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Abstract The security of public key encryption such as RSA algorithm relied on the integer factoring problem of N. The security of RSA 
algorithm based on positive integer N, which is the product of two large prime numbers, the factorization of N is very complex. In this paper a 
factorization method is proposed, which is used to obtain the factor of positive integer N.  Prime numbers play a very important role in the 
complexity and security of the public key crypto system. RSA Algorithm is one type of public key algorithm and its security depends on the 
complexity of factoring value of N. Any encryption algorithm depends on the length of the key and the computational effort required breaking 
the key. This paper introduces an efficient algorithm to attack on the RSA algorithm. Obtaining the private key of the RSA algorithm is the 
target of the suggested algorithm by factoring the modulus based on the public key (N, e) of the RSA algorithm. The suggested algorithm is very 
fast due to its treatments for the factorizing problem. It will limit the search for the two prime no’s p & q values. The  suggested  algorithm is  
more  efficient  than  most  existed  algorithms of attack  since  it  will interrupt the search process and takes less running  
time. 
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I. INTRODUCTION 

Public key cryptography is one of the applications that 
are valuable in sending information via insecure channel. 
RSA algorithm is a public key encryption algorithm. RSA 
has become most popular cryptosystem in the world because 
of its simplicity. According to number theory, it is easy to 
finds two big prime number, but the factorization of the 
product of two big prime numbers is very difficult task. The 
difficulty of computing the roots N, where N is the product 
of two large unknown primes, it is widely believed to be 
secure for large enough N.  Since RSA can also be broken 
by factoring N, the security of RSA is often based on the 
integer factorization problem [1]. The integer factorization 
problem is a well-known topic of research within both 
academia and industry. It consists of finding the prime 
factors for any given large modulus. Currently, the best 
factoring algorithm is the general number field sieve or 
GNFS for short. On December 12, 2009 a small group of 
scientists used the previously mentioned approach to factor 
a RSA-768 bit modulus, that is, a composite number with 
232 decimal digits. Their achievement required more than 
two years of collaborative work and used many hundreds of 
computing machines. Hence, factoring large primes is a 
laborious and complex task [2]. A method for factoring 
algorithm (specially designed) for semi primes based on 
new mathematical ideas. Since this method is relatively 
simple and scalable, it can be suitable for parallel processing 
[2]. But the main condition of this algorithm is that to break 

RSA modulus firstly we should have public key and 
modulus N. On the basis of this public key (e, N) proposed 
algorithm disclose the private key [3].   An attacker has 
access to the public key e and N and the attacker wants the 
private key d. To get d, N needs to be factored (which will 
yield p and q, which can then be used to calculate d).  

Factoring n is the best known attack against RSA to 
date. (Attacking RSA by trying to deduce (p-1) (q-1) is no 
easier than factoring N, and executing an exhaustive search 
for values of d is harder than factoring N.) Some of the 
algorithms used for factoring are as follows Trial division 
oldest and least efficient Exponential running time. Try all 
the prime numbers less than sqrt (N). Quadratic Sieve (QS): 
The fastest algorithm for numbers smaller than 110 digits.  
Multiple Polynomial Quadratic Sieve (MPQS): Faster 
version of QS. Double Large Prime Variation of the MPQS 
Faster still. Number Field Sieve (NFS) Currently the fastest 
algorithm known for numbers larger than 110 digits. These 
algorithms represent the state of the art in warfare against 
large composite numbers against RSA. We can identify 
many approaches to attacking RSA mathematically, factor N 
into two prime factors.  

II. RSA ALGORITHM 

In 1978, RSA developed a public key cryptosystem that 
is based on the difficulty of integer factoring. The RSA 
public key encryption scheme is the first example of a 
provable secure public key encryption scheme against 
chosen message chosen attacks [5].  
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Figure: 1 

A. The RSA Algorithm is as follows [6]: 
Key generation algorithm, to generate the keys entity A 

must do the following: 
a. Randomly and secretly select two large prime numbers 

p and q both are prime but p! =q. 
b. Compute the N = p*q. 
c. Compute Euler Totient function phi (N) = (p-1) (q-1). 
d. Select random integer e, 1<e<N, where gcd (e, (n))=1 
e. Compute the secret exponent d, 1 < d < phi, such that ed 

=1(mod (phi)). 
f. The public key is (N, e) and the private key is (N, d). 

