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Abstract: Graph mining has attracted much attention due to explosive growth in generating graph databases. The graph database is one type of 
database that consists of either a single large graph or a number of relatively small graphs. Some applications that produce graph database are 
biological networks, semantic web and behavioural modelling. Frequent subgraph mining is playing an essential role in data mining, with an 
objective of extracting knowledge in the form of repeated structures. Many efficient subgraph mining algorithms have been discovered in the last 
two decades, yet most do not scale to the type of data, the so-called “Large-Scale Graph Data”. Many problems are so large or complex that it is 
impractical or impossible to solve them on a single computer, especially with given limited memory. Scalable parallel computing algorithms 
holds the key role for solving the problem in this context. Various algorithms and parallel frameworks have been discussed for graph 
partitioning, frequent subgraph mining based on apriori and pattern growth approaches, and large-scale graph processing techniques. The central 
objective of this paper is to initiate research and development of identifying frequent subgraph mining and strategies for graph data centres in 
such a way that brings it parallel frameworks for achieving memory scalability, partitioning, load balancing, granularity, and technical 
enhancement for future generations. 
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I. INTRODUCTION  

Graph-based representation of real world problem has 
been obliging large due to their improving simplicity and 
professional use in finding solutions. A graph has a newest 
domain in the field of Knowledge discovery and data mining 
(i.e. graph mining). Graph mining [1] is one of the most 
investigated and growing research topics in data mining 
domain. The applications of data mining include 
Bioinformatics pattern mining [2], Network link analysis 
[3], Financial analysis data [4], Chemical data analysis [5,6], 
Drug detection, Biological network [7], Protein structure 
interaction [8,9] and Social networking [10]. Long-
established data mining techniques such as pattern 
matching, classification, clustering and frequent subgraph 
discovery has been extended to graph scenario. 

Nowadays, large graphs have increased a lot, migrating 
from Gigabytes to Terabytes and even up to Petabytes of 
data are being generated every day which gets processed 
online through social networking sites, biological networks. 
This type of data can be represented as a modeled graph, 
where the nodes represent user and edges represent the 
relation between them. Likewise, search engines manage 
huge amounts of data by capturing from the internet. Most 
common example to represent modeled graph is by 
considering websites as nodes and URLs as edges. 

The main motive of this paper is to partition a large graph 
and identify frequent subgraph by mining techniques. Many 
efficient graph partitioning [11] and frequent subgraph 
mining algorithms [12] are existed that find frequent 
subgraph/ patterns from single graph data or multiple sets of 
graph data. Some of today’s frequent subgraph mining 
source data may not fit on a single machine’s hard drive. 
The exponential nature of the solution space compounds this 
problem. Scalable parallel algorithms hold a key role in 
addressing frequent subgraph in the context of large-scale 
graph data.  

The rest of the paper is organized as follows. Section II 
presented a review on various graph partitioning methods 
and related software tools. Section III, describes various 
existed frequent subgraph mining algorithms based on 
apriori-based and patterns growth approach which assist to 
find the frequent subgraph in single graph data or multiple 
set of graph data. Section IV, deal with the graph processing 
framework which helps to process large-scale graphs. 
Section V, authors discuss the parallel frameworks for 
finding the frequent subgraph from Large-scale graphs. After 
discussing future research directions, we concluded in 
section VI. 

II. GRAPH PARTITIONING 

A graph G is a pair (N, E). Let N be a non-empty set of 
vertices and E be a nonempty set of edges E ⊆ N×N such 
that every edge e ϵ E relates to the pair of vertices (N1, N2). 
The graph partitioning (GP) problem is NP-complete [13]. 
GP can be referred to as min-cut problem; it is defined as 
dividing a graph into a smaller blocks or pieces. It can be 
done in two ways edge based partitioning and vertex based 
partitioning, Figure 1 shows an example of graph partition. 
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Figure 1. a) graph partitioning with edge cut b) graph partitioning with 
vertex cut 

Consequently, in general, it is not sufficient to compute 
optimal partitioning for graphs of interesting size in a 
realistic amount of time. This statement combines the 
significance of the problem, which lead to the development 
of numerous heuristic approaches. The partitioning 
heuristics are divided into global and local search methods. 
Global methods are sometimes called as construction 
heuristics for the reason that they take graph description as 
input and generate a balanced partition. Local search 
methods are called improvement heuristics. They take a 
graph and balanced partition as input and try to improve the 
partition. Each partitioning algorithm has to include a global 
search method. The Optimal method produces the optimal 
results, although have exponential run time behaviour. The 
heuristic methods are Linear, Scattered and Random are 
exclusively depending on the node position in the given 
node list [14]. 

