
��������	�
����	�
������������

��������������
������������������������������� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������

© 2010, IJARCS All Rights Reserved 99

ISSN No. 0976-5697

A Comparative Overview of Software Reliability Growth Models

S. M. K Quadri

Department of Computer Sciences

Kashmir University

Srinagar,India

quadrismk@hotmail.com

Razeef Mohd*
Department of Computer Sciences

Kashmir University

Srinagar,India

m.razeef@gmail.com

Nesar Ahmad
University Dept of Statistics and Computer Applications,

 T.M. Bhagalpur University,

Bhagalpur, India.

nesar_bgp@yahoo.co.in

Abstract: A software reliability growth model is one of the fundamental techniques used to assess software reliability quantitatively. The

software reliability growth model is required to have a good performance in terms of goodness-of-fit, predictability, and so forth. In this paper,

we will summarize some existing Software Reliability Growth Models (SRGM’s). Our main focus in this paper will be to provide a comparative

overview of the various SRGM’s in general. The comparison will mainly be on the basis of what type of Testing-Effort Function (TEF) is used

by which type of probability distribution function, to describe Testing-Effort curve. First, we provide overview of Software Reliability and

Software Reliability Growth Model. Next, with the intention of comparing various SRGMs we provide the Testing Effort Functions (TEFs)

given by various researchers. Then actual software data from the software projects have been used to demonstrate the comparison of SRGMs.

The evaluation results from the various SRGMs are analyzed and compared to show which SRGM has fairly better prediction in estimating

number of remaining faults, expected number of errors, future failure behavior from present and past failures, optimal release time and which

SRGM comparatively describes the actual expenditure pattern more faithfully during software development process.

Keywords: Software Reliability, Testing-Effort Function (TEF), Non-Homogenous Process(NHPP), Probability Distribution Function (PDF),

Fault, Failure, Software Reliability Growth Model (SRGM), Testing-Effort curve, Optimal Release Time, Failure-Intensity.

I. INTRODUCTION

Over the last few decades, there has been fast growth in

software development process and software management.

Efforts are being made to produce quality and reliable

software efficiently and effectively. As a result software

reliability has become a great concern for both developers

and users. Software reliability is one of the important

parameters of software quality and system dependability. It

is defined as the probability of failure-free software

operation for a specified period of time in a specified

environment [16], [17], [18], [9]. In highly complex modern

software systems, reliability is the most important factor,

since it quantifies software failures during the process of

software development and software quality control.

Software reliability can also be defined for software as the

probability of execution without failures for some specified

interval of natural units or time [18]. A failure is a departure

of system behavior in execution from user requirements and

it is the result of a fault. A fault is a defect that causes or can

potentially cause the failure when executed [18]. The

models applicable to the assessment of software reliability

are called SRGMs. SRGM are useful for estimating how

software reliability improves as faults are detected and

repaired. It can be used to predict when a particular level of

reliability is likely to attained and also helps in determining

when to stop testing to attain a given reliability level.

SRGMs help in decision making in many software

development activities such as number of initial faults,

failure intensity, reliability within a specified interval of

time period, number of remaining faults, cost analysis and

release time etc. A software reliability model describes

failures as random process as failures are result of two

processes: The introduction of faults and then activation

through selection of input states, both of these processes are

random in nature. So SRGM is generally described as the

probability distribution of the value of the random process

at each point in time. SRGMs are developed in general by

probability distribution of failure times or the number of

failures experienced and by the nature of the random

process with time. To achieve highly reliable software

systems, many software fault detection/ removal techniques

can be used by programmers or testing teams. In applying

these techniques, the SRGM are important, because they can

provide quite useful information for developers and testers

during the testing/debugging phase. Many researchers have

also tried to compare various SRGMs [25] by using actual

failure data.

Numerous SRGMS have been developed during the last

three decades and they can provide very useful information

about how to improve reliability [16], [18], [29], [21]. The

effort index or the execution time is better time domain for

software reliability modeling than the calendar-time because

Razeef Mohd et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011, 99-105

© 2010, IJARCS All Rights Reserved 100

the shape of observed reliability growth curve depends

strongly on the time distribution of testing-effort [17], [20].

