
Volume 6, No. 6, July - August 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 172

Novel Approach to Factorize the RSA Public Key Encryption
Ms. Mrinalini shringirishi1

Assistant professor Bundelkhand Institute of Engineering
Technology & P.h.d Scholor M.tech (C.S.) Jhansi (U.P.)

Dr. Manoj Gupta2
Director Bundelkhand Institute of Engineering Technology

Jhansi (U.P.)

Dr. Anil Kumar Solanki3

Head of Deptt. Information Technology
 Bundelkhand Inst. of Engineering Technology Jhansi (U.P.)

Dr. Yashpal singh4
Head of Deptt. Computer science & Technology

Bundelkhand Inst. of Engineering Technology Jhansi (U.P.)

Ms. Pritee Gupta5

Assist. Professor Department of computer science & engineering
I.T.S Engineering College Noida

Abstract The security of public key encryption such as RSA algorithm relied on the integer factoring problem of N. The security of RSA
algorithm based on positive integer N, which is the product of two large prime numbers, the factorization of N is very complex. In this paper a
factorization method is proposed, which is used to obtain the factor of positive integer N. Prime numbers play a very important role in the
complexity and security of the public key crypto system. RSA Algorithm is one type of public key algorithm and its security depends on the
complexity of factoring value of N. Any encryption algorithm depends on the length of the key and the computational effort required breaking
the key. This paper introduces an efficient algorithm to attack on the RSA algorithm. Obtaining the private key of the RSA algorithm is the
target of the suggested algorithm by factoring the modulus based on the public key (N, e) of the RSA algorithm. The suggested algorithm is very
fast due to its treatments for the factorizing problem. It will limit the search for the two prime no’s p & q values. The suggested algorithm is
more efficient than most existed algorithms of attack since it will interrupt the search process and takes less running
time.

Keywords-Public Key Cryptography, RSA Algorithm, Factorization Problem, Attacks, Public Key Cryptography.

I. INTRODUCTION

Public key cryptography is one of the applications that
are valuable in sending information via insecure channel.
RSA algorithm is a public key encryption algorithm. RSA
has become most popular cryptosystem in the world because
of its simplicity. According to number theory, it is easy to
finds two big prime number, but the factorization of the
product of two big prime numbers is very difficult task. The
difficulty of computing the roots N, where N is the product
of two large unknown primes, it is widely believed to be
secure for large enough N. Since RSA can also be broken
by factoring N, the security of RSA is often based on the
integer factorization problem [1]. The integer factorization
problem is a well-known topic of research within both
academia and industry. It consists of finding the prime
factors for any given large modulus. Currently, the best
factoring algorithm is the general number field sieve or
GNFS for short. On December 12, 2009 a small group of
scientists used the previously mentioned approach to factor
a RSA-768 bit modulus, that is, a composite number with
232 decimal digits. Their achievement required more than
two years of collaborative work and used many hundreds of
computing machines. Hence, factoring large primes is a
laborious and complex task [2]. A method for factoring
algorithm (specially designed) for semi primes based on
new mathematical ideas. Since this method is relatively
simple and scalable, it can be suitable for parallel processing
[2]. But the main condition of this algorithm is that to break

RSA modulus firstly we should have public key and
modulus N. On the basis of this public key (e, N) proposed
algorithm disclose the private key [3]. An attacker has
access to the public key e and N and the attacker wants the
private key d. To get d, N needs to be factored (which will
yield p and q, which can then be used to calculate d).

Factoring n is the best known attack against RSA to
date. (Attacking RSA by trying to deduce (p-1) (q-1) is no
easier than factoring N, and executing an exhaustive search
for values of d is harder than factoring N.) Some of the
algorithms used for factoring are as follows Trial division
oldest and least efficient Exponential running time. Try all
the prime numbers less than sqrt (N). Quadratic Sieve (QS):
The fastest algorithm for numbers smaller than 110 digits.
Multiple Polynomial Quadratic Sieve (MPQS): Faster
version of QS. Double Large Prime Variation of the MPQS
Faster still. Number Field Sieve (NFS) Currently the fastest
algorithm known for numbers larger than 110 digits. These
algorithms represent the state of the art in warfare against
large composite numbers against RSA. We can identify
many approaches to attacking RSA mathematically, factor N
into two prime factors.

