
Volume 6, No. 5, May - June 2015

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 97

Technical Review: Inheritance of Component Based Software Engineering

Karambir Singh
Department of CSE, UIET

Kurukshtrea University

 Kurukshtrea, India-136119

P. K. Suri,

Dean(Academic & Research)
Chairman, CSE/IT deptt.,

 HCTM Technical Campus

Kaithal, India

 Abstract: Component-based software development has grown rapidly as an approach that for rapid development of system by only using few

resources and person-effort. The idea of popularity of component was its reuse and reducing the development costs and it can be achieved if the

components offer reliable services and working raw lay architecture is available. Thus, integration of compatible components and their testing

become an important part in CBSE and is the understanding of communication, dependency and coordination between the components.

Component developers have to provide the detailed information about the component in the form of data sheet but in contrast of this the users of

component are not satisfied with information available components. As a result of this, understanding data flow while integrating these

components was a challenge. Component-based software as result is the development of complex systems by allowing integration of reusable

and simple components. In-house testing of these components was a challenging area of research. There has always been a trouble in integrating

the components and getting the optimized reliability as mentioned in the data sheet by the vendor. This in turn affects the quality and reliability

of the software. Their research aims at finding the existing component selection, characteristics, repository of components, testing and challenges

in science of CBSE. The systematic literature survey was based on 51 international journals collected from multiple-stage selection process.

Keywords: component; component based software engineering; component developer; reliability; quality; repository

I. INTRODUCTION

The historical change of software development of
Software Engineering begins from use of traditional software
development life cycle (SDLC) but the method of writing the
code was structural. Then object oriented approach came into
use and made a dramatic change in the development of
software system. This approach had many new useful
features like abstraction, independency, inheritance,
encapsulation and data hiding. This was starting of project
management, ease of software development, including
testing and differentiating the function by using the concept
of class/object. Component based approach; one of the
essential characteristics of engineering disciplines is to build
a product by ready made assembling, standard components.
The component based approach is the most recent trend in
industry for development as well as for testing. Right now,
component based development (CBD) is reached in the
leading edge phase. Indeed, there are now a number of
technologies appropriate for the people with experience in
the application of CBD.

Component Based Software Engineering (CBSE) is a

branch of Software Engineering that emphasizes the
separation of concerned service and their abstraction in
respect of the wide-ranging functionality available
throughout a given software system developing. Software
components form of objects or collections of objects may be
in some binary or textual form, described by some Interface
Description Language (IDL) so that the component may be
used autonomously from other components in a while
developing software. In other words, a component can be
used as it is without changing its source code by using the
maximum its functionality.

Even for developing the small system, the developer has

to start its development from the zero level or scratch. It used
to take more time and had a large cost for it. To cut

unnecessary cost and to reduce time of embedding advanced
feature in old project Component Based Software
Engineering (CBSE) gave it a very high importance. This
was attributed to the reduction of cost and time in building
the software using reusable components. A component was
generally defined as a piece of executable software of some
defined function with a published interface. The advantages
of CBSE came into picture are: Reduced lead time, enhanced
quality, Maintenance of Component-based applications. But
one thing that is a gap between vendors and developers are
that no sufficient information is provide to the develop about
these components like logical or structural implementation.
Overall our research mission was to find and scrutinize the
current techniques and issues in Testing of components in
CBSE. This will be a good starting point in furthering the
research. We aim at conducting a systematic literature survey
of the state of the art in Integration Testing of components in
CBSE. The most crucial aspect for a researcher was to have
adequate knowledge of what has been produced in the area of
interest. Performing a literature search helps to define an
unsolved problem. In this survey different strategies and
technique of developing component, its integration,
compatibility and testing was studied.

II. REVIEW OF COMPONENT BASED SOFTWARE

ENGINEERING

Walid Kobrosly et al. [1] proposed several technical
articles in the area of software testing and provided a cross-
section of software functional testing techniques. Then all
different methodologies were found useful, a complete
testing effort may need to include different techniques, each
to be applied in the appropriate phase of the automation of
testing process. Zhenyi Jin and A. Jefferson Offutt [2]
proposed the coupling-based testing technique and 12
coverage criteria were defined for testing of whole system.
The coupling based technique was also compared with the
category partition method on a case study, which found that

Karambir Singh et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,97-103

© 2015-19, IJARCS All Rights Reserved 98

the coupling-based technique detected more faults with fewer
testing cases than category-partition. Harald A.Stieber [3]
proposed that if classical testing strategies are used, the
application of Software Reliability Growth Models may be
difficult to apply and reliability predictions could be
misleading. This paper presented an approach which allowed
a reliability comparison between different versions or
different parts of one project as case study. Elaine J.
Weyuker [4] classified truly useful component repositories
by considering component design, interfaces, associated
directories, storage conventions, and maintenance
arrangements. Author proposed that Components should be
tested for each new expected or unexpected environment so
that developers and users could do better predict their
expected behaviour and performance once installed. Only
with this investment of time and resources will components
and its reusability existing components or using COTS
(commercial off the self) components could truly be cost-
effective and provide the reliability assurances that many of
today‘s industrial environments require.

