
exact graph data. A novel model of uncertain graphs is
presented, and the frequent subgraph pattern mining
problem is formalized by introducing a new measure, called
expected support. An approximate mining algorithm called
Mining Uncertain Sub graph patterns (MUSE) [70], is
proposed to find a set of approximately frequent subgraph
patterns by allowing an error tolerance on expected supports
of discovered subgraph patterns. The algorithm uses
efficient methods to determine whether a subgraph pattern
can be output or not and new pruning method to reduce the
complexity of examining subgraph patterns. Analytical and
experimental results showed that the algorithm is very
efficient, accurate, and scalable for large uncertain graph
databases.
 Khan et al., (2011) proposed a Weighted MUSE [71] by
modifying the MUSE by assigning weights factor w (0, 1) to
the edges of embeddings includes in the identified frequent
subgraph pattern.

Another author investigated on frequent subgraph
mining on uncertain graphs under probabilistic semantics
[72]. Specifically, a measure called ϕ-frequent probability is
introduced to evaluate the degree of recurrence of
subgraphs. The goal is to find quickly all the subgraphs with
frequent probability. The extensive experiments on real
uncertain graph data verify that the algorithm is efficient and
that the mining results have very high quality.

Papapetrou et al., (2011) proposed a method that uses an
index of the uncertain graph database to reduce the number
of comparisons needed to find frequent subgraph patterns.
The algorithm depends on the apriori property for
enumerating candidate subgraph patterns efficiently. Then,
the index is used to reduce the number of comparisons
required for computing the expected support of each
candidate pattern. It also enables additional optimizations
with respect to scheduling and early termination, that further
increase the efficiency of the method. The evaluation of our

approach on three real-world datasets and on synthetic
uncertain graph databases exhibits the significant cost
savings with respect to the state-of-the-art approach [73].

B. Pattern growth approch
In order to avoid limitations of apriori algorithms, Pattern

growth algorithms have been developed, most of which
adopt the depth-first search strategy. The pattern growth
mining algorithm extends a frequent graph by adding a new
edge, in each and every possible position. A possible issue
with the edge extension is that the similar graph can be
exposed many times. The gSpan algorithm solves this
problem by introducing a rightmost extension technique,
where the only extensions take place on the right-most
paths. A rightmost path is the straight path from the straight
vertex V0 to the last vertex Vn, according to a depth-first
search on the graph.

Pattern growth based approaches based on multiple small
graphs included algorithms are Jianzhong, Yong and Hong
were proposed algorithms are RP-FP, RP-GD [88], Yong,
Jianzhong and Hong was proposed JPMiner [85], Yuhua et
al. were proposed MSPAN [82], HybridGMiner [79], PATH
[80], SEUS[81] Yiping, James, Jeffrey was proposed
algorithm FCPMiner [83], Shijie, Jiong, Shirong was
proposed by RING [84], Sayan, Ambuj was proposed
GraphSig [86], Hsun-Ping, Chengp-Te was proposed TSP
[87], , for more details [55]. Four well-known algorithms are
discussed below and Table III gives the information about
remaining pattern growth algorithms overview.

Holder et al., (1994) proposed a Substructure Discovery
in the SUBDUE system. The SUBDUE [74] system, which
uses the minimum description length principal to discover
substructures that compress the database and represent
structural concept in the data. By replacing previously
discovered substructures in the data, multiple passes of
SUBDUE produces a hierarchical description of the
structural regularities in the data. The optimal background
knowledge guides SUBDUE towards appropriate
substructures for a particular domain. The use of an inexact
graph matching allows a controlled amount of deviations in
the instance of a substructure concept. The large amount of
structural information that can be added to non-structural
data collection on physical phenomena provides a large

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 34

testbed for comparing an integrated discovery system based
on SUBDUE to other non-structural systems.

Borgelt and Berthold were proposed a MoFa algorithm
[75] which is referred as Molecular Fragment Miner. The
MoFa algorithm keeps all the embedding list of formerly
found subgraphs with an edge and the extension function is

restricted only to these embedding lists. Isomorphism tests
can be done inexpensively by testing whether an embedding
list can be polished in the similar way. The algorithm also
uses structural pruning and environment knowledge to
reduce support computation and to remove duplicates uses
benchmark isomorphism testing.

Table III: Comparison of FSM based on Pattern Growth approach

Algorithm Nature of graphs Search method Isomorphic test Nature of output Reference

GBI Static greedy exact complete Yoshida et al., (1994) [73]

SUBDUE Static greedy approximate complete Cook and Holder et al., (1994) [74]

MOFA Static Depth First exact complete Borgelt and Berthold (2002) [75]

gSpan Static Depth First exact complete Yan and Han (2002) [76]

ClosedGraph Static Depth First exact incomplete Yan and Han (2003) [77]

GASTON Static Depth First exact complete Nijssen and Kok (2004) [78]

HybridGMiner Static Depth First exact complete Meinl et al (2004) [79]

SEUS Static Depth First exact complete Gudes et al (2006) [80]

MSPAN Static Depth First exact complete Li et al., (2009) [81]

FCPMiner Static Depth First exact complete Ke et al (2009) [82]

RING Static Depth First exact complete Zhang et al., (2009) [83]

JPMiner Static Depth First exact incomplete Liu et al., (2009) [84]

GraphSig Static Depth First exact complete Ranu et al., (2009) [85]

TSP Dynamic Depth First exact incomplete Li and Hsieh (2010) [86]

RP-GD Static Depth First exact incomplete Li et al., (2011) [87]

RP-FP Static Depth First exact incomplete Li et al., (2011) [87]

Yan and Han were proposed CloseGraph [77] algorithm

refer as Mining Closed Frequent Graph Pattern. It is the
extension of the gSpan algorithm. A graph G is closed in a
database if there exists no proper subgraph of G that has the
same support as G. CloseGraph, is developed by discovering
several interesting looping methods. The performance study
shows that, CloseGraph not only dramatically reduces
unnecessary subgraphs to be generated, but also significantly
increases the efficiency of mining, particularly in the presence
of large graph patterns.

