
Volume 6, No. 7, September-October 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 57

A Research on Analysis of various Load Balancing Algorithm in Minimizing Load
Balancing

Deepika Bhanot
M. Tech Computer Science

Punjab Technical University, India

Abstract: Load balancing was identified as a major concern to allow Cloud computing to scale up to increasing distributed solution is required,
as it is not practical or cost efficient in many cases to maintain idle service/hardware provision merely to keep up with all identified demands.
Equally, when dealing with such complexity, it is impossible to fully detail all system future states. Therefore, it is necessary to allow local
reasoning through distributed algorithms on the current system state. Our early work suggested that efficient load balancing cannot be achieved
by individually assigning jobs to appropriate servers. In this paper we have proposed algorithm HARA algorithm for load balancing in cloud
computing.
Keywords: green Cloud,HRA ,ARA, Cloud Computing

I. INTRODUCTION

With the growth[1] of high speed networks over the last
decades, there is an alarming rise in its usage comprised of
thousands of concurrent e-commerce transactions and
millions of Web queries a day. This ever-increasing
demand is handled through large-scale datacenters, which
consolidate hundreds and thousands of servers with other
infrastructure such as cooling, storage and network systems.
Many internet companies such as Google, Amazon, eBay,
and Yahoo are operating such huge datacenters around the
world.
The commercialization of these developments is defined
currently as Cloud computing [1], where computing is
delivered as utility on a pay-as-you-go basis. Traditionally,
business organizations used to invest huge amount of
capital and time in acquisition and maintenance of
computational resources. The emergence of Cloud
computing is rapidly changing this ownership-based
approach to subscription-oriented approach by providing
access to scalable infrastructure and services on-demand.
Users can store, access, and share any amount of
information in Cloud. That is, small or medium
enterprises/organizations do not have to worry about
purchasing, configuring, administering, and maintaining
their own computing infrastructure.[1]
Cloud is Common, Location-independent, Online Utility
provisioned on-Demand. Cloud computing has recently
revealed technology that is used for hosting and delivering
services over the Internet. Figure1 shows the diagrammatical
representation of Cloud Computing. Some studies show that
Cloud computing can actually make traditional datacenters
more energy efficient by using technologies such as resource
virtualization and workload consolidation. The traditional
data centres running Web applications are often provisioned
to handle sporadic peak[2]
 Cloud computing is a collection of a variety of computing
concepts in which thousands of computers communicate in
real-time to provide a seamless experience to the user, as if
he/she is using a single huge resource. This system provides
multiple facilities like - web data stores, huge computing
resources, data processing servers, etc. The concept of cloud

computing is around the early 1950s, although the term was
not coined back then[7].
Cloud is the metaphor for the Internet, based on how it is
depicted in computer network and is an abstraction for
complex infrastructures. Cloud computing is an evolving
paradigm which is enabling outsourcing of all IT needs such
as storage, computation and software through large internet.
Computing is a pool of resources. It provides mandatory
application environment. It can deploy, allocate or reallocate
computing resources dynamically and monitor the usage of
resources at all times. The user needs not to care about how
to buy servers, softwares, solutions
and so on. They can buy the computing resources through
internet according to their own needs.[8]
Computing is a pool of resources. It provides mandatory
application environment. It can deploy, allocate or reallocate
computing resources dynamically and monitor the usage of
resources at all times. The user needs not to care about how
to buy servers, softwares , solutions and so on. They can buy
the computing resources through internet according to their
own needs.

Figure 1: Cloud Computing

 loads, which can result in low resource utilization and
wastage of energy. Cloud datacenter, on the other hand, can

Deepika Bhanot, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 57-60

2015-19, IJARCS All Rights Reserved 58

reduce the energy consumed through server consolidation,
whereby different workloads can share the same physical
host using virtualization and unused servers can be
switched off.