A. Static Graph Partitioning 
Hendrickson and Leland enthused by the work of 

Stephen and Horst [15]. A multilevel approach to computing 
an eigenvector needed for a spectral partitioning algorithm.   
This work analyzes numerical problems in transferring 
eigenvectors between levels. The above problem is solved 
by transferring partitions between levels using multilevel 
graph partitioning algorithm by Hendrickson and Leland 
[16]. The algorithm contains three divisions: First division, a 
sequence of graphs is constructed by collapsing together 
selected vertices of the input graph in order to form a related 
coarser graph. This newly constructed graph then proceeds 
as the input graph for another round of graph coarsening and 
so on until an adequately small graph is obtained. Second 
division; computation of the spectral method was performed 
on the coarsest of these graphs are very fast. Third division, 
to project the coarse partition back through the sequence of 
graphs, periodically improving it with a local refinement 
algorithm for this local improvement phase authors  use a 
variant of a popular algorithm originally derived by 
Kernighan and Lin [17], additionally it was improved by 
Fiduccia and Mattheyses [18], though other methods could 
be used very well. Figure 4 gives a detail construction of 
multilevel graph partitioning phase and Table I provides 
different methods for contraction, initial partitioning, and 
refinement. 

 

 
 

Figure 2. Multilevel Graph Partitioning 
 

The two essential parts of multilevel approach [19-21] are 
coarsening strategy and local improvement method. In 
maintaining coarsening approach, the following aspects are 
required. 

• The matching algorithm has to be very fast so that 
it is more time efficient than standard partitioning 
methods applied to the initial graph. 

• Since edges of high weights are usually connecting 
dense areas of graph, the algorithm is supposed to 
calculate a matching with a high edge weight in 
order to avoid them from appearing in the coarse 
graph and being cut. 

• To speed up the coarsening process and to coarsen 
on the whole graph simultaneously, the matching’s 
on each level should have a high cardinality. The 
maximum reduction is achieved by splitting 
number of vertices in halves on each level. This is 
only possible when a complete matching can be 
found. 

 
Table I: different method for multilevel phases 

 
coarsening partitioning Uncoarsening 
Random Matching 
(RM), 
Heavy Edge 
Matching (HEM), 
Modified Heavy 
Edge Matching 
(MHEM) 
Light Edge Matching 
(LEM), 
Heavy Clique 
Matching (HCM). 

Coordinate sorting, 
Geometric 
partitioning, 
Spectral Bisection 
(SB), 
Recursive Bisection 
(RB), 
Coordinate Nested 
Dissection (CND), 
Graph Growing 
Partition (GGP), 
Greedy Graph 
Growing Partitioning 
(GGGP). 
 

Greedy Refinement 
(GR), 
Kernighan Lin 
Refinement (KLR), 
Boundary Greedy 
Refinement (BGR), 
Boundary Kernighan 
Lin Refinement 
(BKLR), 
Combination of BGR 
and BKLR, 
Hill Climbing, 
Helpful-Set, 
Simulated annealing, 
Tabu search, 
Reactive search 
optimization. 

B. Parallel Graph Partitioning 
The graph partitioning is performed in parallel 

implementation [22] is necessary for various reasons. 
• The large graphs can’t be computed in serial 

implementation because of memory, which is often 
not enough to allow the partitioning that can be 
now solved on massively parallel implementation 
and workstation clusters. 



Appala Srinuvasu Muttipati et al, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 29-40 
 

© 2015-19, IJARCS All Rights Reserved                    31 

• A parallel graph partitioning algorithms can take an 
advantage of the extensively higher amount of 
memory available in parallel implementation to 
partition very large graphs. 

Parallel graph partitioning [23] is crucial for achieving 
potential results in such an environment, within the context 
of adaptive graph partitioning, where graph is already 
distributed among processors, and however it must be 
repartitioned as a result of dynamic nature of underlying 
computation. In such cases, getting the graph into a single 
processor for repartitioning will produce a serious 
bottleneck that would adversely impact the measurability of 
the general application. 

