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Abstract: 3D printing is an emerging trend fuelled by the rapid technology advancements in 3D printing technology. Printing out 3D designs is 
something new and interesting but the process of designing 3D objects is far from effortless. Researchers have recently forged ahead in 
conducting numerous studies on using mathematical formulas to create objects and shapes in 3D space. A mathematical encoding for geometric 
shapes called the Superformula was proposed by Johan Geilis through the generalization of the Supereclipse formula to generate 3D shapes and 
objects by extending its spherical products. The focus of this study is to investigate the ideal range of parametric values supplied to the 
Superformula in order to automatically generate 3D shapes and objects through the use of Evolution Algorithms (EAs). Thus, Evolutionary 
Programming was used as the EA in this study which serves as the main evolution component that uses a fitness function tailored in a way that it 
is able to evaluate the 3D objects and shapes generated by the Superformula. The values require by the Superformula to generate 3D objects or 
shapes are . To obtain the ideal range of values for the afore mentioned parameters, five different 
sets of experiments were carried out within the range set of {0 - 20}, {0 - 40}, {0 - 60}, {0 - 120}, and {0 - 240}.Each range set of numbers will 
be tested five times and the final objects from each of the runs were then analysed. From the observations obtained, the range set of {0- 20}, {0- 
60}, and {0- 120} shows the most promising results as the final objects produced were unique and it was surmised that within these range of 
numbers contain highly unique and novel 3D objects and shapes.  
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I. INTRODUCTION 

Recent advancements in 3D printing machines have 
attracted significant numbers of everyday people to get 
involved in designing 3D objects and shapes, and it said to be 
the next big industrial revolution [12]. 3D printers enable the 
possibility of producing goods at a low cost in small 
quantities [12] even at the convenience of your own home. 
However, designing 3D objects is a complex and time 
consuming process that requires a combination of skills and 
hours of work to complete a simple design. Knowledge of 
how to use 3D-object design software is a must for those 
who intend to dive into 3D object printing. Even with the 
help of the available software, designing a 3D object is far 
from an effortless task even for the design of simple shapes, 
what more for complex 3D objects or shapes. This paves the 
way for numerous researchers to attempt generation of 2D 
and 3D objects through computational methods. Some of the 
early studies done on geometrical modelling evolution in a 
3D space are polygonal sequencing operators [1] by McGuire 
and Exploration of the lattice deformation [2] by Watabe and 
Okino. More studies were carried out by using different 
encoding such as the work by Sims [3] using directed graph 
encoding in morphology and behaviour evolution of virtual 
creatures in a 3D environment. Jacob and Hushlak [4] 
displayed the used of L-system encodings for their work in 
creating virtual sculptures and furniture designs. Bentley [5] 
explore into the evolutionary variable and fixed length direct 
encoding on solid objects such as tables, cars, boat and even 
a the layout of a hospital department. 

The Superquadrics equation in representing geometric 
shapes was introduced by Barr. It has been used as 
quantitative models for diverse applications in computer 

environments [6,7]such as computer graphics as well as in 
computer visions [8]. Since then, Superquadrics has been 
extended in local and global deformations to be able to 
model natural and considerable precision of synthetic shapes.  

By generalizing the Superellipses and Superquadric 
formula, Gielis was able to come up with another equation 
which is the Superformula equation to describe shapes by its 
internal symmetry and internal metrics [9]. The 
Superformula equation is then further used to represent 
shapes in various fields such as engineering [10] and it has 
been used together with EA to achieve a certain target shapes 
[11]. 

EAs are inspired by natural selection of the fittest and it 
has been used as an optimization technique to solve 
engineering, mathematical, computational and many more 
complex problems. EAs main genetic operators comprise 
population, parent, recombination, mutation, offspring, and 
survivor selection. It has four different classes, which are 
Genetic Algorithms, Evolutionary Programming (EP), 
Evolution Strategies (ES), and Genetic programming [14]. 
Each class utilizes different approaches in solving complex 
problem while maintaining the main genetic operators.  

In this paper, we introduce the approach of using 
Superformula to create non-target based 3D shapes through 
EP. The focus of this study is to investigate the ideal range of 
parametric value to supply to the Superformula in order to 
automatically generate 3D shapes and objects through EP. 
The results from the investigations can be used to determine 
the suitable range of numbers to be used as parameters in 
Superformula. By finding these range of numbers, the search 
space for novel and unique 3D objects and shapes can be 
narrowed down.  
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The next section of this paper will discuss the 
background of the Superformula and how it is able to 
generate 3D shapes from generalizing from Superellipses and 
Superquadric equations. It will be followed by another 
section on the flow of Evolutionary Programming. The 
experimental setup section will be presented next and 
followed by the results section. The last section will be the 
conclusion and future work. 