Nijssen and Kok were presented a GASTON [78] algorithm
which is referred as GrAph/Sequence/Tree extractiON.
GASTON algorithm puts together frequent path, sub-tree, and
subgraph, owing to the surveillance that most frequent
substructures in molecular datasets are open trees. The
algorithm suggests an explanation by divide the frequent
subgraph mining procedure into the path, then sub-tree, and at
last generate subgraph. As a result, the generated subgraphs
are invoked when needed. Hence, GASTON functions
optimally when graphs are generally trees or paths because the
most expensive subgraph isomorphism testing is finding out
subgraph mining phase. GASTON keeps all the embeddings in
order to generate only new subgraphs that actually appear;
thus saving on unnecessary isomorphism detection. GASTON
can compute the frequency of a subgraph either with
isomorphism tests or embedding lists

C. Classifiation of Frequent Subgraph Mining
Three main challenges of subgraph generation process are: (i)
isomorphic subgraphs, (ii) infrequent subgraphs and (iii) the
subgraphs that not exist in the graph database. Frequent
subgraph mining algorithms use different approaches to

remove or reduce these challenges. Figure 5 shows the frequent
subgraph mining algorithms have been classified based on
Apriori based and Pattern growth-based approaches. Grouping
the similar approaches based on their nature of the input graph
data.

Figure 5. Classification of Frequent Subgraph Mining Algorithm

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 35

IV. PARALLEL FRAMEWORKS FOR LARGE SCALE
GRAPHS

In this section describes an implementation for processing
and generating large graph data sets with parallel and
distributed algorithms on a cluster.

A. MapReduce
MapReduce [88] is a programming framework for

processing the massive amount of data in a distributed
approach. MapReduce provides users a simple interface for
programming distributed algorithm, and it handles all the
details of data distribution, replication, fault tolerance, and
load balancing. A typical MapReduce task consists of three
abstract functions: map, shuffle, reduce. At the “map”
function, the raw data is read and processed to output (key,
value) pairs. At the “shuffle” function, the out of the map
phase is sent to reducers passing through the network so that
the pair with the same key is grouped together. At the”
reduced” function, the (key, value) pairs with the same key are
processed to output another (key, value) pairs with the same
key are processed to output another (key, value) pair. An
iterative MapReduce program runs several MapReduce tasks,
by feeding the output of the current task as the input of the
next task.

B. Hadoop
Hadoop [89] is an open-source implementation of

MapReduce programming model written in Java language.
Hadoop uses the Hadoop Distributed File System (HDFS) [90]
for its file system. There are several packages that run on top
of Hadoop, including PIG [91], a high-level language for
Hadoop, and HBASE, column-oriented data storage on top of
Hadoop. Due to the simplicity, scalability and fault tolerance,
big graph mining using Hadoop attracted significant attentions
in the research community. The examples of these systems are
Pegasus [92]: A peta-scale graph mining system –
Implementation and observations was introduced by Kang et
al., in 2009, Mahout [93], HaLoop [94] was introduced by Bu
et al., in 2010, iMapReduce [95], Surfer [96] was introduced
by Chen et al., in 2010 and Twister [97] was introduced by
Ekanayake et al., in 2010.

C. Message Passing Interface
The Message Passing Interface (MPI) is a library particular

for message-passing. MPI [98] is a standard Application
Program Interface (API) that can be utilized to make
application. The objective of the MPI is to give a broadly used
standard for writing message-passing programs. The interface
endeavors to be: practical, portable, efficient, flexible. MPI was
designed for distributed memory architecture, which were
becoming increasingly popular at time 1980s -1990s. An
architecture trend changed, shared memory was combined over
networks creating hybrid distributed memory/shared memory
system. Today, MPI runs on virtually any hardware platform:
Distributed Memory, Shared Memory, and Hybrid. The
programmer is responsible for correctly identifying parallelism
and implementing parallel algorithms using MPI constructs.

There are several executions of MPI [99-101] which can be
used to actualize parallel message-passing graph algorithms in
various programming languages. MPI consists of very low-
level communication primitives that do not provide any
consistency or fault-tolerance. Programmers must build another
level of deliberation all alone, which makes programming
harder than bulk synchronous message-passing systems.