Further work on parallel graph partitioning was 
concentrated on geometric, spectral by Stephen and Simon 
[24], and multilevel partitioning schemes by Karypis and 
Kumar [25, 26]. Geometric graph partitioning algorithms 
[27, 28] tend to be slightly easy to parallelize whereas 
spectral and multilevel partitioners are complex to 
parallelize. The parallel asymptotic run times are equivalent 
as that of performing a parallel matrix-vector multiplication 
on a randomly partitioned matrix. Because of this reason the 
input graph is not well-distributed across the processors. If 
the graph is first partitioned and then distributed across the 
processors consequently, the parallel asymptotic run times 
of spectral and multilevel partitioners drop to that of 
performing a parallel matrix-vector multiplication on a well-
partitioned matrix. Primarily, performing these partitioning 
schemes professionally in parallel needs a good partitioning 
of the input graph. The static graph partitioning cannot 
provide a good quality of input graph whereas the adaptive 
graph partitioning can provide a high quality of input graph 
partitioning which includes a low edge cut. For this reason, 
parallel adaptive graph partitioners [29, 30] attend to run 
considerably faster than static partitioners.  

Since the run time of most parallel geometric partitioning 
schemes does not seem to affect the initial distribution of the 
graph, they will primarily be accustomed to working out a 
partitioning for the partitioning algorithm. That is a rough 
partitioning of the input graph which is often computed by a 
faster geometric approach. This partitioning can be used to 
reallocate graph before performing parallel multilevel or 
spectral partitioning. Use of this "boot-strapping" approach 
will significantly increase the parallel efficiency of the 
additional correct partitioning scheme by providing it with 
data region [23]. 

C. Dynamic Graph Partitioning 
Currently, huge research is carrying on dynamic graph 

partitioning due to the real world applications and scalable 
graphs. Dynamic graph partitioning cannot do in single 
memory because it has the feature of dramatically increasing 
of node/vertices in a graph (billion nodes). For that reason it 
holds the concept of distributed memory system, helps to 
place graphs in various machines and processing. For 
partitioning a dynamic graph, it needs clustering, load 
balancing and some local heuristic methods which obtain 
good results. Few authors presented an articles are How to 
Partition a Billion-node graph presented by [31]. Streaming 
graph partitioning method was by [32], parallel graph 
partitioning for complex Networks by [33]. Spinner 
technique for Scalable graph partitioning for the cloud by 

[34]. The Figure 3 describes distributed memory system and 
label propagation. 
 

• Distributed graphs A distributed memory system is 
a right communication for online query processing 
over a billion node graph. To organize a graph on a 
distributed memory system, have to divide the 
graph into multiple partitions and store each 
partition in one machine (without any overlapping). 
Network communication is necessary for accessing 
non-local partitions of the graph. Hence, how the 
graph is partitioned might cause the major impact 
on load balancing and communication [31]. 

• Label Propagation (LP) A local inhabitant of LP as 
follows. First assign a unique label id to each 
vertex. Next, update the vertex label iteratively. At 
every, iteration a vertex takes the label that is 
ubiquitous in its neighborhood as its own label. The 
process terminates when labels no longer change. 
Vertices that have the identical label belong to the 
identical partition. 

There are two reasons to assume label propagation for 
partitioning [31]. 

1) Label propagation mechanism is lightweight. It 
does not cause intermediary results, and it does not 
need sorting or indexing the data as in many 
existing graph partitioning algorithms. 

2) Label propagation is able to discover inherent 
community structures in real networks: Given the 
reality of local closely connected substructures, a 
label tends to propagate within such structures. 
Since most real-life networks exhibit clear 
community structures, a partitioning algorithm 
based on label propagation may divide the graph 
into consequential partitions. Compared to 
maximal match, LP is more semantic-aware and is 
a better coarsening scheme. 
 

 
 

Figure 3. (a) A graph with 3 machines {m1, m2, m3}, each machine carries 4 
vertices and the partition graphs as {A, B, C, D}, {E, F, G, H}, {I, J, K, L}.  
(b) Coarsened by maximal match. (c) Coarsened by LP 

D. Classifiation of graph partitioning algorithms 
The main challenges of partitioning a graph data are: (i) 

quality graph partitioning (ii) multilevel paradigm (ii) load 
balancing. Graph partitioning algorithms use different 
approaches to eliminate these challenges. Figure 4 shows 
different algorithms are classified based on the 
implementation of graph partitioning approaches.  
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Figure 4. Classification of Graph Partitioning Methods 