II. METHOD 

A. Superformula: 
The Superformula is simple geometric equation form 

from generalisation of a hyper-ellipse. It was found to be 
able to model forms of a large variety of plants and other 
living organisms [13]. The generalization of Superellipse 
equation is as follows: 

 

The distance in polar coordinates is denoted by r, for  
and m ; a, b ; a > 0, b > 0 are responsible for the 
size of the supershapes with the usual value of equals to one. 
Symmetry number is control by m while the shape 
coefficients are control by n1, n2 and n3 with real valued 
parameters. From equation (1) forms the superecllipse 2D 
shapes henceby multiplying 2 superecllipse equations 
together it allows the extention towards 3D shapes: 
 
  
  

  
 

-  , 
-   

As such, more complex 3D shapes can be generated. 
Preen [10] has shown more complex shapes such as the 
Mobius strip, shell and even torus shapes can be generated 
with the Superformula.  

B. Evolutionary Programming: 
Evolutionary Programming (EP) serves as the EA 

method in this study. EP is one of the four major EA 
methods. It was first introduced by Fogel [15] to simulate 
learning processing aiming to generate artificial intelligence. 
Adaptive behavior is the key to EP and by using real-value 
parameters it can be integrated to the problem domain. The 
real-value parameters of Superformula are used as the 
representation in EP for this study. Below is the pseudocode 
for EP in this study: 
a. Generate initial population 
b. Test each individual solution in the population 
c. Parent selection  
d. Mutation process 
e. Offspring generation 
f. Repeat step 2 to 5 until reach termination criteria 

C. Evaluation Function: 
Evaluation Function serves as a representation of 

requirement for a solution to adapt to. It is the basis of 
selection to aid improvements of the individual solution. 
From the perspective of problem-solving, it is the 
representation to the task to be solved in evolutionary 
background [14]. Basically it serves as a quality 

measurement of the individual solution presented in the 
population pool. In this study, the evaluation function is 
design to calculate the value obtain from the 3D object as 
well as from the Superformula.  

  
In equation (5), it was intended to find the spread of 

point x, y, and z over the symmetry number of any given 
object. A penalty will be imposed to the score if the 
dimension of the objects were too big and out of the 
boundary set. The reason for the penalty imposed is to 
maintain a reasonable dimension size. The values for and 

 are responsible to the symmetry of the 3D object, both 
the values of and  are added together with a constant 
of 1. The constant is used to counter the division by zero 
error in case the addition between and  results in zero. 
Another penalty are in pose by using the power to the 
difference of and . In Superformula, the value of   
and  is to control the thickness of each of the layers 
generated and with this penalty, thin layers or structure to 
the 3D objects can be avoided and printed out successfully 
without deformation.   

III. EXPERIMENTAL SETUP 

The population size model used is µ+λ with both 
parameters set to a size of 1 and 100 respectively which 
means the population size model will include the parent plus 
100 offspring. Each individual in the population pool will be 
evaluated using the fitness function in equation (5) and hence 
the fittest individuals will be selected to seed the next 
generations. There will be five different sets of number range 
{0-20}, {0- 40}, {0- 60}, {0- 120}, and {0-240} each range 
of random numbers will be run five times and the final 
objects of each runs were then observed. Although the range 
sets of numbers overlap each time the upper bound is 
increased, as our results will show, there appears to be some 
so-called “sweet spots” of number ranges and others that are 
much less ideal. Hence, running a single experiment that 
covers the entire range of overlapping number ranges would 
not be able to identify these “sweet spots”. The number of 
generations set for this experiment is 10. Object evolved are 
first save into Autocad file format (.dxf) and later convert 
into a STereoLithography (.stl) format. With .stl format the 
object are then brought into the UP! Print preview as shown 
in Fig 1. 

 
Figure 1. UP! 3D Printer interface 
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IV. EXPERIMENTAL RESULTS 

Table I.  Results Obtained from {0,20} 

Run Parameters Evolved 3D object 
1  =5  , = 11 , 

=7.1,  
=8.3,  
=6.1, =12.8, 

=4.9, 
=17.5 

 
2  =14  , =17  

, =10.6,  
=1.2,  =15.2, 

=8.9, 
=15.7, 

=1.6 

 
3  =5, =3, 

=4.2,  
=9.5,  =0.2, 

=16.0, 
=1.5, 

=12.0 
 

 
4  =11  , =9  , 

=19.9,  
=11.5,  =11.2, 

=12.0, 
=18.7, 

=15.7 
 

 
5  = 2 , =8  , 

=0.5,  
=6.7,  =6.8, 

=18.3, 
=10.0, 

=2.3 
 

 
Table II.  Results Obtained from {0,40} 

Run Parameters Evolved 3D object 
1  =2  , = 29 , 

=36.2,  
=8.1,  =13.1, 

=2.4, =6.1, 
=38.0 

 