II. RSA ALGORITHM

In 1978, RSA developed a public key cryptosystem that
is based on the difficulty of integer factoring. The RSA
public key encryption scheme is the first example of a
provable secure public key encryption scheme against
chosen message chosen attacks [5].

Mrinalini Shringirishi et al, International Journal of Advanced Research in Computer Science, 6 (6), July-August, 2015,172-176

© 2015-19, IJARCS All Rights Reserved 173

Figure: 1

A. The RSA Algorithm is as follows [6]:
Key generation algorithm, to generate the keys entity A

must do the following:
a. Randomly and secretly select two large prime numbers

p and q both are prime but p! =q.
b. Compute the N = p*q.
c. Compute Euler Totient function phi (N) = (p-1) (q-1).
d. Select random integer e, 1<e<N, where gcd (e, (n))=1
e. Compute the secret exponent d, 1 < d < phi, such that ed

=1(mod (phi)).
f. The public key is (N, e) and the private key is (N, d).

Keep all the values d, p, q and phi secret. N is known as
the modulus.

e is known as the public exponent or encryption exponent or
just the exponent.
d is known as the secret exponent or decryption exponent

B. Public key encryption algorithm:
Entity A encrypt a message M for entity B which

entity decrypt. Entity A should do the following operations:
Obtain entity A’s public key (N, e)
Represent the message M as an integer in the interval
[0….N-1].
Compute C= (M) power mod N.
Send the encrypted message C to entity B.

C. Decryption:

To recover the message m from the cipher text C. Entity
B performs the following operations:
Obtain the cipher text C from entity A.
Recover the message M = (C) power d mod n.

D. Literature Survey
The RSA Factoring Challenge was started in March

1991 by RSA Data Security to keep abreast of the state of
the art in factoring. Since its inception, well over a thousand
numbers have been factored, with the factories returning
valuable information on the methods they used to complete
the factorizations. The Factoring Challenge provides one of
the largest test-beds for factoring implementations and
provides one of the largest collections of factoring results
from many different experts worldwide. In short, this vast
pool of information gives us an excellent opportunity to
compare the effectiveness of different factoring techniques
as they are implemented and used in practice. Since the
security of the RSA public-key cryptosystem relies on the
inability to factor large numbers of a special type, the
cryptographic significance of these results is self-evident.
Some factorization methods are explored in following
paragraphs: J [N, (k. N) + ∆] and gcd [N, (k. N) – ∆] result
in nontrivial factors of N for different values of ∆ where N is
the reverse of N and k is a positive integer ranging from one
to infinity. Sattar J Aboud [3] was introducing a method
that breaking the RSA Algorithm based on the knowing

Mrinalini Shringirishi et al, International Journal of Advanced Research in Computer Science, 6 (6), July-August, 2015,172-176

© 2015-19, IJARCS All Rights Reserved 174

public key (e, N). This method will work efficiently if the
decryption key d is small.

Aboud and AL-Fayoumi [2] tried analysis the algorithm
reversely. By other way, find (d) value firstly, the Euler, and
then prime numbers (p, q) by converting the number type of
n value to binary and assuming some equations to define the
key.

E. Attacks:
The RSA function is an example of a one-way trapdoor

function (definition here [8]). It is not known to be easily
invertible without the trapdoor, d. General attacks on RSA
involve trying to compute d, or some other way to get to M.
We will even discuss a way to forge a signature if Alice is
not careful. Marvin may know only <C, e, N>, or
<C,M,e,N> (known plaintext/ciphertext). RSA will be
shown to hold up to all known attacks.