D. Bulk-Synchronize Parallel
Leslie Valiant (1990) developed a Bulk-Synchronize

Parallel in Harvard University. In the middle of 1990 -1992,
valiant and McColl dealt with thoughts for a distributed
memory BSP programming model. Somewhere around 1992
and 1997, McColl leads a large research team at Oxford and
developed different BSP programming libraries, languages,
tools and also various massively parallel BSP algorithms. BSP
Model for massage passing and collective communications. A
BSP program consists of a sequence of supersteps. Each
superstep comprises of three phases: Local computation,
Process communication, Barrier synchronization. BSP
programming enables you to write high-performance parallel
computing algorithms for a wide range of scientific problems.

Pregel [102] presented the first bulk synchronous
distributed message-passing framework, from which graph
processing system has drawn. A few different frameworks are
based on Pregel, including Giraph [103], GoldenOrb [104],
Phoebus [105], Hama [106], JPregel [107], Bagel [108].
Giraph is the most well known and advanced of these systems.
Giraph adds several features beyond the basic Pregel model,
including master computation, shared aggregators, edge-
oriented input, out-of-core computation and more. In 2012,
apache Giraph is dispatched as an open partner to Pregel and an
iterative graph processing system constructed for high
scalability. Giraph can run as a typical Hadoop job that uses the
Hadoop clustering infrastructure. Giraph model is appropriate
for distributed implementation because it doesn’t demonstrate
any mechanism for detecting the order of execution within a
superset, and all communication ids from superstep S to
superstep S+1. During program execution, graph vertices are
partitioned and assigned to workers. The default partition
mechanism is hash-partitioning, but the custom partition also
supports.

E. Other systems
Krepska et al., (2010) proposed a HipG [109] is a framework

in which each vertex is a java object and the computation is
done sequentially starting from a particular vertex. The code is
expressed as if the graph is in a single machine, and the reads
and writes to vertices residing in other machines are translated
as RPC calls. HipG incurs significant overhead from RPC calls
when executing algorithms, such as PageRank, that compute a
value for each vertex in the graph. Zaharia et al., (2010)
developed Spark [110] framework is a general clustering
system, whose API is designed to express generic iterative
components. As a result, programming graph algorithms on
Spark required signification more coding effort than on graph
processing system. GraphX [111] is apache Spark’s API for
graphs and graph-parallel computation. The requirement for
instinctive, scalable tools for graph computation has lead to the
advancement of new graph parallel system like Pregel and
GraphLab[112] which are intended to proficiently execute
graph algorithms. Unfortunately, these systems do not address
the challenges of graph construction and transformation and
offer restricted fault tolerance and support for interactive
analysis.

V. PARALLEL FRAMEWORKS ON FSM

Bhuiyan et al., (2013) presented a novel iterative
MapReduce framework based on Frequent subgraph mining
algorithm called MIRAGE[113]. MIRAGE is complete as it
returns all the frequent subgraphs for a given user-defined
support, and it is efficient as it applies all the optimizations
that the latest FSM algorithms adopt. The experiments with

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 36

real life and large synthetic datasets validate the effectiveness
of MIRAGE for mining frequent subgraphs from large graph
datasets.

Bhuiyan et al., (2014) proposed a frequent subgraph mining
algorithm called FSM-H [114] which handles real world graph
data grows both in size and quantity. FSM-H is a
distributed frequent subgraph mining method over a
MapReduce-based framework. The framework consists of
three phases: data partition, a preparation phase, and mining
phase. In data partition phase, FSM-H creates the partitions of
input data along with the omission of infrequent edges from
the input graph. Preparation and mining phase performs the
actual mining task. FSM-H generates a complete set of
frequent subgraphs for a given minimum threshold support,
and it is efficient as it applies all the optimizations that the
latest FSM algorithm adopt. The experiments with real life and
large synthetic datasets validate the effectiveness of FSM-H
for mining frequent subgraphs from large graph datasets.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have described various discoveries of
graph partitioning and frequent subgraph mining algorithms.
Based on the different graph partitioning algorithms, we have
classified graph partitioning approaches into static, dynamic
and parallel implementations. In case of frequent subgraph
mining for the large graph, a multiple sets of small graph data,
dynamic graph data and uncertain graph data. The algorithms
have been classified based on the apriori and pattern growth
approaches. To handle a large scale graphs we presented
various graph processing techniques and parallel frameworks
for frequent subgraph mining are discussed in detail.

The future directions for identifying frequent subgraphs are:
1) For handling large graph data, very few methodologies

are there for FSM. So, by adopting graph partitioning
algorithms a large graph can be decomposed into a subset of
graphs and then to the smaller graphs either apriori-based or
pattern growth approach algorithms can be implemented to
identify frequent subgraph mining.

2) GraphLab, Giraph and GraphX parallel frameworks
provide good results while comparing with other different
frameworks, thus one of the above-mentioned frameworks can
be adopted for identifying frequent subgraphs in a large graph
data.

VII. REFERENCES

[1] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws,
generators, and algorithms,” ACM comput. Surv. 38, 1,
Article 2, jun. 2006, doi:10.1145/1132952.1132954.

[2] C. Wang and S. Parthasarathy, “Parallel Algorithms for
Mining Frequent Structural Motifs in Scientific Data,”
Proc. ACM International Conference on Supercomputing
(ICS 04). Jun. 2004, pp. 31-40,
doi:10.1145/1006209.1006215.

[3] J. R. Punin, M. Krishnamoorthy, and M. J. Zaki,
“LOGML-Log Markup Language for Web Usage
Mining,” WEBKDD Workshop: Mining Log Data across
All Customers Touch Points, 2001, pp. 88-112.