E. Software tools 
Hendrickson and Leland [35] are the first to launch graph 

partitioning tool Chaco and to implement the multilevel 
graph partitioning. By adopting this multilevel Karypis and 
Kumar [36-39] has proposed parallel multilevel k-way 
partitioning scheme, fast and high quality multilevel 
schemes, parallel algorithm for multilevel graph partitioning, 
MeTiS, hMeTiS tool which offer good partitions. Karypis, 
Schloegel and Kumar [40] were developed ParMeTiS tool 
for parallel graph partitioning. Recently Sander and Schulz 
[41] was developed KaHIP tool in which Karlsruhe Fast 
Flow Partitioning (KaFFPa) is a multilevel graph partitioning 
algorithm by Sander and Schulz [42] uses novel local 
improvement algorithm based on max-flow and min-cut 
computations and more localized FM searches and, on the 
other hand, uses more sophisticated global search strategies 
transferred from multi-grid linear solvers. KaFFPa 
Evolutionary [43] is a distributed evolutionary algorithm to 
solve the graph partitioning problem. Pellegrini developed 
Scotch [44-46], uses recursive multilevel bisection and 
incorporate sequential and parallel graph partitioning 
methods. Chris Walshaw developed Jostle [47], a well-
known sequential and parallel graph partitioning techniques. 
Party [48] developed by Robert, has implemented algorithms 
are Bubble/Sharp-optimization and Helpful Sets. 
Meyerhenke developed a software packages DibaP and 
PDibaP [49].  The tools mainly focus on hypergraph 
partitioning are Parkway [50] by Trifunovic, Zoltan [51] by 
Devine et al., and Cataiyure et al., proposed PaToH [52] 
produces high-quality partitioning. 

III. FREQUENT SUBGRAPH MINING 

The problem of frequent subgraph mining [53] is to find 
frequent subgraphs over a collection of graphs. Frequent 
subgraph mining delivers meaningfully structured 
information such as hot web access patterns, common 
protein structures, and Computational Molecular Biology 
[54]. Frequent subgraph mining can also be used in fraud 
detection to catch similar fraud translation patterns from 
millions of electronic payments. Furthermore, a graph is a 
general data structure which covers almost all previous well-

researched frequent patterns, thus, it can unify the mining 
process into the same framework. Therefore, frequent 
subgraph mining has raised great interests. 

In fact, this issue is precisely described here. If D is the 
entry dataset, the frequent subgraph mining intends to mine 
graphs with more support value in association with 
predetermined threshold. The graph support Gsup is denoted 
by sup(Gsup) and is given as  

 

    𝑆𝑆𝑆𝑆𝑆𝑆�𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 � =  
∑ 𝐺𝐺𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

Whereas n is the total number of graphs in the graph dataset 
[55]. 

 

A. Apriori based approach 
Apriori-based frequent substructure mining algorithms share 
similar characteristics with Apriori based frequent item set 
mining algorithms [56]. The search used for frequent graphs 
starts with graphs of tiny “size” and proceeds in a bottom-up 
approach. Iteration at every time increases the size by one 
out of newly discovered frequent substructures. These latest 
substructures are first generated by joining two similar but 
slightly different frequent subgraphs that were discovered 
already. The frequency of newly formed graphs is then 
checked. The Apriori-based algorithms have considerable 
overhead when two size-k frequent substructures are joined 
to generate a size (k+1) graph candidates [57, 58].   

The apriori based algorithms suffer two additional costs: 
• Costly subgraph isomorphism test. Since subgraph 

isomorphism is an NP-Complete problem, no 
polynomial algorithm can solve. Thus, testing of 
false candidates (false test or false search) degrades 
the performance a lot. 

• Costly candidate generation. The generation of 
size(k+1) subgraph candidates from size k frequent 
subgraphs are more complicated and costly than 
that of item sets as observed by Kuramochi and 
Karypis [59] 

Apriori based algorithms include WARMER [60], AGM 
[61], FSG [62], FARMER [63], FFSG [64], HSIGRAM 
[65], GREW [66], SPIN [67], Dynamic GREW [68], ISG 
[69], MUSE [70], Weighted MUSE [71], MUSE-P [72] and 
UGRAP [73]. Few of the algorithms are discussed below 
Table II gives the information about remaining apriori based 
algorithms overview.  

FFSM [64] is a novel subgraph mining algorithm by 
Huang et al. FFSM is utilized a vertical search schema with 
in an algebraic graph framework and utilizes a restricted join 
operation to generate candidates and stores embeddings to 
avoid explicit subgraph isomorphism testing. The 
experimental results were done on synthetic and real 
datasets exhibited that FFSM achieves a substantial 
performance over the state-of-the art subgraph mining 
algorithm approach. 