F. Brute Force, Factoring N, computing eth root
modulo N:

Given <C, e, N>, Marvin can do a brute force search to
find M. But factoring N involves a much smaller search
space and thus, more efficient to do. Factoring is a well
researched problem. Pomerance has an interesting
introduction into what clever methods can be done. For
example, how to factor 8051? Naïve approach is trying all
primes up to square root of 8051, or almost 90. Clever trick
is to find a square of primes that subtract to the number,
example 90^2 – 7^2 = 8051. Thus (90 – 7) * (90 + 7) =
8051; 83 & 97 are the factors. However, this trick is only
easy if factors are close to square root of the number. There
are only a very small set of numbers where this is true. But
much more sophisticated methods are known. Currently the
general number field sieve is the best known running time
with, reported by Boneh [6], a time on n-bit integers of
Exp((c + o(1))n^1/3 log^2/3 n) for some c < 2.

To be complete, Peter Shor [10] has shown a quantum
computer has a polynomial time algorithm for factoring
integers. But engineering a quantum computer still has a
way to go, so RSA is safe for now.

RSA security depends on the computation to be
unreasonable for 1) the factoring of N, and 2) computing the
eth roots modulo N. The first is fairly well researched and
complexity is understood. However, the second is an open
question. It has not yet been proven that taking the eth roots
modulo N is at least as hard as factoring N. This means
RSA security has not been proven to be at least as hard as
factoring. But it has withstood time and a large amount of
research, which is encouraging that it will stay secure well
into the future.

G. Elementary misuse of RSA:
Fixing N. One blatant misuse of RSA would be using

the same modulus N for all users. So instead, have a central
authority issue out unique e,d pairs to each user. This sort
of works, in the fact that C1 = M^e1 mod N can only be
decrypted with corresponding pair d1. So a different user
with e2, d2 doesn’t appear able to decrypt. But from the
property that knowing <e,d,N> you can factor N, then the
game is over. Any user can use their ei,di pair to factor N.
Then, given any other user’s ej and the factors of N, dj can
be computed. RSA key pairs should never use the same N
twice.

Signature forgery can be done with a technique called
blinding. If Alice ever “blindly” signs M, then Marvin
might be able to forge Alice’s signature. If Marvin sends
evil plaintext M for Alice to sign, it’s easy to assume Alice
would reject and not sign it. But what if Marvin sends a
random, harmless looking M? Depending on the
implementation, Alice might be fooled and sign it. Marvin
then can take advantageous of this is by generating M’ = r^e
M mod N, for some random r. If Alice provides a signature,
S’ on M’, then Marvin can compute Alice’s signature S for
M by S = S’/ r mod N. Proof:

S = S’ / r mod N
 = M’^d / r mod N
 = (M r^e)^d / r mod N
 = M^d r^ed / r mod N
 = M^d r/r mod N
 = M^d mod N
Alice should never freely sign a random M.

H. Low private exponent:
Having a low private exponent d will reduce decryption

and signature computing costs. However, too low of a d is
insecure. Boneh [6] describes approximations using
fractions can allow Marvin to solve for a small d that is d <
1/3 N^1/4. If N is 1024 bits, then d should be at least 256
bits long.

I. Low public exponent:
Having a low public exponent will reduce encryption

and signature validation computing costs. However, too low
of an e is also insecure. Today’s standard e is set at 2^16 +
1. This is a large enough value to avoid attacks and needs
only 17 mod multiplications for M^e mod N using repeated
squares.

But if a very small e is used instead, it can be subject to
attacks such as Hastad’s Broadcast Attack. If the same M is
encrypted with many users <e,N> keys and broadcasted out,
Marvin can collect each and compute M. If all users have
the same e, then Marvin needs to collect at least e messages.
Restating Boneh [6], take example if e=3:
C1 = M^3 mod N1, C2 = M^3 mod N2, C3 = M^3 mod N3
M < {N1, N2, N3} thus M^3 < N1N2N3
Using CRT C1C2C3 = M^3 mod N1N2N3, thus taking cube
root of C1C2C3 gives M.

Stronger attacks are also known on a small e. If you
pad M in the above scenario to make it unique for each
message, then the broadcast attack fails. But Hastad shows
if the padding scheme is a public, fixed polynomial function
it doesn’t defend from the attack. Franklin-Reiter found an
attack on two related messages encrypted with same
modulus in time quadratic to e. And Coppersmith took it
farther to show an attack on same messages that used a
short, random pad (1/9th the size of M). So using a small e
is not wise.