Keep all the values d, p, q and phi secret. N is known as 
the modulus. 

e is known as the public exponent or encryption exponent or 
just the exponent.  
d is known as the secret exponent or decryption exponent 

B. Public key encryption algorithm: 
Entity A encrypt a message M for entity B which 

entity decrypt. Entity A should do the following operations: 
Obtain entity A’s public key (N, e) 
Represent the message M as an integer in the interval 
[0….N-1]. 
Compute C= (M) power mod N. 
Send the encrypted message C to entity B. 

C. Decryption: 

To recover the message m from the cipher text C. Entity 
B performs the following operations: 
Obtain the cipher text C from entity A. 
Recover the message M = (C) power d mod n. 

D. Literature Survey 
The RSA Factoring Challenge was started in March 

1991 by RSA Data Security to keep abreast of the state of 
the art in factoring. Since its inception, well over a thousand 
numbers have been factored, with the factories returning 
valuable information on the methods they used to complete 
the factorizations. The Factoring Challenge provides one of 
the largest test-beds for factoring implementations and 
provides one of the largest collections of factoring results 
from many different experts worldwide. In short, this vast 
pool of information gives us an excellent opportunity to 
compare the effectiveness of different factoring techniques 
as they are implemented and used in practice. Since the 
security of the RSA public-key cryptosystem relies on the 
inability to factor large numbers of a special type, the 
cryptographic significance of these results is self-evident. 
Some factorization methods are explored in following 
paragraphs:  J [N, (k. N) + ∆] and gcd [N, (k. N) – ∆] result 
in nontrivial factors of N for different values of ∆ where N is 
the reverse of N and k is a positive integer ranging from one 
to infinity.  Sattar J Aboud [3] was introducing a method 
that breaking the RSA Algorithm based on the knowing 
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public key (e, N). This method will work efficiently if the 
decryption key d is small. 

Aboud and AL-Fayoumi [2] tried analysis the algorithm 
reversely. By other way, find (d) value firstly, the Euler, and 
then prime numbers (p, q) by converting the number type of 
n value to binary and assuming some equations to define the 
key.  

E. Attacks: 
The RSA function is an example of a one-way trapdoor 

function (definition here [8]).  It is not known to be easily 
invertible without the trapdoor, d.  General attacks on RSA 
involve trying to compute d, or some other way to get to M.  
We will even discuss a way to forge a signature if Alice is 
not careful.  Marvin may know only <C, e, N>, or 
<C,M,e,N> (known plaintext/ciphertext).  RSA will be 
shown to hold up to all known attacks. 

F. Brute Force, Factoring N, computing eth root 
modulo N: 

Given <C, e, N>, Marvin can do a brute force search to 
find M.  But factoring N involves a much smaller search 
space and thus, more efficient to do.  Factoring is a well 
researched problem.  Pomerance has an interesting 
introduction into what clever methods can be done.  For 
example, how to factor 8051?  Naïve approach is trying all 
primes up to square root of 8051, or almost 90.  Clever trick 
is to find a square of primes that subtract to the number, 
example 90^2 – 7^2 = 8051.  Thus (90 – 7) * (90 + 7) = 
8051; 83 & 97 are the factors.  However, this trick is only 
easy if factors are close to square root of the number.  There 
are only a very small set of numbers where this is true.  But 
much more sophisticated methods are known.  Currently the 
general number field sieve is the best known running time 
with, reported by Boneh [6], a time on n-bit integers of 
Exp((c + o(1))n^1/3 log^2/3 n) for some c < 2.  

To be complete, Peter Shor [10] has shown a quantum 
computer has a polynomial time algorithm for factoring 
integers.  But engineering a quantum computer still has a 
way to go, so RSA is safe for now. 

RSA security depends on the computation to be 
unreasonable for 1) the factoring of N, and 2) computing the 
eth roots modulo N.  The first is fairly well researched and 
complexity is understood.  However, the second is an open 
question.  It has not yet been proven that taking the eth roots 
modulo N is at least as hard as factoring N.  This means 
RSA security has not been proven to be at least as hard as 
factoring.  But it has withstood time and a large amount of 
research, which is encouraging that it will stay secure well 
into the future. 

G. Elementary misuse of RSA: 
Fixing N.  One blatant misuse of RSA would be using 

the same modulus N for all users.  So instead, have a central 
authority issue out unique e,d pairs to each user.  This sort 
of works, in the fact that C1 = M^e1 mod N can only be 
decrypted with corresponding pair d1.  So a different user 
with e2, d2 doesn’t appear able to decrypt.  But from the 
property that knowing <e,d,N> you can factor N, then the 
game is over.  Any user can use their ei,di pair to factor N.  
Then, given any other user’s ej and the factors of N, dj can 
be computed.  RSA key pairs should never use the same N 
twice. 