Hoijin Yoon and Byoungjn Choi [5] proposed the factor

for component customization failures by implementing the
inter-class test technique between the black box class, and
the white-box class. Their proposed test technique was based
on a fault injection technique where a fault was injected into
the interface of the component. The author then defined the
fault injection operators, which were inserted to the fault
injection targets. Since the fault injection operators covered
most of possible failures that occurred within component
customization, the proposed testing technique was suitable
for component customization testing. Jerry Ago et al.[6]
implemented a Java framework and a systematic approach to
support tracking and monitoring software components in
component based programs. Moreover, the paper introduced
the concept of traceable components, including requirements,
design guidelines, and architecture style. The presented
results were useful to add systematic component tracking
features into the current Java and EJB technology to support
software components, embedding third party components
while in software maintenance. This solution had several
advantages:1) Simple and easy to use for building traceable
component with low programming effort. Flexible and
configurable to allow system supporters to monitor various
component behaviors, including GUI behaviors,
performance, errors and interactions. 2) Consistent trace
format and lightweight tracking code. 3) Scalable and useful
for both in-house and third party components.4) Changeable
to fit into different requirements and technologies in
organizations.

Gaoyan Xie [7] presented a test model that depicts a

generic infrastructure of component based systems and
suggested key test elements for this system. This test model
was implemented using a Component Interaction Graph
(CIG) in which the interactions and the dependence
relationships among components were illustrated. By
utilizing the CIG, he proposed a family of test adequacy
criteria which allowed optimization of the balancing among
budget, schedule, and quality requirements typically
necessary in software development. The proposed
methodology was efficient and effective, as demonstrated by
promising results obtained from a case study. The
Component-Based Software Engineering Techniques were
gaining substantial interesting in developer because of their
potential to improve productivity and lower development

costs of new software applications, yet satisfying high
reliability requirements without much effort. The Eliane
Martins et al. [8] presented an approach to improve
component testability by integrating testing resources into it,
and hence obtained a self-testable component. A prototyping
tool ―Concat‖, was developed to support the proposed
approach. The tool was intended for OO components
implemented in C++ . So the preliminary results of an
empirical evaluation of the fault detection effectiveness of
the proposed testing approach was also discussed.

The Dick Haulet et. al. [9] described the concept that how

component developers should design and test their
components to produce measurements that would be used by
system designers to calculate composite system reliability –
without implementation and test of the system being
designed and this theory also addressed the basic technical
problems inherent in certifying components to be released for
later use in an arbitrary system. Marlon Vieira and Debra
Richardson [10] proposed a technique to analyze
dependencies in large component-based systems.
Components communicate, share information, and depend on
each other in a CBS. By Identifying of the dependencies
embedded was the key to checking the semantic integrity of
CBS. Therefore, it was important to give more time to
research, for scalable and flexible ways to apply dependence
analysis over large and complex CBSs. This approach was
scalable and gave a broad idea of the system interaction
network, thus facilitating analysis of system dependencies.

Hans-Gerhard Gross and Nikolas Mayer [11] described

search-based execution-time analysis techniques under the
more recent object-oriented and component-based software
development paradigms. It was based on inbuilt testing
artifacts and on the execution and optimization of an object‘s
invocation history through a genetic algorithm. Valerie
Maxville et al. [12] outlined the process for selecting and
evaluating third party components. Developer always has a
hitch of using the third party components by such issues as
how to source, select and test components. Application
developers need to be confident that they had the most
suitable component for their system. This approach was
aimed at developers sourcing third party components from
external repositories. Some components come with varying
levels of documentation. Their process provided a systematic
approach for sourcing and selecting components. Automation
of the process will save time, allow for a wider field of
components to be considered, and gives traceable reasons for
any choices made.