II. TESTING EFFORT BASED SOFTWARE

RELIABILITY MODELING

[a] Testing-Effort Function:

In software testing many testing-efforts are consumed,

such as the CPU time, the human power and executed test

cases. So testing-effort can be measured by the human

power, the number of test cases the number of CPU hours,

etc [26].Software reliability models should be developed by

incorporating the Testing-Effort Functions (TEFs) in real

development environment. When applied extensively to real

software development projects, these models provide a

reasonable fit to the observed data and give insightful

interpretations for the resource consumption process during

the software development [7][8]. Much testing-effort is

consumed during software testing phase. The consumed

testing-effort indicated how the errors are detected

effectively in the software and can be modified by different

distributions [31], [18], [17], [28], [30], [32], and [11].

Many authors have incorporated different Testing-Effort

Functions in software reliability growth modeling. Some of

them are below:

[b] Different Testing- Effort functions:-

[a] Yamada Exponential Curve [31]: For 1θ = and 1m = ,

there is an exponential testing-effort function, and the

cumulative testing-effort consumed in time (0, t) is:

() .(1), 0, 0.tW t e βα α β−= − > >

[b] Yamada Rayleigh curve [32]: For 1θ = and 2m= there is

a Rayleigh testing-effort function, and the cumulative

testing-effort consumed in time (0,]t is:

2

() .(1), 0 , 0.t
W t e

βα α β−= − > >

[c] Yamada Weibull curve [24]: For 1θ = there is a Weibull

testing-effort function, and the cumulative testing-effort

consumed in time (0,]t is:

 () .(1), 0, 0, 0.
m

tW t e mβα α β−= − > > >

[d] Generalized Exponential curve [21]: For 2m = there is

a generalized exponential testing-effort function, and

the cumulative testing-effort consumed in time (0,]t is:

 () .(1) , 0, 0, 0.tW t e β θα α β θ−= − > > >

[e] Burr Type Χ curve [22]: For 2m = , there is Burr type

Χ testing-effort function, and the cumulative testing-

effort consumed in time (0,]t is:

2

() .(1) , 0, 0, 0.t
W t e

β θα α β θ−= − > > >

 [f] New Modified Weibull curve [23]: proposed the NMW

testing-effort function, and the cumulative testing-effort

consumed in time (0,]t is:
..() .(1) , 0, 0, 0, 0.

m t
t e

W t e m
δβα α β δ−= − > > ≥ >

Where , , , ,m andα β δ θ are constant parameters, α is the

total amount of testing-effort expenditures; β and δ are the

scale parameters, and ,m θ are shape parameters.

III. SOFTWARE RELIABILITY GROWTH

MODEL

The mathematical expression of TE-based is:
()

/ () () [()], 0, 0 () 1
dm t

w t r t a m t a r t
dt

= ⋅ − > < < (1)

()
() () [()], 0, 0 () 1

dm t
w t r t a m t a r t

dt
= ⋅ ⋅ − > < < (2)

The basic SRGM is based on the following assumptions:

[a] The fault removal process is NHPP.

[b] The software system is subject to failures at random

times caused by the manifestation of remaining faults in

the system.

[c] The mean number of faults detected in (,]t t t+ ∆ ,

()d m t

d t
 by the current ()W t is proportional to the

mean number of remaining faults in the system.

[d] ()r t is function of time (not just a constant).

[e] The time dependent behavior of TE can be modelled by

the logistic, Weibull, Rayleigh or Exponential

distribution.

[f] Each time a failure occurs, the fault that caused it is

immediately and perfectly removed, and no new faults

are introduced.

[g] Correction of errors takes only negligible time and

detected error is removed with certainty.

Non-Homogeneous Poisson Process (NHPP) as a

stochastic process has been successfully used in the

reliability study of software system. For stochastic modeling

of software error detection phenomenon, a counting process

is defined as (), 0N t t≥ , where ()N t represents the

cumulative number of software errors detected by testing

time t with mean value function ()m t .SRGM based on

NHPP under the assumption of Goel and Okumoto (1997)

is formulated as:
()[()]

Pr{ () } , 0,1, 2, ...
!

n m tm t e
N t n n

n

−⋅
= = = (3)

In general, an implemented software system is tested to

detect and correct software errors in the software

development process. During the testing phase software

errors remaining in the system cause software failure and

the errors are detected and corrected by test personnel.

