
Volume 6, No. 5, May - June 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 63

BCES Encryption Algorithm

Khdega A.Yosef Galala

Computer Science Department,

Faculty of Education, Waddan, Sirte University,

Waddan, Libya

Abstract: A fundamental problem in cryptography is how to communicate securely over an insecure channel. This problem has been there for a
long time and has become even more important especially with the proliferation of computers and communication systems. Achieving

information and communications security in an electronic society requires a vast array of technical and algorithms, without which the
information security objectives deemed necessary cannot be adequately met. For this reason, this paper aims to propose a new algorithm to

improve the security level. That is called as BCES algorithm. Thus, the rest of this paper is organized to offer an overview of basic issues of
cryptography and describes in detail a new algorithm.

Keywords: BCES, encryption, public key, decryption, algorithm, ASCII

I. INTRODUCTION

In an encryption algorithm the sender and the receiver are

the two main parties which must involve. Encryption

algorithm can be done in two main stages; they are encryption

and decryption. First stage is called encryption and it starts

whenever a sender wants to send a message, called the

plaintext to the receiver, and converts it to an encrypted form,

called the ciphertext, finally sends it to the receiver. However,

the method used to convert the plaintext into a cipher text (by

performing various substitutions and permutations on it) which

is called the encryption algorithm[1]. This is shown in Figure

1.

 Figure1. An encryption algorithm

 In the second stage, upon receiving the cipher text, the

receiver uses a decryption algorithm to recover the original

plaintext from the ciphertext it received. The method used to

convert the ciphertext into a plaintext is called the decryption

algorithm. In sample means decryption algorithm takes the

ciphertext and the secret key and produces the original

plaintext. This is shown in Figure 2.

Figure2. A decryption algorithm

In addition, to finished encryption performance, it also

required to generate encryption key. A key in encryption is a

long sequence of bits used by encryption and decryption

algorithms[1]. The keys used by the encryption and decryption

algorithms are called the encryption key and the decryption

key respectively. The decryption key should always be kept

secret and, for this reason, it is also called the secret key[2].

Although the major issue to design any encryption and

decryption algorithm is to improve the security level there are

several objectives to design it; some of them are; it aims to

data integrity: to ensure data wasn't altered between sender and

recipient. Another aim is confidentiality: to ensure data is

remained private (read only by authorized parties).

Confidentiality is usually achieved using encryption that is

because cryptography is used to convert plain text into cipher

text and the equivalent decryption algorithm is used to convert

the cipher text back to plain text. Lastly, Authentication: to

ensure data originated from a particular party[2].

II. BRIEF HISTORY OF ENCRYPTION

Encryption has a long history and it goes back to at least

Egyptian times about 4000 years ago. Moreover, Caesar’s shift

cipher was introduced more than 2000 years ago. In the 1970s,

Martin Hellman, Whitfield Diffie, invented a powerful

cryptographic idea. Their idea was to solve the key exchange

and trust problems of symmetric encryption by replacing the

single shared secret key with a pair of mathematically related

keys, one of which can be made publicly available and another

one must be kept secret by the individual who generated the

key pair. Furthermore, Ron Rivest, Adi Shamir, and Leonard

Adleman invented the RSA cipher in 1978; response to the

ideas proposed by Hellman, Diffie, and Merkel, and it is

widely used Public-Key algorithm[2]. The more common

secret-key Encryption algorithm used today is the Data

Encryption Standard (DES), designed by IBM in the 1970s

and adopted by the National Bureau of Standards (NBS) [now

the National Institute for Standards and Technology (NIST)] in

1977 for commercial and unclassified government applications

in the early 1970 s[3]. Another class of powerful public-key

schemes was found by ElGamal in 1985. In addition, in 1991

the first international standard for digital signatures

(ISO/IEC9796) was adopted. It is one of the most significant

contributions provided by public-key cryptography. In 1994

the U.S. Government adopted the Digital Signature Standard, a

mechanism based on the ElGamal public key scheme[2].

Explicittext Encryption Algorithm Cipher text

Explicittext Decryption Algorithm Cipher text

Khdega A.Yosef Galala, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 63-66

© 2015-19, IJARCS All Rights Reserved 64

III. TYPES OF ENCRYPTION

There are several ways of classifying encryption algorithms.

For the purposes of this paper, they will be categorized into

two basic types of encryption: symmetric algorithms ("private

key") and asymmetric algorithms ("public key").

a. Symmetric-key algorithm (Secret Key Encryption)

Symmetric key algorithms are the quickest and most

commonly used type of encryption. Symmetric key algorithms

require both the sender and the recipient to have the same key

[4]. This key is used by the sender to encrypt the data, and

again by the recipient to decrypt the data. Most well-known

symmetric encryptions are DES (data encryption standard)

and AES (advanced encryption standard).

b. Asymmetric-key algorithm (Public Key Encryption)

Another type is called asymmetric key encryption or public

key encryption. It is used to solve the problem of key

distribution. In this type each user has both a public key and a

private key [5]. The public key is used for encryption and

private key is used for decryption. The most widely used

symmetric key cryptographic method is the RSA. However,

asymmetric algorithms have several advantages the main

advantage of an asymmetric algorithm with respect to a

symmetric algorithm is that the parties do not need to agree on

a common key before communicating, but it has the

disadvantage of being hundreds of times slower than

symmetric algorithms [4]. This study adapted symmetric key

algorithm that a single key is used for both encryption and

decryption. This paper describes a new symmetric key

algorithm in detail. The advantages of this new algorithm are

also explained in the next section.