[4] H. Mannilla, H. Toivonen and I. Verkamo, “Discovering
Frequent Episodes in Sequences.” Proc. IEEE

International Conference on Knowledge Discovery and
Data Mining (ICKDD 95), 1995, pp. 210-215.

[5] M. Deshpande, M. Kuramochi and G. Karypis, “Frequent
sub-structure based approaches for classifying chemical
compounds,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 8, 2005, pp. 1036-1050.

[6] M. A. Srinuvasu, P. Padmaja and Y. Dharmateja,
“Subgraph relative frequency approach for extracting
interesting substructures from molecular data,”
International Journal of Computer Engineering &
Technology, 2013, vol.4 no. 4, pp. 400-411.

[7] H. Haiyan Hu, Xifeng Yan, Yu Huang1, Jiawei Han,
Xianghong Jasmine Zhou. Mining coherent dense
subgraphs across massive biological networks for
functional discovery. Bioinformatics, vol. 21, no. 1, 2005,
pp. 213-221.

[8] G. Ciriello and C. Guerra, “A review on models and
algorithms for motif discovery in protein-protein
interaction networks,” Briefings Functional Genomics &
Proteomic, vol. 7, no. 2, 2008, pp. 147–156.

[9] J. Huan, W. Wang, J. Prins, and J. Yang, “Spin: Mining
maximal frequent subgraphs from graph databases,” UNC
Technical Report TR04-018, 2004.

[10] P. Raghavan, “Social Networks on the Web and in the
Enterprise,” Proce. First Asia-Pacific Conference on Web
Intelligence, 2001, pp. 58-60.

[11] C. Bichot and P. Siarry, “Graph Partitioning,” Wiley, New
York, 2011.

[12] D. J. Cook and L. B. Holder, “Mining Graph Data,”
Wiley, New Jersey, 2007.

[13] M. R. Garey and D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of Np-
Completeness,” W. H. Freeman & Co., New York, NY,
USA. 1990.

[14] R. Preis and R. Diekmann, “PARTY- a software library
for graph partitioning,” Advances in Computational
Mechanics with Parallel and Distributed Processing,
CIVIL COMP PRESS, 1997, pp. 63-71.

[15] S. T. Barnard and H. D. Simon, “A fast multilevel
implementation of recursive spectral bisection for
partitioning unstructured problems,” Concurrency:
Practice and Experience, 1994, vol.6, pp. 101-117.

[16] B. Hendrickson and R. Leland, “A multilevel algorithm
for partitioning graphs,” Proce. ACM/IEEE Conference
on Supercomputing. 1995, pp. 28-28.

[17] B. W. Kernighan and S. Lin “An efficient heuristic
procedure for partitioning graphs,” The Bell System
Technical Journal, 1970, vol. 49, no. 0, pp. 291–307.

[18] C. M. Fiduccia and R. M. Mattheyses, “A linear time
heuristic for improving network partitions,” Proce. IEEE
Design Automation Conference, 1982, pp.175–181.

[19] B. Monien, R. Preis and R. Diekmann, “Quality matching
and local improvement for multilevel graph-partitioning,”
Parallel Computing, vol. 26, no. 12, 2000, pp. 1609-1634.

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 37

[20] C. Chevalier and I. Safro, “Comparison of Coarsening
Schemes for Multilevel Graph Partitioning,” Proce.
International Conference on Learning and Intelligent
Optimization. 2009, pp. 191–205.

[21] I. Safro, P. Sanders and C. Schulz, “Advanced coarsening
schemes for graph partitioning,” Proce. International
Symposium on Experimental Algorithms (SEA’12). 2012,
pp. 369–380.

[22] A. Grama, G. Karypis and V. Kumar, “Introduction to
Parallel Computing,” Addison-Wesley, 2nd edition, 2003.

[23] K. Schloegel, G. Karypis and V. Kumar, “Graph
partitioning for high-performance scientific simulations,”
In: Sourcebook of parallel computing, Jack Dongarra, Ian
Foster, Geoffrey Fox, William Gropp, Ken Kennedy,
Linda Torczon, and Andy White (Eds.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2003, pp. 491-541.

[24] S.T Barnard and H. Simon. “A parallel implementation of
multilevel recursive spectral bisection for application to
adaptive unstructured meshes,” Proce. SIAM conference
on Parallel Processing for Scientific Computing.1995, pp.
627–632.

[25] G. Karypis and V. Kumar, “A parallel algorithm for
multilevel graph partitioning and sparse matrix ordering,”
Journal of Parallel and Distributed Computing, vol. 48,
no. 1, 1998, pp. 71-95.

[26] G. Karypis and Kumar, “Parallel multilevel k-way
partitioning scheme for irregular graphs,” SIAM Review,
vol. 41, no. 2, 1999, pp. 278-300.

[27] G. L. Miller, S. H. Teng and S. A. Vavasis, “A unified
geometric approach to graph separators,” Proce. Annual
Symposium on Foundations of Computer Science, 1991,
pp. 538–547.

[28] H. Heath and P. Raghavan, “A Cartesian parallel nested
dissection algorithm,” SIAM Journal of Matrix Analysis
and Applications, vol. 16, no. 1, 1995, pp. 235-253.