Based on the above assumptions, if the number of the

detected errors by the current testing-effort(TE) expenditure

is proportional to the number of remaining errors, then the

following different equation [31], [19], [32], [30], [13], [5],

[2], [1] is obtained:
()

/ () [()], 0 , 0 1
dm t

w t r a m t a r
dt

= ⋅ − > < < (4)

Where ()m t represent the expected mean number of

errors detected in time (0,]t which is assumed to be a

bounded non-decreasing function of t with (0) 0, ()m w t= is

the current testing-effort expenditure at time t, a is expected

number of initial error in the system, and r is the error

detection rate per unit testing-effort at time t . Solving the

above differential equation, we get
()

() .(1)
r W t

m t a e
⋅

= − (5)

Substituting ()W t from the various cumulative testing-

effort expenditure consumed in time (0,]t given by various

authors above mentioned, we get

Razeef Mohd et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011, 99-105

© 2010, IJARCS All Rights Reserved 101

1)
(1)

() (1).

m t
t er e

m t a e

δβα
⋅− ⋅ ⋅⋅ ⋅ −

= ⋅ − (6a)

A NHPP model with mean value function incorporating

the NMW testing-effort expenditure (Quadri et al 2010)

2)
(1)

() (1).

mtr e
m t a e

β θα − ⋅⋅ ⋅ −
= ⋅ − (6b)

A NHPP model with mean value function incorporating

the Exponential Weibull (EW) testing-effort expenditure

(Quadri et al 2007)

3)

2
(1)() (1).

t
r e

m t a e
β θα − ⋅− ⋅ ⋅ −= ⋅ − (6c)

A NHPP model with mean value function incorporating

the Burr Type X testing-effort expenditure. (Quadri et al

2009).

4)
(1)

() (1).
t

r e
m t a e

β θα − ⋅⋅ ⋅ −
= ⋅ − (6d)

A NHPP model with mean value function incorporating

the Generalized Exponential testing-effort expenditure.

(Quadri et al 2006)

In addition, the failure intensity at testing time t of the

various NHPP is given by
() ()

() ()
dm t r W t

t a r w t e
dt

λ
− ⋅

= = ⋅ ⋅ ⋅ (7)

The expected number of errors to be detected

eventually is:

() (1)
r a

m a e
− ⋅

∞ = ⋅ − (8)

This implies that even if a software system is tested

during an infinitely long duration, all errors remaining in the

system cannot be detected [19], [32] Thus, the mean number

of undetected errors if a test is applied for an infinite

amount of time is

() (1)
r a

a m a a e
− ⋅

− ∞ = − ⋅ −
r a

a e
− ⋅

= ⋅ (9)

That is, not all the original errors in a software system

can be fully tested with a finite testing effort since the effort

expenditure is limited to α .

IV. SOFTWARE RELIABILITY MEASURES

Based on the NHPP model with ()m t , we can derive the

following quantitative measures for reliability assessments

[3], [32]. If ()N t represent the number of errors remaining in

the system at testing time t , then the mean of ()N t and its

variance for various SRGM models are given by
() [()] [()] ()] () ()

() ()() [()]

r t E N t E N N t m m t

r W t r W
a e e Var N t

= = ∞ − = ∞ −

− ⋅ − ⋅ ∞= ⋅ − =

 (10)

The software reliability represents the probability that no

failure occurs in the time interval (,)t t t+∆ given that the last

failure occurred at time t∆ is given by

() ()[() ()] [](|)
rW t rW t tm t t m t a e eR R t t e e

− ⋅ − ⋅ +∆+∆ − − −= ∆ = = (11)

The instantaneous mean time between failures (MTBF)

at arbitrary testing can be defined as a reciprocal of error

detection rate in (7). Then, the instantaneous MTBF is given

by

(1)1
()

() 1()

m t
t er e

e
MTBF t

m tt m t t ea r m t t e e

δβα

δλ δ βα β δ

⋅⋅ ⋅⋅ ⋅ −
== =

⋅− ⋅ − ⋅ ⋅⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

 (10)