Syed A.Ghazi and Moataz A. Ahmed [13] addressed the

test configurations generation problem and proposed a GA-
based technique as a solution to the problem. Initially, result
of the proposed technique was used effectively to generate
test configurations. The proposed technique was easy to
apply, and overcomes the exponential complexity associated
with other techniques. However, an extensive set of
experiments, with more challenging problems, was required
to have a fair assessment on the technique. Ye Wu, Dai Pan
and Mei-Hwa Chen [14] introduced a decomposition
verification approach for component-based systems through
both formal analysis as model checking and traditional
software testing like of Model of checking Driven Black-box
Testing Algorithms for Systems with Unspecified
Components. The author also presented both LTL and CTL
model-checking algorithms for systems with unspecified

Karambir Singh et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,97-103

© 2015-19, IJARCS All Rights Reserved 99

components. With respect to an LTL (resp. CTL) formula
about a system, their algorithms directly designed a condition
in terms of communication graphs i.e. witness graphs over
the system‘s unspecified components, and then tested the
unspecified components with test-cases generated
automatically from the condition.

Jerry Gao et. al. [15] designed component-based software

using reusable components and proved that the quality of a
component-based system is highly dependent on the quality
of its components; component quality validation becomes
very critical to both component vendors and users.
Effectively validating component quality needs adequate test
models and testing coverage criteria. Egon Valentine et al.
[16] proposed that Component based frameworks become
more and more state-of-the art but without verifying the
components and their interaction it was nearly impossible to
build correct and robust systems. Testing of such systems
requires a combination of unit and integration tests, and must
deal with verifying the contracts that enabled the interaction
of components and also presented ―Crash It - a test
framework‖ for component-based testing. The main
concept of Crash It was the introduction of expandable
contract-checkers that verified the communication between a
client and a supplier component. These checkers were also
able to communicate with each other and with other modules
of Crash It. Thus, Crash It allowed to check the state of each
component at every time.

Fevzi Belli, Christof J. Budnik [17] introduced an

approach for reducing the test costs of user side oriented
component testing by identifying and analyzing of manual
activities during the test process to enable automation. For
modeling the system, state-based or event-based methods
were used. For demonstrating the practicability and benefits
of the approach, a commercial test tool was augmented by
test facilities (as add-ons) which are developed by their
group. A prototype of the test environment was already
available at that stage. First, the approach was not required
the insight into the code of the CBSUT. Second, once the test
script was implemented then the CBS was automatically
tested. Specifically, the component user cannot specify the
adequacy criterion to be used for test case generation. Sami
Beeydeda and Friedhofstr.I [18], explained that the testing of
component user was different from the test cases employed
in testing at the side of component developer. A component
built-in testing enabled, according to one of the approaches
explained either contained a predetermined set of test cases
or the generation, even if conducted on-demand during
runtime, solely dependent on parameters which the
component user could not influence. As per Aynur
Abdurazik and Jeff Offutt [19], software classes exhibit
relationships that complicate integration, including method
calls, inheritance, and aggregation. During the integration of
class and their testing, an order of integration must be
followed. The difficulty arises when cyclic dependencies
exist - the functionality that was used by the first class to be
tested must be tested by creating stubs, an expensive and
error-prone operation. This paper described new techniques
and algorithms of computing the integration and test orders
to solve the CITO problem. New results concluded of
improved edge weights that are derived from quantitative
coupling measures to more precisely model the cost of
stubbing, and the use of weights on nodes, allowing more
information.

Maliangli et al.[20] introduced an idea of grouped meta-
data object, which included descriptive metadata and
Operative metadata. Both metadata was divided into several
groups. And each group was consisted of several attributes.
Each attribute describe related information GMO presented
about component being tested implemented by component
users. A formal reference model of grouped-metadata was
presented to facilitate integration testing. Based on grouped-
metadata, a change model was to generate regression testing.
Liang Kong et al. [21] explored the application of algebraic
testing method to software components. A specification
language CASOCC was proposed. An automated EJB
component testing tool ‗CASCAT‘ was implemented. This
method achieved a high fault detecting ability as shown by
their preliminary experiment with testing a software
component, which confirmed the experiments done by
Doong and Frankl. Huaikon et al. [22], the concept of Logic
Component (LC) was proposed, and a Web application was
divided into LCs which was mapped into the actual physical
components finally. The automaton to model each
component, and use compositions of automata to model
component interaction was time consuming. For each
component-test-sequence, the author proposed a new
automaton using composition of automata. Abstract test
cases was generated from the new automata, after mapping
the actions to the actual operations and adding the data of test
space, the component test cases were generated automatically
or semi automatically.