Signature forgery can be done with a technique called 
blinding.  If Alice ever “blindly” signs M, then Marvin 
might be able to forge Alice’s signature.  If Marvin sends 
evil plaintext M for Alice to sign, it’s easy to assume Alice 
would reject and not sign it.  But what if Marvin sends a 
random, harmless looking M?  Depending on the 
implementation, Alice might be fooled and sign it.  Marvin 
then can take advantageous of this is by generating M’ = r^e 
M mod N, for some random r.  If Alice provides a signature, 
S’ on M’, then Marvin can compute Alice’s signature S for 
M by S = S’/ r mod N.  Proof: 
 
S = S’ / r mod N 
   = M’^d / r mod N 
   = (M r^e)^d / r mod N 
   = M^d r^ed / r mod N 
   = M^d r/r mod N 
   = M^d mod N 
Alice should never freely sign a random M.   

H. Low private exponent: 
Having a low private exponent d will reduce decryption 

and signature computing costs.  However, too low of a d is 
insecure.  Boneh [6] describes approximations using 
fractions can allow Marvin to solve for a small d that is d < 
1/3 N^1/4.  If N is 1024 bits, then d should be at least 256 
bits long. 

I. Low public exponent: 
Having a low public exponent will reduce encryption 

and signature validation computing costs.  However, too low 
of an e is also insecure.  Today’s standard e is set at 2^16 + 
1.   This is a large enough value to avoid attacks and needs 
only 17 mod multiplications for M^e mod N using repeated 
squares. 

But if a very small e is used instead, it can be subject to 
attacks such as Hastad’s Broadcast Attack.  If the same M is 
encrypted with many users <e,N> keys and broadcasted out, 
Marvin can collect each and compute M.  If all users have 
the same e, then Marvin needs to collect at least e messages.  
Restating Boneh [6], take example if e=3: 
C1 = M^3 mod N1, C2 = M^3 mod N2, C3 = M^3 mod N3 
M < {N1, N2, N3} thus M^3 < N1N2N3 
Using CRT C1C2C3 = M^3 mod N1N2N3, thus taking cube 
root of C1C2C3 gives M. 

Stronger attacks are also known on a small e.  If you 
pad M in the above scenario to make it unique for each 
message, then the broadcast attack fails.  But Hastad shows 
if the padding scheme is a public, fixed polynomial function 
it doesn’t defend from the attack.  Franklin-Reiter found an 
attack on two related messages encrypted with same 
modulus in time quadratic to e.  And Coppersmith took it 
farther to show an attack on same messages that used a 
short, random pad (1/9th the size of M).  So using a small e 
is not wise. 

To defend against all above low public exponent 
attacks, large e such as the standard 2^16 + 1 should be 
used.  A good randomized pad also helps make random M’s 
to remove relationship amongst messages.   

J. The Proposed Method: 
As we mentioned n = p * q, so if we discover the two 

prime numbers, this will lead us to gain the key d.  When we 
discover any one of q & p, it is so easy to get the other 
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number. It is known that, (n) and (e) are representing the 
public key. From this point we start to construct the 
mathematical equation as in the proposed Algorithm. 

Now, we present the proposed algorithm, and then we 
show an example to view how the proposed algorithm is 
applied.  
The following algorithm: 

a. Find the square root of (n). 
b. Identify prime numbers from square root of (n) to 1 

by using formula 1. 
c. Pick up first prime numbers that its length is the 

same length of square root of (n). 
d. Fulfill k = w (L∈ N) statement.  
e. Fulfill (n modular k = 0) equation. 
f. Apply the equation GCD (value, n) = 0. 
g. Find the prime number p or q. 
h. Find p or q by this equation = n/q or n/p. 
i. Find p value 
j. Calculate q value 

Equation  
ax2+bx+c 
3.234x2 -9x +5 (1) 
6.065x2 -90x +500 (2) 
8.719x2 -900x +50000 (3) 
11.26x2 -9000x+ 5000000 (4) 

The value of a can be calculated from the equation 
0.072x2 +3.035x +0.274 

Now, take an example for each step that shown in 
Algorithm: 
a) Compute the square root of (n). Suppose we have the 

value of (n) which is equal to 1457. Now, the square 
root of (n) is almost= 38 and this value will be called 
sqt of (n). 

b) Find all the prime numbers, which falls between [1 and 
square root of (n)], and put them in array called (v). 
This interval will be: v = [2, 3, 5, 7, 11, 13, 17, 19, 23, 
29, 31, 37]. 