V. PARAMETER ESTIMATION METHODS

MLE and LSE techniques are used to estimate the

model parameters [18], [17], [16]. Estimation of maximum

likelihood is a general technique that may be applied when

the underlying distribution of the data are specified or

known and is better in deriving confidence intervals and the

asymptotic normal distribution for ML estimates. On the

other hand, LSE is fairly general technique which is applied

in most practical situations for small or medium size data for

better estimates [22], [23], [24], [27], [18], [6], [4]. It

minimizes the sum of squares of the deviation between what

we expect and what we actually observe. In using LSE one

of the common assumptions is that the standard deviation of

the error term is constant over all the values of the predictor

variable. This assumption, however clearly does not hold in

every modeling application. For example, in testing effort

data, it may appear that the precision of testing effort varies

as the time changes. In such situations, when it may not be

reasonable to assume every observation should be treated

equally, one could use WLSE to maximize the efficiency of

parameters estimation [22]. Sometimes, however, the

likelihood equations may be complicated and difficult to

solve explicitly. In that case one may have to solve with

some numerical methods to obtain the estimates.

[a] Least square method (LSE)

The various parameters e.g. , , , andmα β θ δ in the various

testing-effort function [27], [8], [22], [23], can be estimated

by the method of LSE. These parameters are determined for

n observed data pairs in the

form (,)(1,2,..., ;t W k nk k = 0 ...)1 2t t tn< < < < , where Wk

is the cumulative testing effort consumed in time (0,]tk

[b] Maximum likelihood method

Suppose that the estimated testing-effort parameters

like ˆ ˆˆ ˆ, , andmα β δ in various current testing-effort

functions have been obtained by the method of least squares

discussed earlier. The estimators for a and r are

determined for n observed data pairs in the form

(,) (1, 2 , ... , ; 0 ...) ,1 2t y k n t t tk k n= < < < < where yk is the

cumulative number of software errors detected up to time tk .

VI. PERFORMANCE ANALYSIS

In order compare performance analysis of various

existing/proposed models, experiments on actual software

failure data have been performed.

A. Criteria for Model Comparison

To evaluate the performance of a software reliability

growth model and to make a fair comparison with the other

existing SRGM, we describe the following comparison

criteria.

[a] The Accuracy of Estimate (AE) is defined [18], [31],

[4], [13] as:

 AE = M aa

M a

− , Where Ma is the actual cumulative

number of detected errors after the test, and a is the

estimated number of initial errors. For practical purposes,

Razeef Mohd et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011, 99-105

© 2010, IJARCS All Rights Reserved 102

aM is obtained from software error tracking after software

testing.

[b] The mean of Squared Errors (Long-term predictions) is

defined [16], [4], [13] as:

 MSE = 1 2[()] ,1
1

k
m t mi

k i

−�
=

 Where ()m ti , is the expected

number of errors at time ti estimated by a model, and

()m ti is the observed number of errors at time ti . MSE

gives the qualitative comparison for long-term predictions.

A smaller MSE indicates a minimum fitting error and better

performance [6], [10], [11].

[c] The Coefficient of Multiple Determination is defined

[18], [17] as:

() ()
()

ˆ ˆ ˆˆ ˆ ˆ,0 ,1,1 , , ,
2

ˆ̂ ,0 ,1,1

S S m
R

S

α α β δ

α

−
= , Where ˆ̂α is the LSE of

α for the model with only a constant term, that is 0β = ,

1m= and 1δ = in (12). It is given by in

ˆ̂α =
1

ln

1

n
W k

n k
�
=

.Therefore,
2

R measures the

percentage of total variation about the mean accounted

for by the fitted model and tells us well a curve fits the

data. It is frequently employed to compare models and

assess which model provides the best fit to the data.

The best model is the one which provides the higher 2
R ,

that is, closer to 1 [12]. To investigate whether a

significant trend exists in the estimated testing-effort,

one could test the hypothesizes : 0, 10H mβ = = and 1δ = ,

against : 01H β ≠ or at least m or 0δ ≠ using F-test by

merely forming the ratio

{ } ()
{ }

ˆ ˆ ˆ ˆˆ ˆ ˆ,0,1,1 , , , /3

ˆ̂,0,1,1 /(4)

S S m

F
S n

α α β δ

α

� �−
� �� �

=
−

If the value of F is greater that (3, 4)F nα − , which is the

α percentile of the F distribution with degrees of freedom

3 and n-4, we can be (1)100α−) percent confident that 0H

should be rejected, that is, there is a significant trend in the

testing-effort curve.

