
Volume 6, No. 6, June - July 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010-14, IJARCS All Rights Reserved 94

An Inexpensive Wearable Android Accessory
Kaustav Basu

Department of Computer Science
St. Xavier’s CollegeKolkata, India

Prabal Banerjee
Chennai Mathematical Institute

Chennai, India

Proyag Pal

Department of Computer Science
St. Xavier’s CollegeKolkata, India

Abstract: The project aims to design and implement a prototype for a peripheral device built to function with any Android device. The device
behaves as a notification display for an Android device (a phone or tablet) on a wristwatch-like accessory, and displays an ordinary digital watch
when there are no notifications to be displayed. The aim is not to develop an altogether new technology, but to create a simpler, more affordable
and accessible alternative to similar existing devices. The application of non-proprietary open-source technologies like Android and Arduino
leaves the device open to modifications as per the requirements of users, while simultaneously reducing the cost drastically. Android’s
overwhelming popularity ensures the accessory is available to a huge number of devices. Hence, from this choice of technologies, it is clear that
our objective is to use freely available open-source software and technologies to make this device universally compatible to Android devices.

Keywords:–Arduino, Android, Wearable, open source, phone accessory, Amarino, Bluetooth, smart watch.

I. INTRODUCTION

In the modern world, smart phones are dominating the
mobile market. The Android[1] Operating System,
developed by Google[2] , accounts for a vast majority of
these devices.

Recently, technology giants have developed wearable
accessories for their smart phones. These accessories have a
myriad of features. But the basic function of these devices is
to show the time and notify the user when the phone
receives any notifications, such as a call or a text message.
However, from the common man’s perspective, these
devices are very expensive. In fact, it costs more than an
average high-end smart phone. A number of manufacturers
are also creating such devices. But the major drawback of
most of these devices is that despite their prices and
numerous features, each of these accessories are only
compatible with the smart phone they are sold with. The
Android Wear project, which has been initiated by Google,
is still in its development phase. The wearable peripheral
aims to work with most Android devices. All these
initiatives taken by several companies clearly indicate that
there is a high demand for such wearables in the smart-
device world. But presently such devices are accessible to a
very limited number of users.

So we have decided to create an accessory which will
be accessible to a wider array of consumers by using open
source[3] technologies. This will result in wider
compatibility and lower prices.

II. CHOICE OF TECHNOLOGIES

A. Why Android?
The major mobile operating systems are Android, iOS,

Windows and Symbian. Android accounts for nearly 80% of
the mobile OS market[4]. It is developer friendly and has

many support modules for Arduino. So it was easier for us
to implement the prototype based on Android. We also had
previous experience in Android programming, so we felt
comfortable choosing this platform.

Android's source code is released by Google under the
Apache License[5]; this permissive licensing allows the
software to be freely modified and distributed by device
manufacturers, wireless carriers and enthusiast developers.
Most Android devices ship with a combination of open
source and proprietary software. As of October 2013,
Android has the largest number of applications ("apps"),
available for download in Google Play store which has had
over 1 million apps published, and over 50 billion
downloads. A developer survey conducted in April–May
2013[6] found that Android is the most used platform
among developers: it is used by 71% of the mobile
developer population.

B. Why Arduino?
Arduino[7] is a single-board microcontroller, intended

to make the application of interactive objects or
environments more accessible. The hardware consists of an
open-source hardware board designed around an 8-bit Atmel
AVR microcontroller, or a 32-bit Atmel ARM. Pre-
programmed into the on-board microcontroller chip is a boot
loader that allows uploading programs into the
microcontroller memory without needing a chip (device)
programmer. As written earlier, our main objective was to
design a prototype and not a final product. Arduinois the
world’s leading open source electronic prototyping platform.
Arduino has a number of support libraries and modules. One
such module is the support for Bluetooth[8]. Hence our
obvious choice.

Kaustav Basuet al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,94-98

© 2010-14, IJARCS All Rights Reserved 95

C. Why Bluetooth ?
Bluetooth is a wireless technology standard for

exchanging data over short distances from fixed and mobile
devices, and building personal area networks (PANs).
Bluetooth operates in the range of 2400–2483.5 MHz
(including guard bands). This is in the globally unlicensed
(but not unregulated) Industrial, Scientific and Medical
(ISM) 2.4 GHz short-range radio frequency band. Bluetooth
uses a radio technology called frequency-hopping spread
spectrum. The transmitted data are divided into packets and
each packet is transmitted on one of the 79 designated
Bluetooth channels. Each channel has a bandwidth of 1
MHz.Bluetooth 4.0 uses 2 MHz spacing which allows for 40
channels. The first channel starts at 2402 MHz and
continues up to 2480 MHz in 1 MHz steps. It usually
performs 1600 hops per second, with Adaptive Frequency-
Hopping (AFH) enabled.