HSIGRAM [65] uses adjacency matrix representation of 
graph and use iterative merging for subgraph generation. 
The aim of the HSIGRAM id to find the maximal 
independent set of graph, which are constructed out of the 
embeddings of a frequent subgraph so as to evaluate its 
frequency. 
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Table II: Comparison of FSM based on Apriori approach 
 

Algorithm Nature of the graph Search Strategy Isomorphic test Nature of output Reference 

WARMR Static Breadth First Approximate Complete Dehaspe et al., (1999) [60] 
AGM Static Breadth First exact complete Inokuchi et al., (2000) [61] 

FSG Static Breadth First Exact incomplete Kuramochi and Karypis, (2001) [59] 

FARMER Static Breadth First Approximate complete Nijssen and kok (2002) [62] 

FFSG Static Depth First exact complete Huan et al., (2003) [63] 

HSIGRAM Static Breadth First Adjustable complete Jiang et al., (2004) [64] 

GREW Static Greedy Exact incomplete Kuramochi and Karypis, (2004) [65] 

SPIN Static Depth First exact incomplete Huan et al., (2004) [66] 

Dynamic GREW Dynamic graphs Depth First Exact incomplete Kuramochi et al., (2006) [67] 

ISG Static Breadth First exact complete Thomas et al., (2009) [68 ] 

MUSE Static Depth First exact complete Li et al., (2009) [69] 

Weighted MUSE Static Depth First exact complete Jamil et al., (2011) [70] 

MUSE-P Static Depth First exact complete Li et al., (2010) [71] 

UGRAP Static Depth First exact complete Papapetrou et al., (2011) [72] 
 

 
      Zou et al., (2010) proposed an algorithm for Mining 
Frequent Subgraph Patterns from Uncertain Graph Data. In 
many real applications, graph data is liable to uncertainties 
because of incompleteness and imprecision of data. Mining 
such uncertain graph data is semantically different from and 
computationally more challenging than mining conventional 
exact graph data. A novel model of uncertain graphs is 
presented, and the frequent subgraph pattern mining 
problem is formalized by introducing a new measure, called 
expected support.  An approximate mining algorithm called 
Mining Uncertain Sub graph patterns (MUSE) [70], is 
proposed to find a set of approximately frequent subgraph 
patterns by allowing an error tolerance on expected supports 
of discovered subgraph patterns. The algorithm uses 
efficient methods to determine whether a subgraph pattern 
can be output or not and new pruning method to reduce the 
complexity of examining subgraph patterns. Analytical and 
experimental results showed that the algorithm is very 
efficient, accurate, and scalable for large uncertain graph 
databases.  
     Khan et al., (2011) proposed a Weighted MUSE [71] by 
modifying the MUSE by assigning weights factor w (0, 1) to 
the edges of embeddings includes in the identified frequent 
subgraph pattern. 

Another author investigated on frequent subgraph 
mining on uncertain graphs under probabilistic semantics 
[72]. Specifically, a measure called ϕ-frequent probability is 
introduced to evaluate the degree of recurrence of 
subgraphs. The goal is to find quickly all the subgraphs with 
frequent probability. The extensive experiments on real 
uncertain graph data verify that the algorithm is efficient and 
that the mining results have very high quality. 

Papapetrou et al., (2011) proposed a method that uses an 
index of the uncertain graph database to reduce the number 
of comparisons needed to find frequent subgraph patterns. 
The algorithm depends on the apriori property for 
enumerating candidate subgraph patterns efficiently. Then, 
the index is used to reduce the number of comparisons 
required for computing the expected support of each 
candidate pattern. It also enables additional optimizations 
with respect to scheduling and early termination, that further 
increase the efficiency of the method. The evaluation of our 

approach on three real-world datasets and on synthetic 
uncertain graph databases exhibits the significant cost 
savings with respect to the state-of-the-art approach [73]. 

B. Pattern growth approch 
In order to avoid limitations of apriori algorithms, Pattern 

growth algorithms have been developed, most of which 
adopt the depth-first search strategy. The pattern growth 
mining algorithm extends a frequent graph by adding a new 
edge, in each and every possible position. A possible issue 
with the edge extension is that the similar graph can be 
exposed many times. The gSpan algorithm solves this 
problem by introducing a rightmost extension technique, 
where the only extensions take place on the right-most 
paths. A rightmost path is the straight path from the straight 
vertex V0 to the last vertex Vn, according to a depth-first 
search on the graph.  