c) Find the first number that has length exactly as the 
length of square root number in step 1 from v array 
(suppose it is w). As it mentioned at step 3 of the 
algorithm, then w = 2. 

d) From (v) array, collect all numbers that start with (w) 
(length = 2) till last number of (v) (suppose it is G). On 
the safe side, collect the remaining numbers that 
except G to make feed back if there is no true answer 
of later step 6 (suppose it as G') in the Algorithm. 
Following – up the example, the array will be: G = 
[11, 13, 17, 19, 23, 29, 31, 37]. 

e) Find the numbers that testify the following statement: 
k = G(L∈ N) , Where: L = last digit of the prime 
numbers in G array elements, N = set of numbers that 
if multiplied together, the first number of these results 
will be the same number that at last digit of n value. 
So, we can classify these sets into two collections as 
the following: 

N1 = [1, 3, 7] when the last digit of n value will be 1, 3 or 7. 
N2 = [1, 3, 5, 7] when the last digit of n value will be 5.  
  

For the prime numbers that held 9 in the last digit of 
them will go to G'.  In other words, we can describe k = (L∈ 
N) statement as collection in k - as the residual numbers of 
probabilities database elements -  all numbers that held the 
last digit they included into N, where N had been classified. 

Note the results of each step and regard how much we are 
decreasing the space of search area to reach to desired 
factors with lowest range of probabilities for these factors.  

As it displayed of the proposed algorithm, the variables 
of (L) of the example will be defined as the following: 
L = [2, 3, 5, 7, 1, 3, 7, 9, 3, 9, 1, 7] and N = [1, 7], Then, k 
=[11, 17, 31, 37]. 

In this work we tried a method that aims at reducing the 
unwanted prime numbers as possible as to increase the 
possibility of a successful attack.  
f) Find the indexes of special numbers that only 

investigated with the following equation: indexes = (n 
modular k = 0). The meaning is to save the locations 
for any prime number when the remainder with n 
values = 0 in array (k). So, the index value of the 
example is 3, (k=31). 

g) The result is the smallest prime number (p or q) 
constructing n. this number is unique and 
corresponding to one index location. As mentioned 
before, any value of (n) is constructed by 
multiplication of a pair of prime numbers p & q. Since 
any two prime numbers have no common factor, the 
result will be finding one part of n. Following – up the 
example, the value that hold index = 3 as in k array is 
31. 

h) Finally, since number 31 is define the p, immediately 
the q =pn, q = 47. 

III. EXPERIMENTAL WORK 

By using the suggested Algorithm to factorize the value 
of (n), we apply a collection of variant lengths of presuming 
(n) numbers on the proposed method. From this 
examination, we got the results as follows, Table (1). 

It is a fact that length of p & q is getting longer and 
longer and this will make this type of attack harder and 
harder, due to the limitation of the machines and the 
processing time. So, we make an elapsed time equation that 
was evaluated and derived from the results that we got in 
Table I. The equation was:               

This equation used to simulate the next lengths of (n) 
values to testify how the result of the proposed algorithm is 
if length of (n) was more than 100 digits. As we know, the 
current operating system does not configure to receive and 
generate a big process like an input of (n) could have length 
150 digit or more (Window 32 bit or 64 bit). To solve this 
situation, and using the Table (1) results, we examine the 
equation to see how much it matched between the assuming 
and real result, and we got a closed similarity of results. As 
shown in Figure (2). Although these numbers were not large 
as desired, where the max length of digit of n we have 
reached is 19, because the limitations of hardware and 
software of the computer are not suitable to manipulate 
more large numbers of (n), although that, we were able to 
reach to a very encourage results by applying the proposed 
method as it shown in Table (1). 

The results that we obtained proved that the proposed 
algorithm is reasonable and could be used for large numbers 
of (n). We used a computer with limited specification such 
as the hard disk size (40 GB), CPU speed (3.0 GHz) and the 
RAM capacity is 1.5 GB. Also, there are many programs 
and applications that could be considered affections on the 
operating systems speed. We have applied the proposed 
Time equation of the proposed algorithm to estimate the 
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factorization time on a different large prime numbers (n), we 
got a very good result as shown in Table III. 

IV. CONCLUSION 

RSA has withstood the test of time and much research 
as being secure.  Its security depends on factoring large 
integer N and taking the eth root modulo N as not being 
computable in any reasonable amount of time.  So far, this 
has been a safe and secure bet. 

On the other hand, poor or naïve implementations of 
RSA have been shown to be insecure.  Engineers that 
implement RSA must understand this knowledge to avoid 
making these mistakes.  RSA implemented correctly has 
been a very successful cryptosystem. 
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