[29] K. Schloegel, G. Karypis and V. Kumar, “Wavefront
division and LMSR: algorithms for dynamic
repartitioning of adaptive meshes,” Technical Report TR
98-034, Dept. of Computer Science and Engineering,
Univ. of Minnesota. 1998.

[30] C. Walshaw, M. Cross and M. Everett, “Parallel dynamic
graph partitioning for adaptive unstructured meshes,”
Journal of Parallel and Distributed Computing, vol. 47,
no. 2, 1997, pp. 102-108.

[31] Lu Wang, Yanghua Xiao, Bin Shao, Haixun Wang. “How
to partition a billion-node graph,” Proce. IEEE 30th
International Confernce on Data Engineering (ICDE).
2014, pp. 568-579.

[32] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic and M.
Vojnovic, “FENNEL: Streaming Graph Partitioning for
Massive Scale Graphs,” Technical Report MSR-TR-2012-
113, 2012.

[33] H. Meyerhenke, P. Sanders and C. Schulz, “Parallel
Graph Partitioning for Complex Networks,” CoRR, 2014,
abs/1404.4797.

[34] C. Martella, D. Logotheti and G. Siganos, “Spinner:
Scalable Graph Partitioning for the Cloud,” arXiv:
1404.3861v1, 2014.

[35] B. Hendrickson and R. Leland, “A multilevel algorithm
for partitioning graphs,” Technical Report SAND93-1301,
Sandia National Laboratories, 1993.

[36] G. Karypis and V. Kumar, “A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs,”
SIAM J on Scientific Computing, vol. 20, no. 1, 1998, pp.
359-392.

[37] G. Karypis and V. Kumar, “hMeTiS 1.5: A hypergraph
partitioning package,” Technical report, Dept. of
Computer Science and Engineering, Univ. of Minnesota,
1998.

[38] G. Karypis and V. Kumar, “MeTiS 4.0: Unstructured
graph partitioning and sparse matrix ordering system,”
Technical report, Dept. of Computer Science and
Engineering, Univ. of Minnesota, 1998.

[39] G. Karypis and V. Kumar, “Parallel Multilevel k-way
Partitioning Scheme for Irregular Graphs,” Proce.
ACM/IEEE Supercomputing’96 conference. 1996.

[40] G. Karypis, K. Schloegel and V. Kumar, “ParMeTiS:
Parallel graph partitioning and sparse matrix ordering
library,” Technical report, Dept. of Computer Science and
Engineering, University of Minnesota, 1997.

[41] P. Sanders and C. Schulz, “Engineering Multilevel Graph
Partitioning Algorithms,” Proce. European Symposium on
Algorithms, 2011, pp. 469–480

[42] P. Sanders and C. Schulz, “Think Locally, Act Globally:
Highly Balanced Graph Partitioning,” Experimental
Algorithms Lecture Notes in Computer Science, vol.
7933, 2013, pp. 164-175.

[43] M. Holtgrewe, P. Sanders and C. Schulz, “Engineering a
Scalable High Quality Graph Partitioner,” Proce. IEEE
International Symposium on Parallel & Distributed
Processing (IPDPS). 2010, pp.1–12.

[44] C. Chevalier and F. Pellegrini, “Improvement of the
Efficiency of Genetic Algorithms for Scalable Parallel
Graph Partitioning in a Multi-level Framework,” Euro-Par
2006 Parallel Processing Lecture Notes in Computer
Science, 2006, vol. 4128, pp. 243-252.

[45] C. Chevalier and F. Pellegrini, “PT-Scotch: A tool for
efficient parallel graph ordering,” Parallel Computing,
2008, vol. 34, no. 6, pp. 318-331.

[46] F. Pellegrini and J. Roman, “SCOTCH: A software
package for static mapping by dual recursive
bipartitioning of process and architecture graphs,” HPCN-
Europe, Springer LNCS 1067, 1996, pp. 493-498.

[47] C. Walshaw and M. Cross, “JOSTLE: Parallel Multilevel
Graph-Partitioning Software - An Overview,” In Mesh
Partitioning Techniques and Domain Decomposition
Techniques, Civil-Comp Ltd., 2007, pp. 27-58 .

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 38

[48] R. Preis and R. Diekmann, “PARTY- a software library
for graph partitioning,” Advances in Computational
Mechanics with Parallel and Distributed Processing,
CIVIL COMP PRESS, 1997,pp. 63-71.

[49] H. Meyerhenke, B. Monien and T. Sauerwald ,“A new
diffusion-based multilevel algorithm for computing graph
partitions,” Journal of Parallel and Distributed
Computing, 2009, vol. 69, no. 9, pp. 750-761.

[50] Trifunovic and W. J. Knottenbelt, “Parallel Multilevel
Algorithms for Hypergraph Partitioning,” Journal of
Parallel and Distributed Computing, 2008, vol. 68, no. 5,
pp. 563-581.

[51] Umit V Catalyurek, Erik G Boman, Karen D Devine,
Doruk Bozdag, Robert T. Heaphy, Lee Ann Riesen. “A
repartitioning Hypergraph model for dynamic load
balancing,” Journal of Parallel Distribution and
Computing , 2009, vol. 69, no. 8, pp. 711-724.

[52] U. V. Catalyure and C. Aykanat, “PaToH: Partitioning
Tool for Hypergraphs,” 2011.