Patricia D. L. Machado et al.[23] proposed an integration

testing method for component based software . This method
was based on the widely used UML (Unified Modeling
Language) notation, covered a complete integration testing
process at a contractual component level and it was
supported by the use of tools. Components and their
interfaces were specified by using UML diagrams and OCL
(Object Constraint Language) constraints. This method that
addressed the main issues in this kind of testing for
component-based software with the goal of minimizing costs
and maximizing the chances to detect faults. Cost was
minimized by reusing development artifacts when
appropriate, defining an optimized integration order that
made test harness construction easier and integration steps
more feasible, and automation of tasks. Chengying Mao [24]
proposed a technique to improve component‘s testability so
as to facilitate component‘s unit testing and regression
testing of CBS. Self-checking aspect was embedded to
check the invariants which the component obeyed, and
tracing aspect was introduced to collect precondition of
method execution in component so as to help regression
testers to pick out precise subset of test suit. AOP techniques
was applied to enhance the capability of facilitating other
testing activities such as integration testing. Jinfu Chen et
al.[25] proposed a testing approach of component security
(TACS) based on dynamic monitoring and detecting
algorithm CSVD (component security vulnerability
detecting), and their case study verified its integrity and nice
operability. The shortcoming of TACS was that the
algorithm was dependent on the states transition chart of
component. First, the detecting algorithm CSVD improved
to enhance the detection granularity. Second, some
evaluation mechanisms were proposed after detecting and
evaluating the security level.

Jiang Zheng et al .[26] presented a feasibility case study

of the I-BACCI Version 4 process for regression test

Karambir Singh et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,97-103

© 2015-19, IJARCS All Rights Reserved 100

selection for applications that incorporate DLL components
for which source code was not available. Similar to other
RTS techniques, when there was a large number of changes
in the new component, I-BACCI suggested a retest all
regression testing strategy. The results was verified by
examining the failure records of retest-all black-box testing.
Current tools identified all changes; no failures would have
escaped the reduced test suites. The completion of graphic
user interface (GUI) software function included complicated
human-machine interactions. The function testing methods
usually considered interface of software and environment,
while ignoring software requirement and function completion
process. Wenjing Cao et al. [27] proposed testing method
based on data flow graph. Based on software requirement
and interface, this method organized function testing process
with transaction processing and data flow. Comparing to the
existing function testing methods, this testing method was
more effective for GUI software.

Weiqun Zheng and Gary Bundell [28] introduced a new

concept of Contract for Testability and developed a set of
important contract oriented concepts i.e. test contract,
effectual contract scope, internal/external test contract and
presented useful test criteria for effective model-based
testability improvement. Jing xian Gu Lei et al.[29]
presented most of Web applications of multi-tier
architectures. The development of web application that had
many components, which was early stage of component-
based Web application. This paper focused on the kind of
web applications and constructed three dependency graphs
based on structure relations and message call relations. Then
the author improved the path-based integration testing
method, proposed an extended MM-path approach and used
this approach to find out testing paths of component-based
Web application. Fernando Raposo da Camara Silva et al.
[30] presented an approach to support component testing
aiming to reduce the lack of information between component
producers and component consumers. Additionally, the
approach was covered by a CASE tool integrated in the
development environment. A component with known value
of reliability , use of a component in several systems
increased the chance of errors being detected and
strengthened confidence in that component. In this paper,
two workflows were presented describing necessary
activities conducted by producers to prepare a component
tested by third party, and the activities performed by
component consumers to elaborate and executed test cases to
support the decision of integrating components to a system
under development.

Chunyan Hou et al .[31] proposed an approach for

component-based software reliability analysis combining the
advantages of white box with black box approaches to
simultaneously address system structures, and software to
repair. Their approach applied testing data transformation to
bridge the gap between addressing component interactions,
and time domain effects. At first the models of component-
based software testing process transformed the testing data to
build the reliability dataset required by NHPP models. XIA
Qiming et al. [32] combined the XML Schema outside the
component with the XML validates inside the component.
The component interface was extended by XML and
XACML techniques, and the test-syntax model defined by
XML Schema was built. According to XML Schema
mutation operator, EXID validates the XML extension
interface. This approach made coupling degree between test-

scripts, component consistence and decreasing, thus the
difficulty of creating and maintaining test-scripts was
reduced. The approach was into cross-platform component
testing environments.

Zhongsheng Qian [33] described a component automata

based approach for generating test cases for Web
applications described through a component interaction
diagram. A Web application was assumed to be composed of
interacting components and each component behavior was
described using an automaton. The test generation process
was then outlined and some coverage criteria were defined.
Dirk Niebuhr and Andreas Rausch [34] implemented an
approach of prototype of DAiSI. on of their components and
assure good test cases while trading-off the test case
execution overhead. Xiao-li LUet al.[35]described the
features of the component-based software and metamorphic
testing (MT) to alleviate the issues. The metamorphic class
was used to invoke relevant component to execute test cases
and use their metamorphic relations to defect faults. Test
cases for the unit test phase were proposed to generate
follow-up test cases for the integration test phase. It had
potentials to shift the testing effort from the construction of
the integration test sets to the development of metamorphic
relations. The metamorphic class was invoked by relevant
component to execute test cases and use their metamorphic
relations to detect faults.