[d] The Predictive Validity is defined [18], [17] as the

capability of the model to predict future behavior from

present and past failure behavior. Assume that we have

observed q failures by the end of test time tq . We use

the failure data up to time ()0t tq≤ to determine the

parameter of ()m t . Substituting the estimates of these

parameters in the mean value function yields the

estimate of the number of failures ˆ ()m tq by t q . The

estimate is compared with the actually observed number

q. This procedure is represented for various values of

te .The ratio
ˆ ()m t qq

q

−
 is called the relative error.

Values close to zero for relative error indicate more

accurate prediction and hence a better model. We can

virtually check the predictive validity by plotting the

relative error for normalized test time /t te q .

B. Other Comparison criteria for evaluation [14], [15]:

[a] () () Prediction Error() Actual observed Predicted Estimate
i i

PE = −

[b] Variation =
2()

1

1

n
PE Biasi

i

n

−�
=

−

[c] Bias =
1

1

n
P Ei

n i

⋅ �
=

[d] RMS-PE = 2 2
Bias Variation+

[e] MRE = M Mestim ated actual

M actual

−

[f] BMMRE =
1

min(,)1

n M Mestimated actual

n M Mestimated actuali

−
⋅ �

=

C. Description of the Actual Data Set

Table1: Comparative results of different SRGM for DS1

95% CONFIDENCE LIMIT FOR DIFFERENT SELECTED

MODELS (DSI)

Models
a r

Lower Upper Lower Upper

SGRM with Burr

type X TEF [22]
445.7304 685.6162 0.01372 0.02556

SGRM with

Exponential

Weibull TEF[24]

446.360 684.926 0.01375 0.02554

SGRM with New

Modified

Weibull TEF[23]

433.29 700.02 0.0130 0.026

SGRM with

Gompertz TEF
385.1 489.5 0.02585 0.03917

SGRM with

Logistic TEF
358 433.2 0.03399 0.04928

SGRM with

Rayleigh TEF
348.6 569.6 0.01651 0.03817

Yamada Delayed

shaped Model

with Logistic

TEF

300.8 361 0.09423 0.1334

Yamada Delayed

shaped Model

with Rayleigh

TEF

291 347.5 0.1088 0.1589

Yamada Delayed

S shaped Model

with Rayleigh

TEF

288.7 377.7 0.07507 0.1258

G-O Model 465.4 1056 0.01646 0.04808

Yamada Delayed

S shaped Model
343.7 404.4 0.1748 0.2205

DS 1: The first set of actual data is from the study by

Ohba [20]. The system is PL/1 data base application

software, consisting of approximately 1,317, 000 lines of

code. During the nineteen weeks experiments, 47.65 CPU

hours were consumed and about 328 software errors were

removed. The study reports that the total cumulative number

of detected faults after a long period of testing is 358.

 In order to estimate the parameters ˆ ˆˆ ˆ, , andmα β δ of the

various testing-effort function; we fit the actual testing

effort data into various current testing effort function [27],

[8], [22], [23] and solve it by using the various methods of

estimation mentioned before. The estimated parameters for

Razeef Mohd et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011, 99-105

© 2010, IJARCS All Rights Reserved 103

various SRGM’s are obtained and there comparative result

is shown as:

 Table2: Comparison Results for Different TEF Based on DS1

Model a r AE

(%)

MSE

Proposed Model by Quadri et, al

2010 (Eqn. (6a) with New modified

Weibull curve)

566.66 0.0196 58.28 103.1

Proposed Model by Quadri et, al

2009 (Eqn. (6d) with Burr Type X

TEF)

565.67

3

0.0196

4
69.15 123.67

Proposed Model by Quadri et, al

2008 (Eqn. (6b) with Exponential

Weibull curve)