To defend against all above low public exponent
attacks, large e such as the standard 2^16 + 1 should be
used. A good randomized pad also helps make random M’s
to remove relationship amongst messages.

J. The Proposed Method:
As we mentioned n = p * q, so if we discover the two

prime numbers, this will lead us to gain the key d. When we
discover any one of q & p, it is so easy to get the other

Mrinalini Shringirishi et al, International Journal of Advanced Research in Computer Science, 6 (6), July-August, 2015,172-176

© 2015-19, IJARCS All Rights Reserved 175

number. It is known that, (n) and (e) are representing the
public key. From this point we start to construct the
mathematical equation as in the proposed Algorithm.

Now, we present the proposed algorithm, and then we
show an example to view how the proposed algorithm is
applied.
The following algorithm:

a. Find the square root of (n).
b. Identify prime numbers from square root of (n) to 1

by using formula 1.
c. Pick up first prime numbers that its length is the

same length of square root of (n).
d. Fulfill k = w (L∈ N) statement.
e. Fulfill (n modular k = 0) equation.
f. Apply the equation GCD (value, n) = 0.
g. Find the prime number p or q.
h. Find p or q by this equation = n/q or n/p.
i. Find p value
j. Calculate q value

Equation
ax2+bx+c
3.234x2 -9x +5 (1)
6.065x2 -90x +500 (2)
8.719x2 -900x +50000 (3)
11.26x2 -9000x+ 5000000 (4)

The value of a can be calculated from the equation
0.072x2 +3.035x +0.274

Now, take an example for each step that shown in
Algorithm:
a) Compute the square root of (n). Suppose we have the

value of (n) which is equal to 1457. Now, the square
root of (n) is almost= 38 and this value will be called
sqt of (n).

b) Find all the prime numbers, which falls between [1 and
square root of (n)], and put them in array called (v).
This interval will be: v = [2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37].

c) Find the first number that has length exactly as the
length of square root number in step 1 from v array
(suppose it is w). As it mentioned at step 3 of the
algorithm, then w = 2.

d) From (v) array, collect all numbers that start with (w)
(length = 2) till last number of (v) (suppose it is G). On
the safe side, collect the remaining numbers that
except G to make feed back if there is no true answer
of later step 6 (suppose it as G') in the Algorithm.
Following – up the example, the array will be: G =
[11, 13, 17, 19, 23, 29, 31, 37].

e) Find the numbers that testify the following statement:
k = G(L∈ N) , Where: L = last digit of the prime
numbers in G array elements, N = set of numbers that
if multiplied together, the first number of these results
will be the same number that at last digit of n value.
So, we can classify these sets into two collections as
the following:

N1 = [1, 3, 7] when the last digit of n value will be 1, 3 or 7.
N2 = [1, 3, 5, 7] when the last digit of n value will be 5.

For the prime numbers that held 9 in the last digit of
them will go to G'. In other words, we can describe k = (L∈
N) statement as collection in k - as the residual numbers of
probabilities database elements - all numbers that held the
last digit they included into N, where N had been classified.

Note the results of each step and regard how much we are
decreasing the space of search area to reach to desired
factors with lowest range of probabilities for these factors.

As it displayed of the proposed algorithm, the variables
of (L) of the example will be defined as the following:
L = [2, 3, 5, 7, 1, 3, 7, 9, 3, 9, 1, 7] and N = [1, 7], Then, k
=[11, 17, 31, 37].

In this work we tried a method that aims at reducing the
unwanted prime numbers as possible as to increase the
possibility of a successful attack.
f) Find the indexes of special numbers that only

investigated with the following equation: indexes = (n
modular k = 0). The meaning is to save the locations
for any prime number when the remainder with n
values = 0 in array (k). So, the index value of the
example is 3, (k=31).

g) The result is the smallest prime number (p or q)
constructing n. this number is unique and
corresponding to one index location. As mentioned
before, any value of (n) is constructed by
multiplication of a pair of prime numbers p & q. Since
any two prime numbers have no common factor, the
result will be finding one part of n. Following – up the
example, the value that hold index = 3 as in k array is
31.

h) Finally, since number 31 is define the p, immediately
the q =pn, q = 47.