[53] C. C. Aggarwal and H. Wang, editors. Managing and
Mining Graph Data, volume 40 of Advances in Database
Systems. Springer, 2010.

[54] S. Aluru, “Handbook of Computational Molecular
Biology,” Chapman and Hall/CRC. 2006.

[55] S. U. Rehman, S. Asghar, Y. Zhuang, and S. Fong.
“Performance evaluation of frequent subgraph discovery
techniques,” Mathematical Problems in Engineering,
2014, pp. 1-5.

[56] A.Inokuchi, T. Washio and H. Motoda, “An apriori-based
algorithm for mining frequent substructures from graph
data,” Proce. European Conference on Principles of Data
Mining and Knowledge Discovery (PKDD 00), 2000, pp.
13-23.

[57] K. Lakshmi and T. Meyyappan , “A comparative study of
frequent subgraph mining algorithms,” International
Journal of Information Technology Convergence and
Services (IJITCS), 2012, vol. 2, no. 2, pp. 23-39.

[58] K. Lakshmi and T. Meyyappan, “Frequent subgraph
mining algorithms - a survey and framework for
classification,” Proce. Conference on Innovations in
Theoretical Computer Science (ITCS 12), 2012, pp. 189–
202,.

[59] M. Kuramochi and G. Karypis, “Frequent Subgraph
Discovery,” Proce. IEEE International Conference on
Data Mining (ICDM 01). 2001, pp. 313-320.

[60] L. Dehaspe and H. Toivonen, “Discovery of
FrequentDatalog Patterns”, Data Mining and Knowledge
Discovery, 1999, pp.7-36.

[61] A. Inokuchi, T. Washio, and H. Motoda, "An apriori-
based algorithm for mining frequent substructures from
graph data," Proce. European Conference on Principles of
Data Mining and Kn owledge Discovery (PKDD 00),
2000, pp. 13-23.

[62] S. Nijssen and J. Kok, “Faster association rules for
multiple relations,” Proce. International Joint Conference
on Artificial Intelligence (IJCAI’01), 2001, pp. 891–896.

[63] J. Huan, W. Wang and J. Prins, “Efficient mining of
frequent subgraph in the presence of isomorphism,” UNC
computer science techonology report TR03-021, 2003

[64] M. Kuramochi.M and G. Karypis, “Finding Frequent
Patterns In a Large Sparse Graph”, in Proceedings of
the4th SIAM International Conference on Data Mining
(SDM 2004), USA, 2004.

[65] M. Kuramochi and G. Karypis, “GREW: A Scalable
Frequent Subgraph Discovery Algorithm”, Proce.
International Conference on Data Mining (ICDM’04),
Brighton, pp.439–442, 2004.

[66] J. Huan, W. Wang, J. Prins and J. Yang, “Spin: Mining
maximal frequent subgraphs from graph databases,” UNC
Technical Report TR04-018, 2004.

[67] B. Wackersreuther, P. Wackersreuther, A. Oswald, C.
Bohm and K. M. Borgwardt, “Frequent subgraph
discovery in dynamic networks,” Proce. Eighth Workshop
on mining and Learning with Graphs (MLG 10), 2010, pp.
155-162, doi:10.1145/1830252.1830272.

[68] Thomas L, Valluri S, Karlapalem K. “Isg: Itemset based
subgraph mining,” Technical Report, Center for Data
Engineering, IIIT, Hyderabad, 2009.

[69] Z. Zou and J. Li, “Mining Frequent Subgrph Patterns from
Uncertain Graph Data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 22, no. 9, 20 may. 2010, pp.
1203-1218, doi:10.1109/TKDE.2010.80

[70] S. Jamil, A. Khan, Z Halim, A. R. Baig, “Weighted
MUSE for Frequent Subgraph Pattern Finding in
Uncertain DBPL Data,” Proce. International Conference
on Internet Technology and applications (iTAP), 16-18
Aug. 2011, pp. 1-6.

[71] Z. Zou, H. Gao and J. Li "Discovering frequent subgraphs
over uncertain graph databases under probabilistic
semantics," Proce. ACM SIGKDD international
conference on Knowledge discovery and data mining
(KDD 10), 2010, pp. 633–642,
doi:10.1145/1835804.1835885.

[72] O. Papapetrou, E. Loannou, D. Skoutas, ”Efficient
Discovery of Frequent Subgraph Patterns in Uncertain
Graph Database,” Proce. International Conference on
Extending Database Technology (EDBT/ICDT '11),
Anastasia Ailamaki, Sihem Amer-Yahia, Jignesh Pate,
Tore Risch, Pierre Senellart, and Julia Stoyanovich (Eds.).
ACM, New York, NY, USA, pp. 355-366,
doi:10.1145/1951365.1951408.

[73] K. Yoshida, H. Motoda and N. Indurkhya, “Graph-based
Induction as a Unified Learning Framework”, Journal of
Applied Intelligence, pp.297–328.

[74] L. B. Holder, D. J. Cook and S. Djoko, “Substructure
Discovery in the Subdue System”, Proce. AAAI’94
workshop knowledge discovery in databases (KDD’94),
WA, 1994, pp 169–180.

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 39

[75] C. Borgelt and M. R. Berhold, “Mining molecular
fragments: Finding relevant substructures of molecules,”
Proce. IEEE International Conference on Data Mining
(ICDM 02), IEEE Press, 2002, pp. 51-58,
doi:10.1109/ICDM.2002.1183885.