M. Loberbauer et al. [36] tested the Comparability of

Plug-and-Play Components and introduced a method and a
tool for testing the dynamic compatibility of component-
based software systems. It was based on Plux.NET, a plug-in
platform for plug-and-play composition of .NET
applications. They described the Plux Compensability Test
Tool (PCTT) and showed how it could be integrated into the
Plux composition infrastructure. It generated a test cases
according to the PCTM and executed them. Henryk
Krawczyk and Adam Rek [37] presented approach to
manage relationships between components and their
versions. It described methods to ensure reliable and fast
communication between them and also presented platforms
for building and testing automation of component based
applications and explained that how the component based
approach could help to speed up the team work. Furqan
Naseer et al.[38] analyzed the use of metadata in black box
testing of a component and constructed some parameters on
the bases of which the author evaluated the limitations of the
existing approaches.

Ying Jiang et. al.[39] demonstrated the effectiveness of

their testing approach of the syntactic and semantic
specification, it was used to generate test-data through
combining the function based and the error-based method.
They also found that the efficiency of test data was not same
as previous one after mutation and investigated the
relationship between the specification elements and test data,
such as the protocol specification and integration testing. As
a result, the ability of specification definition was enhanced
and improved the efficiency of testing method. Martin Rytter
and Bo Nørregaard Jørgensen [40] proposed an approach of
the required transparency, by moving fault-tolerance
concerns into a meta-level. The meta-level provides clients
with dynamic fault containers created as a part of reference
resolution at runtime. The behavior of a dynamic fault
container was dependent solely on a service-provider
interface.

Karambir Singh et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,97-103

© 2015-19, IJARCS All Rights Reserved 101

Aditya Pratap Singh et al.[41] proposed a Reliability

Estimation Model for CBS to estimate the reliability through
path propagation probability and component impact factor.
This model incorporated the idea of path propagation to
estimate overall system reliability after integration of
components and the contribution of the individual
components that were activated during an execution of line
of path. Salma Hamza et al. [42] proposed object-oriented
(OO) metrics to evaluate component-based applications
produced with some kind of framework. Indeed, metrics
became a standard in OO community. So, they were well-
defined, well-known and empirically validated. Thanh-Trung
Pham et al. [43] validated with the reporting service of a
document exchange server, by modelling the reliability,
conducting a reliability prediction and sensitivity analyses.
Yumei Wu et al.[44] described the software reliability
prediction models, which received the most attention in
software reliability engineering, used the failure data
collected in testing phases to predict the failure occurrence in
the operational environment. There exists a difficult problem
in software reliability modelling that the prediction capability
of a model varied with failure data change. Joao M. Franco
et al.[45] described the quantitative assessment of quality
attributes on software architectures allowed to support early
decisions in the design phase, certified quality requirements
of stakeholders and improved software quality in future
architectural changes. This provided the architects prediction
and analysed availability constraints on software
architectures.

V.B. Singh et al.[46] developed an advancement in the

internet technology had eased the software development
under distributed environment irrespective of geographical
locations. The code-changes due to bug fixes, new features
and feature improvements for a given time period were used
to predict the possible code changes in the software over a
long run (potential complexity of code changes. Mudasir
Ahmad et al. [47] developed the reliability models for the
internet of things. Researchers presented a new methodology
for estimating hardware and software reliability given
uncertain use conditions, to derive probabilistic estimates for
overall system reliability. The methodology was applied to
illustrative case studies: estimating the impact of temperature
variation on the reliability of two component types in a
typical networking product: solder joint interconnects and
fans. The methodology was then extended to software
applications in a networking product, capturing the effects of
distinct variables: interaction between hardware and software
resource consumption and the delay between software and
hardware update. Sathish V. et al. [48] provided a Principal
Component Analysis (PCA) based approach of failure
prediction in industrial robots using event log information.
The event logs were collected through remote service set-up
from a robot controller. The proposed method reduced the
dimensionality of the original data which consist of
interrelated events while retaining the variation present in the
data. Using PCA and multi variant statistics such as
Residuals and contributions charts, that were able to detect
abnormal behaviour of event pattern within 30 days before
failure.