III. EXPERIMENTAL WORK

By using the suggested Algorithm to factorize the value
of (n), we apply a collection of variant lengths of presuming
(n) numbers on the proposed method. From this
examination, we got the results as follows, Table (1).

It is a fact that length of p & q is getting longer and
longer and this will make this type of attack harder and
harder, due to the limitation of the machines and the
processing time. So, we make an elapsed time equation that
was evaluated and derived from the results that we got in
Table I. The equation was:

This equation used to simulate the next lengths of (n)
values to testify how the result of the proposed algorithm is
if length of (n) was more than 100 digits. As we know, the
current operating system does not configure to receive and
generate a big process like an input of (n) could have length
150 digit or more (Window 32 bit or 64 bit). To solve this
situation, and using the Table (1) results, we examine the
equation to see how much it matched between the assuming
and real result, and we got a closed similarity of results. As
shown in Figure (2). Although these numbers were not large
as desired, where the max length of digit of n we have
reached is 19, because the limitations of hardware and
software of the computer are not suitable to manipulate
more large numbers of (n), although that, we were able to
reach to a very encourage results by applying the proposed
method as it shown in Table (1).

The results that we obtained proved that the proposed
algorithm is reasonable and could be used for large numbers
of (n). We used a computer with limited specification such
as the hard disk size (40 GB), CPU speed (3.0 GHz) and the
RAM capacity is 1.5 GB. Also, there are many programs
and applications that could be considered affections on the
operating systems speed. We have applied the proposed
Time equation of the proposed algorithm to estimate the

Mrinalini Shringirishi et al, International Journal of Advanced Research in Computer Science, 6 (6), July-August, 2015,172-176

© 2015-19, IJARCS All Rights Reserved 176

factorization time on a different large prime numbers (n), we
got a very good result as shown in Table III.

IV. CONCLUSION

RSA has withstood the test of time and much research
as being secure. Its security depends on factoring large
integer N and taking the eth root modulo N as not being
computable in any reasonable amount of time. So far, this
has been a safe and secure bet.

On the other hand, poor or naïve implementations of
RSA have been shown to be insecure. Engineers that
implement RSA must understand this knowledge to avoid
making these mistakes. RSA implemented correctly has
been a very successful cryptosystem.

V. REFERENCES

[1]. AL-Hamami AL-Ani, Technology of information security
and protection systems, ISBN 978-9957-11-697-2, pp.173 -
223, Dar Wael , Jordan. 2007

[2]. Aboud, AL-Fayoumi; “Efficient Method for Breaking RSA
Algorithm”; Ubiquitous Computing and Communication
Journal, vol. 4,no.2 , p:1520, 2008.

[3]. Coppersmith, D. “Attack on the Cryptographic Scheme”,
Advances in Cryptology–CRYPTO ’94, Springer-Verlag,

LNCS 839, pp.294-307, 1994.

[4]. Hastad, J. “On Using RSA with low exponent in a public
key Network”, Advances in Cryptology –CRYPTO ’85,
Springer-Velag LNCS 218, pp. 403-408, 1986.

[5]. Nguyen, H. Number Theory and the RSA Public Key
Cryptosystem.
http://cdn.bitbucket.org/mvngu/numtheorycrypto/download
s/numtheory-crypto.pdf.

[6]. D. Boneh. Twenty Years of Attacks on the RSA. Notices of
the American Mathematical Society, vol 46(2):203–213,
1999.

[7]. R. L. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public key cryptosystems.
Commun. of the ACM, 21:120-126, 1978.

[8]. Alfred J. Menezes, Paul van Oorschot, and Scott Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997

[9]. C. Pomerance. A tale of two sieves. Notices Amer. Math.
Soc., 43:1473-1485, 1996.

[10]. P. Shor. Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer. SICOMP, Volume 26 Issue 5 pages 1434–1402,
1997.