There are several communication protocols in use, of
which the most popular are Bluetooth, Infrared and Wi-Fi.
Infrared is not as reliable as Bluetooth[9]. It can be easily
shielded, and transmission can be interrupted easily. It is
well on its way to becoming an obsolete technology. Wi-Fi
uses radio transmission technology just like Bluetooth.
Although Wi-Fi allows higher transmission rates, it
consumes a lot of power, which is unsuitable for a wireless
device. We need to send only small amounts of data. Since
we have no need for higher transmission rates, we have
chosen Bluetooth as our transmission protocol, thus
eliminating the extensive power consumption factor.
Nowadays, almost all devices support Bluetooth, and in the
future if we plan to include other devices, then connecting
them using Bluetooth is the only viable option. Bluetooth
protocols simplify the discovery and setup of services
between devices. Bluetooth devices can advertise all of the
services they provide. This makes using services easier,
because more of the security, network address and
permission configuration can be automated than with many
other network types.

D. Why HC-05 Bluetooth Module?
The HC-05 Bluetooth module[10] is readily available,

can be easily paired with devices and is easily configurable.
It is also cheap, compared to other available Bluetooth
modules. It can easily be configured with the Arduino boards
as well.

E. Why Amarino?
Amarino[11][12] is a toolkit to connect Android -driven

mobile devices with Arduino microcontrollers via Bluetooth.
The toolkit provides easy access to internal phone
eventswhich can be further processed on the Arduino open
source prototyping platform. Started as aproject at
MITMedia Lab at the High-Low Tech group, this toolkit
seeks to empower people to externalize their phone events to
creatively demonstrate them on wearables, living spaces, or
other tangibles.

We had a number of choices like ArduDroid and
Sensoduino, which have a number of options that we didn’t
need and they weren’t customizable. But mostly they did not
have plug-in support. This is where Amarino comes
in.Amarino has plug-in support which can be easily
developed and customized by just knowing Android
programming.

F. Why Nokia 5110 LCD Screen?
The ideal display device for this project would have

been the Arduino TFT screen. This screen has SD card
support, high resolution and full Arduino library support. But
its limited availability forced us to look for an alternative.

The Nokia 5110 LCD[13] is readily available, data
sheets can be easily found on the internet, has been tested
with Arduino and also has relevant libraries present. The
Nokia 5110 is a basic graphic LCD screen for lots of
applications. It was originally intended for as a cell phone
screen. This one is mounted on an easy to solder PCB.

It uses the PCD8544 controller, which is the same used
in the Nokia 3310 LCD. The PCD8544 is a low power
CMOS LCD controller/driver, designed to drive a graphic
display of 48 rows and 84 columns. All necessary functions
for the display are provided in a single chip, including on-
chip generation of LCD supply and bias voltages, resulting in
a minimum of external components and low power
consumption. The PCD8544 interfaces to microcontrollers
through a serial bus interface.

III. DESIGN

A. Connecting the Arduino Uno with PC:
The first step in the design phase of this project is to

connect the Arduino microcontroller kit with the PC/Laptop
using the USB (Universal Serial Bus) cable, as shown in Fig.
1. We use the Arduino IDE, installed on the PC/Laptop, to
write code and communicate with the Arduino kit. The
ArduinoIDE compiles and uploads the code written to the
Arduinokit. When you upload a sketch, you're using the
Arduinobootloader, a small program that has been loaded on
to the microcontroller on your board. It allows you to upload
code without using any additional hardware. The bootloader
is active for a few seconds when the board resets; then it
starts whichever sketch was most recently uploaded to the
microcontroller. The bootloader will blink the on-board (pin
13) LED when it starts (i.e. when the board resets).

Figure 1. Connecting the Arduino to PC

B. Connecting Nokia 5110 LCD Screen With Arduino:
Now we connect the display unit shown in Fig. 2 with

the Arduino kit in the following manner

Kaustav Basuet al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,94-98

© 2010-14, IJARCS All Rights Reserved 96

Table 1.Connections between LCD and Arduino

LCD Pins Arduino Digital Pins
Clk 3
Din 4
DC 5
RST 6
CE 7
LED 13

C. Connecting HC-05 With Arduino:
We use the HC-05 Bluetooth module (Fig. 3) with the

Arduino kit to establish a Bluetooth connection which will
enable communication between the microcontroller kit and
phone.

The HC-05 Bluetooth module is the most economical
and easiest way to go wireless (via Bluetooth). This module
makes it easy for you to wirelessly extend your serial
interface, so you can control any program running on your
Laptop with serial port interface.
The 4 pins are:
VCC (Power 3.3 – 6V);
GND;
TXD;
RXD;
Default pairing code: 1234
Default baudrate: 9600

Figure 4 shows how it’s wired with an Arduino:
The RX and TX pins are used for receiving and

transmitting respectively. Now we connect the RX/TX of
the module to the TX/RX of the Arduino kit and VCC and
GND connections are made too.