Yueshen Xu et al. [49] improved the prediction accuracy

of reliability in a collaborative way. First, researchers
estimated the failure probability of each component through
two independent models extended from Matrix Factorization.

For each service and user and identified the similar
neighbour through similarity computation. Carsten Mueller
et al.[50] proposed a new approach for handling the different
complex algorithm. The main idea was to set up a
framework for complex algorithms. A component-based
framework, IEOCA (Intelligent Evaluation of Complex
Algorithms) written in Java for building and studying
complex algorithms like genetic algorithms and ant colony
optimization was developed. Zhu Chengbang et al. [51]
proposed a model driven QoS modelling method. This model
was two level domain modelling based on MDA and generic
QoS meta-model and proposed the implementation of the
QoS meta-model and the QoS domain specific abstract
model.

III. CONCLUSION

The systematic Literature survey investigated existing
component testing techniques, understanding the behavior of
components and their interactions. As seen from the year of
publication of the articles, it can be understood that the
research was rather dull until the year 2001. There were 8
articles published. From the year 2001 research geared up
and more than 4 articles were published on an average. There
exists a need to establish requirements traceability and
behavior of evolving or changing components. The research
also points investigate into automation of testing in CBSE.
The research in the field of automated testing of
components, testing at run-time, reduced time delivery,
estimation, reliability of system and approaches to generate
test-cases for evolving components would be beneficial for
future research. However non-functional aspects in a system
composed of components was analyzed and testing has a
great potential for future work.

IV. FUTURE WORK

Be The study of exiting testing techniques and model for
integrating component-based software systems, research will
be as fundamental place to start work on techniques based on
contracts, UML, software reliability models and finite state
machine. Also, it was interesting to investigate on the issues
like time to test, effort to be invested in testing, and the role
of metrics in testing and also in component interaction
models. Their studies also show evidence of CBSE and
testing in the field of embedded systems. There was good
chance to start research in the field of improving the
reliability and simulation of repository of Commercial off the
shelf components(COTS) and apply simulation methods to
reduce delivery time and commit for warranty.

The presented ideas of future work in the form of

following questions/points. 1) Was CBSE suitable when
there are frequently changing requirements (i.e. Agile
fashion)? 2) Testing tools in CBSE. 3) What is the effect of
Reliability of component on the whole system. 4) Jow the
testing can improve reliability of components. 5)
Investigation/case study of CBSE in Software industry? 6)
How to achieve common component standardization and
environmental characteristics?. 7) Moreover , how the
Reliability of Component affects the reliability of system and
how it can be improved if the reliability of components is
fixed. While informal comparisons with other techniques
may be described, reporting thorough comparisons with other
techniques will also help to plan as a future work.

Karambir Singh et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,97-103

© 2015-19, IJARCS All Rights Reserved 102

V. REFERENCES

[1] Walid Kobrosly and Stamatis Vassiliadis, ―A Survey of

Software Functional Testing Techniques‖, pp. 127-134,

IEEE pp. 127-134, 1988.

[2] Zhenyi Jin and A. Jefferson Offutt, ― Integration Testing

Based on Software Couplings‖ , pp. 13-23,IEEE, 1995

[3] Harald A. Stieber, ―Statistical Quality Control: How to

Detect Unreliable Software Components‖, pp. 8-12, IEEE

1997.

[4]Elaine J.Weyuker, ―Testing Component-Based

Software:A Cautionary Tale ―, ,pp. 54-59, IEEE

[5] Hoijin Yoon and Byoungju Choi , ‖ Inter class Test

Technique between Black-box-class and White box-class for

Component Customization Failures‖ , pp 162-165, IEEE,

1999.

[6] Jerry Gao, Eugene Y. Zhu, Simon Shim and Lee Chang

, ― Monitoring Software components and component-Based

Software‖, .pp 403-412, IEEE 2000

[7] Ye Wu, Dai Pan and Mei-Hwa Chen, ―Techniques for

testing component Based Software. Information and

software‖ , pp222-232, IEEE, 2001

[8] Eliane Martins, Cristina Maria Toyota and Rosileny Lie

Yanagawa, ―Constructing Self Testable software

components‖, pp151-160, IEEE, 2001.

[9] Dick Hamlet, Dave Mason and Denise Woit, ―Theory of

Software Reliability Based on Components‖, pp361-370,

IEEE 2001

[10] Marlon Vieira and Debra Richardson, ―Analyzing

Dependencies in large component-Based Systems‖ ,

Proceedings of the 17
th

 IEEE International Conference on

Automated Software Engineering (ASE‘02), IEEE, 2002.