Pattern growth based approaches based on multiple small 
graphs included algorithms are Jianzhong, Yong and Hong 
were proposed algorithms are RP-FP, RP-GD [88], Yong, 
Jianzhong and Hong was proposed JPMiner [85], Yuhua et 
al. were proposed MSPAN [82], HybridGMiner [79], PATH 
[80], SEUS[81] Yiping, James, Jeffrey was proposed  
algorithm FCPMiner [83], Shijie, Jiong, Shirong  was 
proposed by RING [84], Sayan, Ambuj was proposed 
GraphSig [86], Hsun-Ping, Chengp-Te was proposed TSP 
[87], , for more details [55]. Four well-known algorithms are 
discussed below and Table III gives the information about 
remaining pattern growth algorithms overview.    

Holder et al., (1994) proposed a Substructure Discovery 
in the SUBDUE system. The SUBDUE [74] system, which 
uses the minimum description length principal to discover 
substructures that compress the database and represent 
structural concept in the data. By replacing previously 
discovered substructures in the data, multiple passes of 
SUBDUE produces a hierarchical description of the 
structural regularities in the data. The optimal background 
knowledge guides SUBDUE towards appropriate 
substructures for a particular domain. The use of an inexact 
graph matching allows a controlled amount of deviations in 
the instance of a substructure concept. The large amount of 
structural information that can be added to non-structural 
data collection on physical phenomena provides a large 
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testbed for comparing an integrated discovery system based 
on SUBDUE to other non-structural systems. 

Borgelt and Berthold were proposed a MoFa algorithm 
[75] which is referred as Molecular Fragment Miner. The 
MoFa algorithm keeps all the embedding list of formerly 
found subgraphs with an edge and the extension function is 

restricted only to these embedding lists. Isomorphism tests 
can be done inexpensively by testing whether an embedding 
list can be polished in the similar way. The algorithm also 
uses structural pruning and environment knowledge to 
reduce support computation and to remove duplicates uses 
benchmark isomorphism testing. 

 
 

Table III: Comparison of FSM based on Pattern Growth approach 
 

Algorithm Nature of  graphs Search method Isomorphic test Nature of output Reference 

GBI Static greedy exact complete Yoshida et al., (1994) [73] 

SUBDUE Static greedy approximate complete Cook and Holder et al., (1994) [74] 

MOFA Static Depth First exact complete Borgelt and Berthold (2002 ) [75] 

gSpan Static Depth First exact complete Yan and Han (2002)  [76] 

ClosedGraph Static Depth First exact incomplete Yan and Han (2003) [77] 

GASTON Static Depth First exact complete Nijssen and Kok (2004) [78] 

HybridGMiner Static Depth First exact complete Meinl et al (2004) [79] 

SEUS Static Depth First exact complete Gudes et al (2006) [80] 

MSPAN Static Depth First exact complete Li et al., (2009) [81] 

FCPMiner Static Depth First exact complete Ke et al (2009) [82] 

RING Static Depth First exact complete Zhang et al., (2009) [83] 

JPMiner Static Depth First exact incomplete Liu et al., (2009) [84] 

GraphSig Static Depth First exact complete Ranu et al., (2009) [85] 

TSP Dynamic Depth First exact incomplete Li and Hsieh (2010) [86] 

RP-GD Static Depth First exact incomplete Li et al., (2011) [87] 

RP-FP Static Depth First exact incomplete Li et al., (2011) [87] 
 

 
Yan and Han were proposed CloseGraph [77] algorithm 

refer as Mining Closed Frequent Graph Pattern. It is the 
extension of the gSpan algorithm. A graph G is closed in a 
database if there exists no proper subgraph of G that has the 
same support as G. CloseGraph, is developed by discovering 
several interesting looping methods. The performance study 
shows that, CloseGraph not only dramatically reduces 
unnecessary subgraphs to be generated, but also significantly 
increases the efficiency of mining, particularly in the presence 
of large graph patterns. 

Nijssen and Kok were presented a GASTON [78] algorithm 
which is referred as   GrAph/Sequence/Tree extractiON. 
GASTON algorithm puts together frequent path, sub-tree, and 
subgraph, owing to the surveillance that most frequent 
substructures in molecular datasets are open trees. The 
algorithm suggests an explanation by divide the frequent 
subgraph mining procedure into the path, then sub-tree, and at 
last generate subgraph. As a result, the generated subgraphs 
are invoked when needed.  Hence, GASTON functions 
optimally when graphs are generally trees or paths because the 
most expensive subgraph isomorphism testing is finding out 
subgraph mining phase. GASTON keeps all the embeddings in 
order to generate only new subgraphs that actually appear; 
thus saving on unnecessary isomorphism detection. GASTON 
can compute the frequency of a subgraph either with 
isomorphism tests or embedding lists 

C. Classifiation of Frequent Subgraph Mining 
Three main challenges of subgraph generation process are: (i) 
isomorphic subgraphs, (ii) infrequent subgraphs and (iii) the 
subgraphs that not exist in the graph database. Frequent 
subgraph mining algorithms use different approaches to 

remove or reduce these challenges. Figure 5 shows the frequent 
subgraph mining algorithms have been classified based on 
Apriori based and Pattern growth-based approaches. Grouping 
the similar approaches based on their nature of the input graph 
data. 