Figure. 2. The Nokia 5110 Specifications

Figure 3. The HC-05 and its pins

Figure 4. Connecting HC-05 with Arduino

D. Pairing Phone with HC-05:
Fig. 5 is the first screen we see when we launch

Amarino on our phone. Since Amarino is all about
connecting our phone to an Arduino, the very first step we
have to do is to search for our Arduino Bluetooth device we
want to talk to. To do that hit the "Add BT Device" button
and wait until our Arduino Bluetooth module pops up. If it
will not show up even if the discover process has already
finished, we should check if your Arduino Bluetooth module
is powered and discoverable.

We may find more than one device, as in Fig. 6, because
of other Bluetooth devices around us. We need to find out
which one is our Arduino Bluetooth module. After finding it,
we select it to add to Amarino. (Each module has a unique
address and normally also a human friendly name assigned).

If we have managed to add our BT device to Amarino,
we see one new device, namely the device we have added,
with a connect button next to it (Fig. 7) at the main screen of
our Amarino application. We now have to pair (Fig. 8) the
device with our phone. The default pairing number is
‘1234’.

After pairing, we press ‘Connect’ to connect the device
with our phone. If connection is successful, then a green light
lights up on the module. After connection is active, we
proceed to add the respective events as in Fig. 9. We add
events by clicking on the add event button.

Kaustav Basuet al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,94-98

© 2010-14, IJARCS All Rights Reserved 97

Figure 5.Amarino opening screen

Figure. 6. Discovering devices

Figure. 7. Device added to Amarino

Figure 8. Pairing the device

Figure 9. Connect to device and add events

Finally we can monitor and send data to Arduinovia
Amarino using the monitor option (Fig. 10). Finally, the
event management module also gives us some feedback
providing real-time data to us. Instead of monitoring, we go
back to the event module (red cabinet icon) and see which
random values are sent from the Test event. Real-time data
are only visible if a connection is up and running. However
we can force enable events to show their data without being
connected (long press on an added event to get a context
menu with options to force enable/disable).

Figure 10. Monitoring Amarino activity

IV. ACKNOWLEDGMENTS

We would like to extend our gratitude to our project
guide Professor Romit Beed, whose constant guidance and
recommendations made this project possible. We would like
to thank Rana Biswas Sir whose enthusiasm, ideas and
encouragement made us believe in our abilities and inspired
us to pursue the idea of making this project a success.

All the teachers of the Department of Computer Science
have helped us whenever we needed any. The lab staff has
allowed us to use the facilities whenever needed.

All our classmates have been wonderful support during
all the stages of this project. We would like to mention our
friend ArjunilPathak for letting us use his Arduino
throughout the development of the project. Last but not the

Kaustav Basuet al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,94-98

© 2010-14, IJARCS All Rights Reserved 98

least, we are ever grateful to our families who are a constant
support and inspiration in whatever we aspire to achieve.

V. REFERENCES

[1] http://www.android.com/

[2] http://www.google.com/about/

[3] http://opensource.org/

[4] http://www.forbes.com/sites/dougolenick/2015/05/27/apple
-ios-and-google-android-smartphone-market-share-
flattening-idc/2/

[5] http://www.apache.org/licenses/

[6] http://www.visionmobile.com/product/developer-
economics-q1-2014-state-developer-nation/

[7] http://www.arduino.cc/

[8] http://www.bluetooth.com/Pages/Basics.aspx

[9] http://support.en.kodak.com/app/answers/detail/a_id/1685/~
/bluetooth-versus-other-wireless-technologies/selected/true

[10] http://www.tec.reutlingen-
university.de/uploads/media/DatenblattHC-05_BT-
Modul.pdf

[11] Bonifaz Kaufmann and Leah Buechley. (2010). Amarino: a
toolkit for the rapid prototyping of mobile ubiquitous
computing. In Proceedings of the 12th international
conference on Human computer interaction with mobile
devices and services (MobileHCI '10). ACM, New York,
NY, USA, 291-298.

[12] Bonifaz Kaufmann. (2010). Design and implementation of
a toolkit for the rapid prototyping of mobile ubiquitous
computing. Master's thesis. Alpen-Adria-Universität
Klagenfurt, Klagenfurt, Austria.

[13] https://www.sparkfun.com/datasheets/LCD/Monochrome/N
okia5110.pdf

	INTRODUCTION
	CHOICE OF TECHNOLOGIES
	Why Android?
	Why Arduino?
	Why Bluetooth ?
	Why HC-05 Bluetooth Module?
	Why Amarino?
	Why Nokia 5110 LCD Screen?

	DESIGN
	Connecting the Arduino Uno with PC:
	Connecting Nokia 5110 LCD Screen With Arduino:
	Connecting HC-05 With Arduino:
	Pairing Phone with HC-05:

	ACKNOWLEDGMENTS
	REFERENCES