[11] Hans-Gerhard Gross and Nikolas Maye, ― Search-based

Execution-Time Verification in Object-Oriented and

Component-Based Real-Time System Development‖,

Proceedings of the Eighth IEEE International Workshop on

Object-Oriented Real-Time Dependable Systems,Germany,

IEEE, 2003.

[12] Valerie Maxville, ChiouPengLam and Jocelyn

Armarego , ― Selecting Components: a Process for Context-

Driven Evaluation‖, Proceedings of the Tenth Asia-Pacific

Software Engineering Conference (APSEC‘03),Australia.

IEEE, 2003.

[13] Jerry Gao and JingshaHe, ―Testing Coverage Analysis

for Software Component Validation‖, ,IEEE, 2005.

[14] Syed A. Ghazi and Moataz A. Ahmed , ―Pair-wise Test

Coverage Using Genetic Algorithms‖, pp.1420-1424, IEEE

2003.

[15] Gaoyan Xie,, ―Decompositional Verification of

Component-based Systems—A Hybrid Approach‖, IEEE

2004.

[16] EgonValentini, Gerhard Fliess and Edmund

Haselwanter, ―A Framework for Efficient Contract-based

Testing of Software Components‖, Proceedings of the 29th

Annual International Computer Software and Applications

Conference (COMPSAC‘05), IICM, Austria, IEEE 2005.

[17] Fevzi Belli and Christof J. Budnik, ―Towards Self-

Testing of Component-Based Software‖, Proceedings of the

29th Annual International Computer Software and

Applications Conference (COMPSAC‘05), IEEE 2005.

[18] Sami Beydeda, ― Research in Testing COTS

Components - Built-in Testing Approaches‖, IEEE 2005.

[19] Aynor Abdurazik and Jeff Offutt, ― Coupling based

Class Integration and Test Order, Information and Software

Engineering‖, ACM, 2006

[20] Ma Liangli, Wang Houxiang and Li Yongjie , ―A

Reference Model of Grouped-Metadata Object and a

Change Model based on it Appling for Component-based

Software Integration Testing‖, Proceedings of the 2007

International Conference on Systems Engineering and

Modeling, Wuhan, Hubei, China, IEEE 2007.

[21] Liang Kong, Hong Zhu and Bin Zhou, ―Automated

Testing EJB Components Based on Algebraic

Specifications‖, 31
st
 Annual International Computer

Software and Applications Conference(COMPSAC 2007),

IEEE 2007.

[22] Huaikou Miao, Shengbo Chen, Huanzhou Liu and

ZhongshengQian, ―Workshop on Intelligent Information

Technology Application‖, School of Computer Engineering

and Science, Shanghai University, Shanghai, China, IEEE

2007.

 [23] Patricia D. L. Machado, Jorge C. A. Figueiredo,

Emerson F. A. Lima, Ana E. V. Barbosa, Helton S.Lima, ―

Component-Based Integration Testing from UML

Interaction Diagrams‖, pp. 2679-2686, IEEE 2007,

[24] Chengying Mao, ―AOP-based Testability Improvement

for Component-based Software‖, 31
st
 annual International

Computer Software and Applications

Conference(COMPSAC 2007), School of Software, Jiangxi

University of Finance and Economics, Nanchang, China,

IEEE , 2007.

[25] Jinfu Chen, Yansheng Lu, XiaodongXie and Wei

Zhang, ―Testing Approach of Component Security Based on

Dynamic Monitoring, College of Computer Science and

Technology, Huazhong University of Science and

Technology, Wuhan City, Hubei Province, China, IEEE

2007 pp. 381-386.

[26] Jiang Zheng, Laurie Williams, Brian Robinson and

Karen Smiley, ―Regression Test Selection for Black-box

Dynamic Link Library Components‖, Second International

Workshop on Incorporating COTS Software into Software

Systems: Tools and Techniques (IWICSS'07), IEEE 2007 .

[27] WenjingCa and ShenghongXu, ― A Software Function

Testing Method Based on Data Flow Graph‖ , IEEE, 2008.

[28] WeiqunZheng and Gary Bundell, ―Test by Contract for

UML-Based Software Component Testing ―, pp 377-382,

IEEE 2008.

[29] JingxianGu, Lei XuBaowenXu and Hongji Yang , ―An

Extended MM-Path Approach to Component-based Web

Application Testing‖,pp 144-150, IEEE 2008.

[30] Fernando Raposo da Camara Silva, Eduardo Santana de

Almeida and Silvio Romero de LemosMeira, ― A

Component Testing Approach Supported by a CASE Tool‖,

IEEE, 2009.