565.64

3

0.0196

4
57.98 113.10

Yamada exponential model (Eqn. (5)

with exponential curve)
828.25 0.0118 131.4 140.7

Yamada Rayleigh model (Eqn. (5)

with Weibull curve)
565.35 0.0197 57.91 122.1

Huang Logistic model 394.08 0.0427 10.06 118.6

Ohba exponential mode 455.37 0.0267 27.09 206.9

Inflection S-shaped model 389.1 0.0935 8.69 133.3

Delayed S-shaped model 374.05 0.1977 4.48 168.7

G-O model 760.0 0.0323 112.3 139.8

Delayed S-shaped model with

Rayleigh
333.14 0.1004 6.93 798.5

Table3: Summary of estimates of various NHPP model parameters for DS1

Distributions

Parameter Logistic Rayleigh Exponential

Bias 0.0548 -1.1469 -16.5313

Variation 0.3508 3.4579 6.3495

RMS-PE 0.3551 3.6440 17.7087

MRE -0.0040 0.2384 -0.5254

PE end of testing -0.1022 6.0332 -13.2936

BMMRE 24.3718 65.2980 81.4501

VII. CONCLUSION

In this research emphasis is given on comparison of

some of the existing SRGMs incorporating various TEFs,

we also provided an overview of general SRGM and basic

assumptions that is followed by them. The use and

applicability of such models during software development

and operational phase is important. The objective was to

provide a comparative analysis of some of the models that

would be helpful in determining which model, if any, to use

in a given software development environment. It should be

noted that the above analytical models are primarily useful

in estimating and monitoring software reliability. The

models are compared using actual software data. One

unique contribution of this paper is that we do not add any

new models to the already large collection of SRGMs,

rather we emphasize on the comparison of some of the

existing SRGMs used in the software development process.

VIII. REFERENCES

[1] Bokhari, M.U. and Ahmad, N., “Software reliability

growth modeling for Exponentiated Weibull function

with actual software failures data, “ In: Proceedings of

3rd International Conference on Innovative

Applications of Information Technology for

Developing World (AACC’2005), Nepal, 2005.

[2] Bokhari, M.U. and Ahmad, N., “Analysis of a software

reliability growth models: the case of log-logistic test-

effort function, “In: Proceedings of the 17th

International Conference on Modeling and Simulation

(MS’2006), Montreal, Canada, pp. 540-545, 2006.

[3] Goel, A.L. and Okumoto, K. , “Time dependent error-

detection rate model for software reliability and other

performance measures, “ IEEE Transactions on

Reliability, Vol. R- 28, No. 3, pp. 206-211, 1979

[4] Huang, C.Y. and Kuo, S.Y. , “ Analysis of

incorporating logistic testing-effort function into

software reliability modeling, “ IEEE Transactions on

Reliability, Vol. 51, no. 3, pp. 261-270, 2002.

[5] Huang, C. Y. “Performance analysis of software

reliability growth models with testing-effort and

change-point, “Journal of Systems and Software, Vol.

76, pp. 181-194, 2005.

[6] Huang, C.Y., Kuo, S.Y. and Chen, I.Y., “Analysis of

software reliability growth model with logistic testing-

effort function, “In: Proceeding of 8th International

Symposium on Software Reliability Engineering

(ISSRE’1997), Albuquerque, New Mexico, pp. 378-

388, 1997.

[7] Huang, C. Y., Lo, J.H., Kuo, S. Y., “A pragmatic study

of parametric decomposition models for estimating

software reliability growth,” in Proc. 9th Int’l. Symp.

Software Reliability Engineering (ISSRE’98), 1998, pp.

111-123.

[8] Huang, C. Y., Kuo, S. Y., and Lyu, M. R,” Effort-

Index-based software reliability growth model and

performance assessment,” in Proc. 24th Ann. Int’l.

Computer Software and Applications Conf.

(COMPSAC 2000), 2000.

[9] Kapur, P.K. and Garg, R.B. , “Cost reliability optimum

release policies for a software system with testing

effort, “ Operations Research, Vol. 27, no. 2, pp. 109-

116, 1990.

[10] Kapur, P.K. and Garg, R.B. “Modeling an imperfect

debugging phenomenon in software reliability,

“Microelectronics and Reliability, Vol. 36, pp. 645-650,

1996.

[11] Kapur, P.K., Garg, R.B. and Kumar, S., Contributions

to Hardware and Software Reliability, World Scientific,

Singapore, 1999.

[12] Kumar, M., Ahmad, N. and Quadri, S.M.K., “Software

reliability growth models and data analysis with a

Pareto test-effort, “RAU Journal of Research, Vol., 15

(1-2), pp. 124-128, 2005.