 
 

Figure 5. Classification of Frequent Subgraph Mining Algorithm 
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IV. PARALLEL FRAMEWORKS FOR LARGE SCALE 
GRAPHS 

In this section describes an implementation for processing 
and generating large graph data sets with parallel and 
distributed algorithms on a cluster.  

A. MapReduce 
MapReduce [88] is a programming framework for 

processing the massive amount of data in a distributed 
approach. MapReduce provides users a simple interface for 
programming distributed algorithm, and it handles all the 
details of data distribution, replication, fault tolerance, and 
load balancing. A typical MapReduce task consists of three 
abstract functions: map, shuffle, reduce. At the “map” 
function, the raw data is read and processed to output (key, 
value) pairs. At the “shuffle” function, the out of the map 
phase is sent to reducers passing through the network so that 
the pair with the same key is grouped together. At the” 
reduced” function, the (key, value) pairs with the same key are 
processed to output another (key, value) pairs with the same 
key are processed to output another (key, value) pair. An 
iterative MapReduce program runs several MapReduce tasks, 
by feeding the output of the current task as the input of the 
next task. 

B. Hadoop 
Hadoop [89] is an open-source implementation of 

MapReduce programming model written in Java language. 
Hadoop uses the Hadoop Distributed File System (HDFS) [90] 
for its file system. There are several packages that run on top 
of Hadoop, including PIG [91], a high-level language for 
Hadoop, and HBASE, column-oriented data storage on top of 
Hadoop. Due to the simplicity, scalability and fault tolerance, 
big graph mining using Hadoop attracted significant attentions 
in the research community.  The examples of these systems are 
Pegasus [92]: A peta-scale graph mining system – 
Implementation and observations was introduced by Kang et 
al., in 2009, Mahout [93], HaLoop [94] was introduced by Bu 
et al., in 2010, iMapReduce [95], Surfer [96] was introduced 
by Chen et al., in 2010 and Twister [97] was introduced by 
Ekanayake et al., in 2010. 

C. Message Passing Interface 
The Message Passing Interface (MPI) is a library particular 

for message-passing. MPI [98] is a standard Application 
Program Interface (API) that can be utilized to make 
application. The objective of the MPI is to give a broadly used 
standard for writing message-passing programs. The interface 
endeavors to be: practical, portable, efficient, flexible. MPI was 
designed for distributed memory architecture, which were 
becoming increasingly popular at time 1980s -1990s. An 
architecture trend changed, shared memory was combined over 
networks creating hybrid distributed memory/shared memory 
system. Today, MPI runs on virtually any hardware platform: 
Distributed Memory, Shared Memory, and Hybrid. The 
programmer is responsible for correctly identifying parallelism 
and implementing parallel algorithms using MPI constructs. 

There are several executions of MPI [99-101] which can be 
used to actualize parallel message-passing graph algorithms in 
various programming languages. MPI consists of very low-
level communication primitives that do not provide any 
consistency or fault-tolerance. Programmers must build another 
level of deliberation all alone, which makes programming 
harder than bulk synchronous message-passing systems. 

D. Bulk-Synchronize Parallel 
Leslie Valiant (1990) developed a Bulk-Synchronize 

Parallel in Harvard University. In the middle of 1990 -1992, 
valiant and McColl dealt with thoughts for a distributed 
memory BSP programming model. Somewhere around 1992 
and 1997, McColl leads a large research team at Oxford and 
developed different BSP programming libraries, languages, 
tools and also various massively parallel BSP algorithms.  BSP 
Model for massage passing and collective communications. A 
BSP program consists of a sequence of supersteps. Each 
superstep comprises of three phases: Local computation, 
Process communication, Barrier synchronization. BSP 
programming enables you to write high-performance parallel 
computing algorithms for a wide range of scientific problems. 