II. RELATED WORK

The various algorithms are there for load balancing
following are:
In this second load balancing approach, the load on a server
is represented by its connectivity in a virtual graph. A full
analysis of this mechanism is found in, with this section
providing a brief overview. The initial network is
constructed with virtual nodes to represent each server node,
with each in-degree mapped to the server’s free resources or
some measure of desirability. As such, a number (consistent
with its available resources) of inward edges are created,
connected from randomly-selected nodes. This approach
creates a network system that provides a measure of initial
availability status, which as it evolves, gives job allocation
and usage dynamics. Edge dynamics are then used to direct
the load allocation procedures required for the balancing
scheme. When a node executes a new job, it removes an
incoming edge; decreasing its in-degree and indicating
available resources are reduced. Conversely, when the node
completes a job, it follows a process to create a new inward
edge; indicating available resources are increased again. In a
steady state, the rate at which jobs arrive equals the rate at
which jobs are finished; the network would have a static
average number of edges. In ideally-balanced conditions, the
degree distribution is maintained close to an Erdős-Rényi
(ER) random graph degree distribution [3]. The increment
and decrement process is performed via Random Sampling.
The sampling walk starts at a specific node; at each step
moving to a neighbor node chosen randomly. The last node
in the sampling walk is selected for the load allocation. The
effectiveness of load distribution is considered to increase
with walk length, referred to herein as w. However,
experimentation demonstrated an effective w threshold is
around log (n) steps, where n is the network size . Therefore,
w is used to control the behavior of a node upon receiving a
job. When a node receives a job it will execute it if the job’s
current walk length is greater than or equal to the walk
length threshold. This node is then referred to as the job’s
executing node. Alternatively, if the walk length is less than
the threshold, the job’s w value is incremented and it is sent
to a random neighbor, thus continuing the Random
Sampling approach. When the job reaches the executing
node, this allocation is reflected in the graph with the
deletion of one of the executing node’s in-edges. Once the
job has completed, the result of the allocation is reflected by
the creation of a new edge from the initiating node to the
executing node. To summaries, the balancing graph is
altered in the following manner by job execution and
completion the executing node’s in-degree (available
resources) decreases during job execution, followed by the
allocating node’s out-degree (i.e. allocated jobs) and the
executing node’s in-degree (available resources) increases
after job execution, thus directing future load allocation. The
result is a directed graph, where the direction of the edges
leads the propagation for random sampling. The load-
balancing scheme is both decentralized and easily
implemented using standard networking protocols. As the

scheme is decentralized, this makes it suitable for many
large network systems such as those required for Cloud
computing platforms. As noted in [4], the performance of
this load-balancing technique can be further improved by
biasing the random sampling toward specific nodes. Hence,
selection will be based on a predefined criterion (e.g.
computing power or communication latency) rather than
selecting the last node in the walk. For instance, the random
sampling walk may be directed towards unvisited nodes or
nodes with certain properties. Accordingly, the load
balancing technique is improved by assigning the new job to
the least loaded (highest in-degree) node in the walk, instead
of the last node in the walk. Therefore, the scalability is
identical to standard random sampling, yet the balancing
performance is much improved. workload evenly to the
entire node in the whole cloud to achieve a high user
satisfaction and resource utilization ratio. It also ensures that
every computing resource is distributed efficiently and
fairly. There are various researchers who have used the load
balancing techniques to propose new strategies. Their work
done in the domain of load balancing is analyzed and
compared. But the issues of laod balancing are still open for
research work so that higher user satisfaction and resources
utilization can be achieved. We have discussed on basic
concepts of cloud computing and load balancing and studied
some existing load balancing algorithms, which can be
applied to clouds. The performance of these strategies with
respect to timing and to effect of link clods. The
performance of these strategies with respect to the timing
and the effect of link and measurement speed were studied.
A comparison is also made between different strategies.
Future Scope
Cloud computing is a vast concept and load balancing plays
a very important role in case of clouds. There is huge scope
of improvement in this area. We have discussed only two
divisible load scheduling algorithms that can be applied to
clouds, but there are still other approaches that can be
applied to balance the load in clouds. The performance of
the given algorithms can also be increased by varying
different parameters.
It was discovered that implementation of the honeybee-
foraging distributed load balancing solution at the
application layer caused a particular topology to emerge at
the resource layer. This manifested itself as a small number
of services attracting a disproportionate amount of
connectivity from cooperating services whilst most services
had only a small number of links. As such, well used
services may be grouped to deal with load balancing through
the topology of the Cloud’s resources. Active Clustering is
considered in [5] as a self-aggregation algorithm to rewire
the network. This procedure is intended to group like (i.e.
similar service type) instances together. Many load
balancing algorithms only work well where the nodes are
aware of “like” nodes and can delegate workload to them
[6]. Active Clustering consists of iterative executions by
each node in the network:

III. PROPOSED WORK

Prposed Algorithm
Algorithm: Version of ARA
 1. initialize a. number of candidates: K = k;

Deepika Bhanot, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 57-60

2015-19, IJARCS All Rights Reserved 59

b. information query delay: D = d;
 /* load information updating*/
2. for each window of D time
a. send queries to all computing sites for load information;
b. update load information received from all computing
sites;
end
/* site selection process */
3. upon each job arriving
a. sort all sites Si, 1 ≤ i ≤ N, by current load information;
b. set S = {S1, S2, ..., SK};
/* get K sites with least load */
c. set s = uniform(1, K);
/* randomly select one site from the candidate set S */
d. submit the job to site Ss;
end
Given an incoming job and N available computing sites,
ARA finds K sites, where K ≤ N, as the best candidates for
serving that job, using queue length as the ranking criterion.
Then, that particular job will be randomly submitted or
enqueued to one site among the selected K candidates. The
value of K in ARA is critical for system performance, which
in turn should be set appropriately based on the intensity of
burstiness in workloads. For example,

• under the case of no burstiness in arrivals, K is set to small
values (i.e., close to 1). It turns out that ARA performs
exactly the same as the “greedy” load balancer, always
selecting the best site with shortest queue length;