2  =36  , =19  
, =22.8,  
=38.5,  =38.2, 

=29.7, 
=15.8, 

=29.2 
 

 
3  =30  , =15  

, =22.4,  
=11.3,  =19.5, 

=4.5, 
=37.5, 

=16.5 
 

4  =19  , =33  
, =15.2,  
=15.7,  =11.3, 

=28.9, 
=27.1, 

=5.0 
 

5  =27  , =29  
, =35.0,  
=7.3,  =17.4, 

=37.5, 
=5.0, 

=29.9 
 

 
Table III.  Results Obtained from {0,60} 

Run Parameters Evolved 3D object 
1  =52, =43  , 

=40.0,  
=57.7,  =25.6, 

=21.6, 
=35.9, 

=7.5 
 

 
2  =38, = 6 , 

=53.2,  
=58.3,  =15.3, 

=59.9, 
=15.7, 

=14.9 
  

3  =18, =28   , 
=38.1,  

=55.3,  =1.2, 
=27.5, 
=50.0, 

=50.9 
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4  =7, =6  , 
=30.9,  = 

27.0,  =24.5, 
=4.6, = 

24.5, =7.0 
 

 
5  = 47, =11  , 

= 35.4,  = 
17.2,  = 11.8, 

=28.6, 
=22.0, 

=5.1 
 

 
 

Table IV.  Results Obtained from {0,120} 

Run Parameters Evolved 3D object 
1  =23  , =44  

, =79.8,  
=50.4,  =83.2, 

=14.3, 
=57.2, 

=70.5  
2  =25  , =4   , 

=111.2,  
=98.2,  =56.6, 

=67.1, 
=93.4, 

=91.3 
 

 
3  =53  , =120  

, =24.2,  
=44.4,  =21.5, 

=63.6, 
=0.3, 

=90.2 
 

4  =61  , =113  
, =107.8,  
=26.1,  =47.2, 

=90.5, 
=93.7, 

=59.4 
 
  

5  =119  , =6  
, =33.2,  
=37.1,  =83.4, 

=28.9, 
=96.5, 

=6.2 
 
  

 
 
 
 

Table V.  Results Obtained from {0,240} 

Run Parameters Evolved 3D object 
1  = 49 , =182  

, =22.6,  
=140.1,  
=24.0, =63.2, 

=76.0, 
=53.6  

2  =177  , 
=176  , 
=106.7,  

=2.7,  =16.5, 
=145.7, 
=220.3, 

=130.0  

3  =110  , 
=189  , 
=34.7,  

=62.8,  =63.8, 
=6.5, 

=36.4, 
=69.2 

 

4  =189  , 
=217  , 
=109.8,  

=155.9,  
=27.7, =176.0, 

=77.1, 
=88.6 

 

5  =46  , =67  
, =117.2,  
=214.1,  
=97.6, =40.2, 

=105.6, = 
157.8  

 
From the results obtained, number range of {0- 20} , {0-

60} and {0 -120} shows a diversity of 3D object evolved. 
While number range of {0-40} and {0-240} did not manage 
to evolve shapes that look different and unique but rather 
most of the time the objects evolved are in a spiky shapes. In 
Table 1 the parameters value for and  maintain in a 
lower region and it is observed that with a lower value 
of and , shapes with less symmetrical points is evolved. 
The results from such a low symmetrical points produce two 
rather unique shapes in Table 1 object no.3 and no.5. But for 
object no.5, when it is brought into the 3D printing software 
the object could not be printed out. This might due to the 
reason that the object itself were rather too big and becomes 
incomplete due to constrain of the 3D environments. The 
fitness function used was supposed to impose a penalty to 
such a large object generated, but in this case it is observed 
that although the objects were large but the thickness of the 
entire object is rather thin hence the object only appear to be 
long instead of big in size. Object no.3 was printed out 
successfully and shown in Fig 2. In Table 5, the results from 
number range {0-240} shows more objects evolved into a 
spiky shape. From the parameter values shown in Table 5, 
when the valuefor and  exceed the 120 mark, spiky 
shapes will appear and it was deduced that after the number 
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range exceeded 120, the shapes will be in a low quality 
region. Some of the handpicked 3D objects were printed out 
and shown in Fig 3 to 6. 
 

 
Figure 2: 3D object printed out from {0 – 20} run no.3 

 
Figure 3: 3D object printed out from {0 – 20} run no.1 

 
Figure 3: 3D object printed out from {0 – 40} run no.2 

 
Figure 4 : 3D object printed out from {0 – 120} run no.3 

 

 
Figure 5: 3D object printed out from {0 – 60} run no.2 

 
Figure 6: 3D object printed out from {0 – 60} run no.4 
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From Table 3, the 3D objects shown were rather 
diversified, all 5 objects had different and unique 
symmetrical points. These observations can be used to 
conclude that the range number from 0 to 60 contains a high 
probability of generating unique and novel 3D objects.  

V. CONCLUSION AND FUTURE WORK 

From this study, the ideal range of numbers for the 
parameter value of the Superformula was investigated. 
Obtaining these values will be informative to serve as a 
reference point for future studies on the Superformula for 
automated 3D object and shape evolution. These findings 
will assist in decreasing the time needed and reduce the 
chance of devolving into a bad region of the parametric 
space. 

Future work should be focused on finding the settings 
of the EA operators that works well for the Superformula. 
Other types of evolutionary algorithms could also be 
investigated for more diverse shape generations. 
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