[31] ChunyanHou, Gang Cui, Hongwei Liu and Xiaozong

Yang , ―Reliability Analysis of Component Software Based

on Testing Data Transformation‖, .8
th

 IEEE/ACIS

International Conference on Computer and Information

Science, Harbin, China, pp. 403-412, IEEE 2009.

[32] XIA Qiming, NIE Nan, Yao Junfeng, and HE Keqing,

‖ XML API-based Test Framework of Extension Interface

Using Software Mutation Analysis for Component‖, IEEE,

2009.

Karambir Singh et al, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015,97-103

© 2015-19, IJARCS All Rights Reserved 103

[33] Zhongsheng Qian (2009), ―Testing Component-based

Web Applications Using Component Automata‖, pp. 455-

458 IEEE 2009.

[34] Dirk Niebuhr and Andreas Rausch, ― Guaranteeing

Correctness of Component Bindings in Dynamic Adaptive

Systems‖, 35
th

 Euromicro Conference on Software

Engineering and Advanced Applications 2009. Software

Systems Engineering, pp. 454-457, IEEE 2009.

[35] M. A. El-Damcese and N. S. Temraz, ― availability and

reliability measures for multistate system by using markov

reward model‖ ,RT&A, 2010.

[36] M. Loberbauer, R. Wolfinger, M. Jahn and H.

Mossenbock, ‖ Testing the Composability of Plug-and-Play

Components‖, pp. 413-418, IEEE, 2010.

[37] HenrykKrawczyk and Adam Rek,‖ Methodology for

developing Web-based applications from reusable

components using open-source tools‖, Proceedings of the

2nd International Conference on Information Technology,

ICIT 2010, pp. 117-119,

IEEE 2010.

[38] FurqanNaseer, ShafiqurRehman and Khalid Hussain, ―

Using Meta-data technique for Component based Black Box

Testing‖, 6
th

 International conference on emerging

Technologies (ICET) , pp. 276-281, IEEE 2010.

[39] Ying Jiang, Ying-Na Li and Xiao-Dong Fu, ―The

Support of Interface Specifications in Black-box

Components Testing‖ 5
th

 International Conference on

Frontier of Computer Science and Technology , pp. 305-

311, IEEE, 2010

[40] Martin Rytter and Bo NorregaardJorgensen,

―Enhancing Net Beans with Transparent Fault Tolerance

Using Meta-Level Architecture‖. International Journal of

Object Technology, vol. 9, no. 5, pages 55–73, 2010

[41] AdityaPratap Singh and PradeepTomar , ‖ A New

Model for Reliability Estimation ofComponent-Based

Software,‖, pp.1431-1436, IEEE, 2012,.

[42]Salma Hamza, Salah Sadou and Regis Fleurquin , ‗

Measuring Qualities for OSGi Component-Based

Applications‖, pp. 25-34, IEEE, 2013 ,

[43] Thanh-Trung Pham and Xavier Defago, ― Reliability

Prediction for Component-based Software Systems with

Architectural-level Fault Tolerance Mechanisms‖, pp. 11-

20, IEEE, 2013.

[44]Yumei Wu and Risheng Yang, ― Software Reliability

Modeling Based on SVM and Virtual Sample‖, IEEE,

2013.

[45] Joao M. Franco, Raul Barbosa and Mario Zenha-Rela, ―

Availability Evaluation of Software Architectures through

Formal Methods‖, pp. 282 -287, IEEE, 2014.

[46]V.B. Singh and Meera Sharma , ‖ Prediction of the

complexity of code changes based on number of open bugs,

new feature and feature improvement‖, pp. 478 – 483, IEEE,

2014.

[47] MudasirAhmad and San Jose ,‖ Reliability Models for

the Internet of Things: A Paradigm Shift‖, pp. 52 – 59,

IEEE, 2014.

[48] Sathish V., Sudarsan S.D. and Srini Rama Swamy , ―

Event Based Robot Prognostics using Principal Component

Analysis‖, pp. 14 – 18, IEEE, 2014.

[49] YueshenXu, Jianwei Yin, Zizheng Wu, Dongqing He,

Yan Tang, ― Reliability Prediction for Service-Oriented

System via Matrix Factorization in a Collaborative Way‖ ,

pp. 125 – 130, IEEE,2014.

[50] Dr. Carsten Mueller, Andre Hofmeister and Markus

Breckner , ― Component-based approach for intelligent

evaluation of complex algorithms‖, pp. 808 – 811, IEEE,

2014,

[51] Zhu Chengbang, Li Bing, Liu Shufen, ― A Component

Quality of Service Modelling Method‖, pp. 695-699, IEEE,

2014.