[76] X. Yan and J. Han, “gSpan: Graph-based substructure
pattern mining,” Proce. IEEE International Conference on
Data Mining (ICDM 02), IEEE press, 2002, pp. 721-724,
doi:10.1109/ICDM.2002.1184038.

[77] X. Yan and J. Han, “CloseGraph: Mining closed frequent
graph patterns,” Proce. ACM SIGKDD International
Conference Knowledge Discovery and Data Mining
(KDD 03). Aug. 2003, pp. 286-295,
doi:10.1145/956750.956784.

[78] S. Nijssen and J. Kok, “A quickstart in frequent structure
mining can make a difference,” Proce. ACM International
Conference on Knowledge Discovery and Data Mining
(SIGKDD 04), Aug. 2004, pp. 647–652,
doi:10.1145/1014052.1014134.

[79] T. Meinl, and M. R. Berthold, “Hybrid fragment mining
with MoFa and FSG,” Proce. IEEE International
Conference on Systems, Man and Cybernetics. 2004, pp.
4559-4564, doi: 10.1109/ICSMC.2004.1401250.

[80] E. Gudes, E. Shimony and N. Vanetik, “Discovering
Frequent Graph Patterns Using Disjoint Paths”, IEEE
Transactions on Knowledge and Data Engineering, Los
Angeles, 2006, pp.1441–1456,
doi:10.1109/TKDE.2006.173.

[81] Y. Li, Q. Lin, G. Zhong, D. Duan, Y. Jin and W. Bi. “A
directed labeled graph frequent pattern mining algorithm
based on minimum code,” Proce. International
Conference on Multimedia and Ubiquitous Engineering
(ICMUE ’09), 2009, pp. 353-359,
doi:10.1109/MUE.2009.67.

[82] Y. Ke, J. Cheng and J. X. Yu. “Efficient Discovery of
Frequent Correlated Subgraph Pairs,” Proce. IEEE
International Conference on Data Mining (ICDM ’09),
IEEE press, 2009, pp. 239-248.

[83] S. Zhang, J. Yang and S. Li. “RING: An Integrated
Method for Frequent Representative Subgraph Mining,
Proce. International Conference on Data Mining (ICDM
’09), 2009, pp. 1082-1087, doi:10.1109/ICDM.2009.96.

[84] Y. Liu, J. Li and H. Gao. “JPMiner: Mining Frequent
Jump Patterns from Graph Databases,” Proce.
International Conference on Fuzzy Systems and
Knowledge Discovery (ICFSKD ’09), 2009, pp. 114-118.

[85] S. Ranu, K. Ambuj K, Singh. “GraphSig: A Scalable
Approach to Mining Significant Subgraphs in Large
Graph Databases,” Proce. IEEE International Conference
on Data Engineering (ICDE ’09), IEEE press, 2009, pp.
844-855, doi:10.1109/ICDE.2009.133.

[86] H. P. Hsieh and C. T. Li. “Mining Temporal Subgraph
Patterns in Heterogeneous Information Networks,” Proce.
IEEE International Conference on Social Computing /
International Conference on Privacy, Security, Risk and

Trust, 2010, pp. 282-287,
doi:10.1109/SocialCom.2010.47.

[87] J. Li, Y. Liu and H. Gao. “Efficient algorithms for
summarizing graph patterns,” IEEE Transactions on
Knowledge and Data Engineering, 2011, vol. 23, no.9, pp.
1388-1405, doi:10.1109/TKDE.2010.48.

[88] J. Dean and S. Ghemawat, "MapReduce: Simplified data
processing on large clusters," Proce. Symposium on
Operating System Design and Implementation, pp. 137–
150, 2004.

[89] Apache Hadoop. http://hadoop.apache.org/.
[90] Hadoop Distributed File System.

http://hadoop.apache.org/hdfs/.
[91] C. Olston, B. Reed, U.Srivastava, R. Kumar, and A.

Tomkins, "Pig Latin: a Not-So-Foreign Language for Data
Processing," Proce. ACM/SIGMOD International
Conference on Management of Data (SIGMOD), 2008,
pp. 1099-1110, doi:10.1145/1376616.1376726.

[92] U. Kang, C. E. Tsourakakis, and C. Faloutsos,
"PEGASUS: A peta-scale graph mining system –
Implementation and observations," Proce. IEEE
International Conference on Data Mining, 2009, pp. 229–
238, doi:10.1109/ICDM.2009.14.

[93] Apache Mahout. http://mahout.apache.org/.
[94] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst,

"HaLoop: Efficient iterative data processing on large
clusters," Proce. International Conference on Very Large
Databases, pp. 285–296, 2010.

[95] Y. Zhang, Q. Gao, L. Gao, and C. Wang, "iMapreduce: A
distributed computing framework for iterative
computation," DataCloud, 2011.

[96] R. Chen, X. Weng, B. He, and M. Yang, "Large graph
processing in the cloud," Proce. International Conference
on Management of Data, pp. 1123–1126, 2010.

[97] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. H. Bae,
J. Qiu, and G. Fox, "Twister: a runtime for iterative
mapreduce," Proce. ACM International Symposium on
High Performance Distributed Computing, HPDC ’10, pp.
810–818, New York, NY, USA, 2010. ACM.