[13] Kuo, S.Y., Hung, C.Y. and Lyu, M.R., “Framework for

modeling software reliability, using various testing-

Razeef Mohd et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan. –Feb, 2011, 99-105

© 2010, IJARCS All Rights Reserved 104

efforts and fault detection rates, “ IEEE Transactions on

Reliability, Vol. 50, no.3, pp 310-320, 2001.

[14] K. Srinivasan and D. Fisher, “Machine learning

approaches to estimating software development effort,”

IEEE Trans. Software Engineering, vol.21, no. 2, pp.

126–136, 1995.

[15] K. Pillai and V. S. S. Nair, “A model for software

development effort and cost estimation,” IEEE Trans.

Software Engineering, vol. 23, no. 8. Aug. 1997.

[16] Lyu, M.R., Handbook of Software Reliability

Engineering, McGraw- Hill, 1996.

[17] Musa J.D., Software Reliability Engineering: More

Reliable Software, Faster Development and Testing,

McGraw-Hill, 1999.

[18] Musa, J.D., Iannino, A. and Okumoto, K., Software

Reliability: Measurement, Prediction and Application,

McGraw-Hill, 1987.

[19] Ohba, M., “Software reliability analysis model” IBM

Journal. Research Development, Vol. 28, no. 4, pp.

428-443, 1984.

[20] Pham, H. (2000), Software Reliability, Springer-Verlag,

New York, 2000.

[21] Quadri, S.M.K., Ahmad, N., Peer, M.A. and Kumar, M.,

“Non homogeneous Poisson process software reliability

growth model with generalized exponential testing

effort function, “RAU Journal of Research, Vol., 16 (1-

2), pp. 159-163, 2006.

[22] Ahmad, N., Khan, M.G.M., Quadri, S.M.K., and

Kumar, M, ”Modeling and analysis of software

reliability with Burr type X testing-effort and release

determination,” Journal of Modeling in Management,

vol 4, No 1, 2009, pp. 28-54. Emerald Group

Publishing Limited.”

[23] Quadri, S.M.K., Ahmad, N, “Software Reliability

Growth modeling with New modified Weibull testing–

effort and optimal release policy” Int’l Journal of

Computer Applications Vol6, No. 12, September 2010.

[24] Ahmad, N., Bokhari, M. U., Quadri, S.M.K., and Khan,

M.G.M., ”The Exponential Weibull Software

Reliability Growth model with testing–effort and

optimal release policy ,” Int’l Journal of Quality and

Reliability Management Vol. 25, No. 2, 2008, pp. 211-

235, Emerald Group Publishing Limited.

[25] Quadri, S.M.K., Mohd Razeef,” Software Reliability

Growth Models: A Comparative Study” JK Science

Congress, pp. 299-300, December 2010.

[26] Sy-Yen, Kuo., Chin-Yu Huang. and Michael, R. Lyu.,

“Framework for modeling software reliability, Using

Various Testing-Efforts and Fault-Detection Rates, “

IEEE Transactions on Reliability, Vol. 50, no. 3, 2001.

[27] Tohma, Y., Jacoby, R., Murata, Y. and Yamamoto, M.,

“Hyper-geometric distribution model to estimate the

number of residual software fault, “In: Proceeding of

COMPSAC-89, Orlando, pp. 610-617, 1989.

[28] Tang, Y. et. al. “ Statistical Analysis of a Weibull

Extension Model, “ Communications in Statistics,

Theory and Analysis, pp. 911-916, 2003

[29] Yamada, S. and Osaki, S., “Cost-reliability optimal

release policies for software systems, “ IEEE

Transaction on Reliability, Vol. R-34, no. 5, pp. 422-

424, 1985b.

[30] Yamada, S., and Osaki, S., “Software reliability growth

modeling: models and applications, “ IEEE Transaction

on Software Engineering, Vol. SE-11, no. 12, pp. 1431-

1437, 1985a.

[31] Yamada, S., Hishitani J. and Osaki, S., “Test-effort

dependent software reliability measurement, “

International Journal of Systems Science, Vol. 22, no.

1, pp. 73-83, 1991.

[32] Yamada, S., Ohtera, H. and Narihisa, H., “A testing-

effort dependent software reliability model and its

application, “Microelectronics and Reliability, Vol. 27,

no. 3, pp. 507-522, 1987.