• under the case of extremely strong burstiness in arrivals,
the number of best candidates is set equal (or close) to the
total number of available sites, i.e., K = N. Consequently,
ARA has behavior similar to the “random” method, which
allows the bursty workload to be shared among all sites,
therefore alleviating the imbalance of load;

• otherwise, K is set to the value between 1 and N.
As a result, ARA dispatches the load among sites
In proposed priority based scheduling algorithm we have
modified the scheduling for executing highest priority task
with advance reservation by preempting best-effort task as
done shows the pseudo codes of priority based scheduling
algorithm (PBSA)

Algorithm Priority Based Scheduling Algorithm (PBSA)
1. Input: UserServiceRequest
2. //call Algorithm 1 to form the list of task based on
priorities
3. getglobalAvailableVMList and
gloableUsedVMList and also
availableResourceList from each cloud schedular
4. // find the appropriate VM Listfromeach cloud
scheduler
5. if AP(R,AR) != ф then
6. // call the algorithm 1 load balancer
7. deployableVm=load-balancer(AP(R,AR))
8. Deploy service on deployableVM
9. deploy=true
10. Else if R has advance reservation and best-effort
task is running on any cloud then
11. // Call algorithm 3 CMMS for executing R
with advance reservation

12. Deployed=true
13. Else if globalResourceAbleToHostExtraVM then
14. Start newVMInstance
15. Add VMToAvailbaleVMList
16. Deploy service on newVM
17. Deployed=true
18. Else
19. queueserviceReuest until
20. queueTime>waitingTime
21. Deployed=false
22. End if
23. If deployed then
24. return successful
25. terminate
26. Else
27. return failure
28. terminate
As shown above in Algorithm PSBA, the customers’ service
deployment requests (R), which is composed of the SLA
terms (S) and the application data (A) to be provisioned, is
provided as input to scheduler (line 1 in Algorithm 1). When
service request (i.e. job) arrive at cloud scheduler, scheduler
divide it in tasks as per there dependencies then the
Algorithm PSBA is called to form the list of tasks based to
their priority (line 2). In the first step, it extracts the SLA
terms, which forms the basis for finding the VM with the
appropriate resources for deploying the application. In next
step, it collects the information about the number of running
VMs in each cloud and the total available resources (AR)
(line 3). According to SLA terms appropriate VMs (AP) list
is form, which are capable of provisioning the requested
service (R) (lines 4-5). Once the list of appropriate VMs is
form, the Algorithm 1- load-balancer decides which
particular VM is allocated to service request in order to
balance the load in the data center of each cloud (lines 6-9).
When there is no VM with the appropriate resources running
in the data center of any cloud, the scheduler checks if
service request (R) has advance reservation then it search for
best effort task running on any cloud or not, if it found best-
effort task then it calls

IV. CONCLUSION

In this thesis the load balancing issue in cloud computing
and analyzed various Algorithm techniques used in load
balancing. In cloud computing load balancing is the main
issue. Load balancing is required to distribute the excess
dynamic local. We proposed algorithm for efficient load
balancing. Various factor and parameter can be used for
further future scope

V. REFERENCES

[1] Saurabh Kumar Garg, Rajkumar Buyya, “Green Cloud

Computing and Environmental Sustainability”,IEEE (2012)
 [2] Gaganpreet Kaur Sehdev, Anil Kumar, “ Power Efficient VM

Consolidation Using Live Migration- A step towards Green
Computing”,IJSR,Vol.3,Issue 3,(March 2014).

[3]E. Di Nitto, D.J. Dubois, R. Mirandola, F. Saffre and R.
Tateson, Applying Self-Aggregation to Load Balancing:
Experimental Results. In Proceedings of the 3rd international
Conference on Bioinspired Models of Network, information
and Computing Systems (Bionetics 2008), Article 14, 25 – 28
November, 2008.

Deepika Bhanot, International Journal of Advanced Research in Computer Science, 6 (7), September–October, 2015, 57-60

2015-19, IJARCS All Rights Reserved 60

[4]O. Abu- Rahmeh, P. Johnson and A. Taleb-Bendiab, A
Dynamic Biased Random Sampling Scheme for Scalable and
Reliable Grid Networks, INFOCOMP - Journal of Computer
Science, ISSN 1807-4545, 2008,

[5]G. Cybenko, Dynamic Load Balancing for Distributed Memory
Multiprocessors. Journal of Parallel and Distributed
Computing Vol. 7(2), pp: 279-301, 1989.

 [6]W.M.P. van der Aalst, Don't go with the flow: Web services
composition standards exposed. IEEE Intelligent Systems,
18(1):72-76, 2003.

[7]Ankita Atrey, Nikita Jain and Iyengar N.Ch.S.N.. “ A Study On

Green Cloud Computing”, International Journal Of Grid and
Distributed Computing Vol.6, No.6 (2013).

 [8]Paulami Dalapati , G.Sahoo, “Green Solution for Cloud
Computing with Load Balancing and Power Consumption
Management”, IJETAE, Vol. 3,Issue 3,(March 2013)