Pregel [102] presented the first bulk synchronous 
distributed message-passing framework, from which graph 
processing system has drawn. A few different frameworks are 
based on Pregel, including Giraph [103], GoldenOrb [104], 
Phoebus [105], Hama [106], JPregel [107], Bagel [108].  
Giraph is the most well known and advanced of these systems. 
Giraph adds several features beyond the basic Pregel model, 
including master computation, shared aggregators, edge-
oriented input, out-of-core computation and more. In 2012, 
apache Giraph is dispatched as an open partner to Pregel and an 
iterative graph processing system constructed for high 
scalability. Giraph can run as a typical Hadoop job that uses the 
Hadoop clustering infrastructure. Giraph model is appropriate 
for distributed implementation because it doesn’t   demonstrate 
any mechanism for detecting the order of execution within a 
superset, and all communication ids from superstep S to 
superstep S+1. During program execution, graph vertices are 
partitioned and assigned to workers. The default partition 
mechanism is hash-partitioning, but the custom partition also 
supports. 

E. Other systems 
Krepska et al., (2010) proposed a HipG [109] is a framework 

in which each vertex is a java object and the computation is 
done sequentially starting from a particular vertex. The code is 
expressed as if the graph is in a single machine, and the reads 
and writes to vertices residing in other machines are translated 
as RPC calls. HipG incurs significant overhead from RPC calls 
when executing algorithms, such as PageRank, that compute a 
value for each vertex in the graph.  Zaharia et al., (2010) 
developed Spark [110] framework is a general clustering 
system, whose API is designed to express generic iterative 
components. As a result, programming graph algorithms on 
Spark required signification more coding effort than on graph 
processing system. GraphX [111] is apache Spark’s API for 
graphs and graph-parallel computation. The requirement for 
instinctive, scalable tools for graph computation has lead to the 
advancement of new graph parallel system like Pregel and 
GraphLab[112] which are intended to proficiently execute 
graph algorithms. Unfortunately, these systems do not address 
the challenges of graph construction and transformation and 
offer restricted fault tolerance and support for interactive 
analysis. 

V. PARALLEL FRAMEWORKS ON FSM 

Bhuiyan et al., (2013) presented a novel iterative 
MapReduce framework based on Frequent subgraph mining  
algorithm called MIRAGE[113]. MIRAGE is complete as it 
returns all the frequent subgraphs for a given user-defined 
support, and it is efficient as it applies all the optimizations 
that the latest FSM algorithms adopt. The experiments with 
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real life and large synthetic datasets validate the effectiveness 
of MIRAGE for mining frequent subgraphs from large graph 
datasets. 

Bhuiyan et al., (2014) proposed a frequent subgraph mining 
algorithm called FSM-H [114] which handles real world graph 
data grows both in size and quantity. FSM-H is            a 
distributed frequent subgraph mining method over a 
MapReduce-based framework. The framework consists of 
three phases: data partition, a preparation phase, and mining 
phase. In data partition phase, FSM-H creates the partitions of 
input data along with the omission of infrequent edges from 
the input graph. Preparation and mining phase performs the 
actual mining task. FSM-H generates a complete set of 
frequent subgraphs for a given minimum threshold support, 
and it is efficient as it applies all the optimizations that the 
latest FSM algorithm adopt. The experiments with real life and 
large synthetic datasets validate the effectiveness of FSM-H 
for mining frequent subgraphs from large graph datasets.  

VI. CONCLUSION AND FUTURE DIRECTIONS 

In this paper, we have described various discoveries of 
graph partitioning and frequent subgraph mining algorithms. 
Based on the different graph partitioning algorithms, we have 
classified graph partitioning approaches into static, dynamic 
and parallel implementations. In case of frequent subgraph 
mining for the large graph, a multiple sets of small graph data, 
dynamic graph data and uncertain graph data. The algorithms 
have been classified based on the apriori and pattern growth 
approaches. To handle a large scale graphs we presented 
various graph processing techniques and parallel frameworks 
for frequent subgraph mining are discussed in detail.  

The future directions for identifying frequent subgraphs are: 
1) For handling large graph data, very few methodologies 

are there for FSM. So,  by adopting  graph partitioning 
algorithms a large graph can be decomposed into a subset of 
graphs and then to the smaller graphs either apriori-based or 
pattern growth approach algorithms  can be implemented to 
identify frequent subgraph mining. 

2) GraphLab, Giraph and GraphX parallel frameworks 
provide good results while comparing with other  different 
frameworks, thus one of the above-mentioned frameworks can 
be adopted for identifying frequent subgraphs in a large graph 
data. 
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