[98] Open MPI. http://www.open-mpi.org/.
[99] MPICH2.

http://www.mcs.anl.gov/research/projects/mpich2/.
[100] pyMPI. http://pympi.sourceforge.net/.
[101] OCaml MPI.

http://forge.ocamlcore.org/projects/ocamlmpi/.
[102] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,

I. Horn, N. Leiser, and G. Czajkowski, "Pregel: A System
for LargeScale Graph Processing," Proce. ACM SIGMOD
International Conference on Management of Data, pp.
155–166, 2011.

[103] Apache Incubator Giraph.
http://incubator.apache.org/giraph//.

[104] GoldenOrb. http://www.raveldata.com/goldenorb/.
[105] Phoebus. https://github.com/xslogic/phoebus.
[106] Apache Hama. http://incubator.apache.org/hama/

http://hadoop.apache.org/�
http://hadoop.apache.org/hdfs/�
http://mahout.apache.org/�
http://www.open-mpi.org/�
http://www.mcs.anl.gov/research/projects/mpich2/�
http://pympi.sourceforge.net/�
http://forge.ocamlcore.org/projects/ocamlmpi/�
http://incubator.apache.org/giraph/�
http://www.raveldata.com/goldenorb/�
https://github.com/xslogic/phoebus�
http://incubator.apache.org/hama/�

Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40

© 2015-19, IJARCS All Rights Reserved 40

[107] JPregel. http://kowshik.github.com/JPregel/.
[108] Bagel Programming Guide.

https://github.com/mesos/spark/wiki/BagelProgramming-
Guide/.

[109] E. Krepska, T. Kielmann, W. Fokkink, and H. Bal, "A
high-level framework for distributed processing of large-
scale graphs," Proce. International Conference on
Distributed Computing and Networking, pp. 1123–1126,
2010.

[110] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I.Stoica, "Spark: cluster computing with working
sets," Proce. USENIX conference on Hot topics in cloud
computing, HotCloud’10, pp. 10–10, Berkeley, CA, USA,
2010. USENIX Association.

[111] Graphx. http://spark.apache.org/graphx/
[112] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C.

Guestrin, and J. M. Hellerstein, "GraphLab: A New
Framework for Parallel Machine Learning," CoRR,
abs/1006.4990, 2010.

[113] M. A. Bhuiyan and M. A. Hasan, “MIRAGE: An
iterative MapReduce based frequent subgraph mining
algorithm,” arXiv:1307.5894v1 [cs.DB] 22 Jul 2013.

[114] M. A. Bhuiyan and M. A. Hasan, “FSM-H: Frequent
subgraph mining algorithm in Hadoop,” Proce. IEEE
International Conference on Big Data (ICBD 14), pp. 9-
16, doi:10.1109/BigData.Congress.2014.12

Short Bio data for the Authors

Appala Srinuvasu Muttipati is a Research Scholar in
Computer Science and Engineering from GITAM University,
Visakhapatnam, Andhra Pradesh, India. He received his
M.Tech Degree in Computer Science and Technology from
GITAM University in 2011. MCA Degree from Andhra
University in 2008. His Current research areas include Data
mining and Graph mining.

Padmaja Poosapati is a Associate Professor in Department of
Information Technology at GITAM University,
Visakhapatnam, Andhra Pradesh, India. She received her
Master degree in Computer Science and Engineering from
Andhra University in 1999 and PhD degree in Computer
Science and Engineering from Andhra University 2010. Her
current research interests include Clustering and Classification
in Data mining and Graph mining.

http://kowshik.github.com/JPregel/�
https://github.com/mesos/spark/wiki/BagelProgramming-%20Guide/�
https://github.com/mesos/spark/wiki/BagelProgramming-%20Guide/�
http://spark.apache.org/graphx/�

	Introduction
	Graph Partitioning
	Static Graph Partitioning
	Parallel Graph Partitioning
	Dynamic Graph Partitioning
	Classifiation of graph partitioning algorithms
	Software tools

	Frequent Subgraph Mining
	Apriori based approach
	Pattern growth approch
	Classifiation of Frequent Subgraph Mining

	Parallel frameworks for Large Scale Graphs
	MapReduce
	Hadoop
	Message Passing Interface
	Bulk-Synchronize Parallel
	Other systems

	Parallel Frameworks on FSM
	Bhuiyan et al., (2014) proposed a frequent subgraph mining algorithm called FSM-H [114] which handles real world graph data grows both in size and quantity. FSM-H is a distributed frequent subgraph mining method over a MapReduce-based frame...

	Conclusion and Future Directions
	In this paper, we have described various discoveries of graph partitioning and frequent subgraph mining algorithms. Based on the different graph partitioning algorithms, we have classified graph partitioning approaches into static, dynamic and paralle...
	The future directions for identifying frequent subgraphs are:
	For handling large graph data, very few methodologies are there for FSM. So, by adopting graph partitioning algorithms a large graph can be decomposed into a subset of graphs and then to the smaller graphs either apriori-based or pattern growth appr...
	GraphLab, Giraph and GraphX parallel frameworks provide good results while comparing with other different frameworks, thus one of the above-mentioned frameworks can be adopted for identifying frequent subgraphs in a large graph data.

	References