IV. NEW SYMMETRIC KEY ALGORITHM

In this section the implementation of Binary Count

Encryption System (BCES) algorithm is introduced. In this

way, Section A: includes explanation of encryption algorithm,

Section B includes explanation of decryption algorithm and

Section C includes explanation of decryption key. The

structure of this algorithm can be explained by the following

steps:

A. Encryption algorithm

The Encryption process involves converting the original

data to its encrypted form. The proposed encryption algorithm

consists of the following processes as explained below:

Step 1: Read a character from the file of explicit text.

Step 2: Generate the ASCII value of that character.

Step 3: Generate the corresponding binary value of it.

Step 4: Divide the binary data into blocks in which each block

equals 8 bits.

Step 5: Last step in this algorithm is process of a counting and

a testing (at the same time, count the total of similar bits, and

followed by the type of bits, which is zero or one).

For a counting processa.

A count process in proposed encryption algorithm means

calculating the total of similar and contiguous bits, stop

counting and print the total when the first different bit

appearance. In this step, two counters of Boolean type are

used as such:

 Use flag1 for excellence the bit equal zero.

 Use flag2 for excellence the bit equal one.

b. For a testing process

The testing process is to determine the type of bits (the bits

countered in the previous step), for this purpose the ASCII

table was divided into two parts as follows:

1) To determine the type of bits equal zero, generate a

random number from the ASCII table between (160-254).

2) To determine the type of bits equal one, generate a

random number from the ASCII table between (59-157).

3) Numbers from (1-59) are exceptional.

So, this would be the cipher text or encrypted text.

Figure3. shows steps followed in the proposed encryption

algorithm.

Figure3. Encryption in BCES algorithm

 However, the encryption process can be expressed

as:

F (T) = (E, K)

 Where T: explicit text, E: cipher text, F: encryption

algorithm, K:decryption key.

B. Decryption Algorithm

The decryption process involves converting the encrypted

data back to its original form. The proposed decryption

algorithm consists of the following processes as explained

below:

Step 1: Read pairs of characters from the file of ciphertext.

Step 2: Generate the corresponding binary value of them. As

follows: converting the second variable into binary data using

ASCII code, if the number between (160 -254) return zero else

return one. Then increase the number of the bit (0 or 1)

produced in the previous step, according to the value of the

first variable.

Step 3: Divide the binary data into blocks in which each block

equals 8 bits.

Step 4: Generate the ASCII value of the binary data.

Step 5: Generate the corresponding ASCII code of that value.

So, this would be the original text or the explicit text. Figure

4 Shows steps followed in the proposed decryption algorithm.

ASCII(CHAR)

BINARY (ASCII)

COUNT(BINARY)

Store the decryption key

Explicit text

"E"
Cipher text

T"

Key

K"

Khdega A.Yosef Galala, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 63-66

© 2015-19, IJARCS All Rights Reserved 65

Figure4. Decryption in BCES algorithm

 The decryption process can be expressed as:

 F (T) = (E, K)

 Where T: explicit text, E: Cipher text, F: encryption

algorithm, K: encryption key.

C. BCES Key Generation

Generating keys is extremely important. If the security of an

encryption system is reliant on the security of keys then clearly

care has to be taken when generating keys. In addition,

designing key length also is essential for any encryption

algorithm that is because a large key will indeed be more

difficult to break under most circumstances, on the other hand,

encrypting and decrypting data with large keys may have bad

effects on the system. However, in the BCES algorithm the

length of the decryption key could generate efficiently from

both long and short messages. It's also not fixed because it

depends on the length of the message. The decryption key

algorithm proposed in this paper is introduced in four different

steps. They are:

Step 1: Count the number of lines in the ciphertext.

Step 2: Count the number of characters in the cipher text.

Step 3: Divide the number of characters on the number of

lines multiplied by2.

 D = character/(2*rows)

Step 4: Compare the result produced in the previous step. If it

is less than 35, we need to make it 35. After that, repeat from

the first digit produced in the previous step and quotient in

next 8 digits. Then that get and store the squareness of the

result produced in the previous step.

 If D < 35 then

 Key=D+8

 for (i=D; i<D+8; i++)

 Key=i*i

 Otherwise, if the result produced in the previous step is

greater than 35, repeat from the first digit produced in the

previous step and quotient in next 8 digits. After that get and

store the squareness of the result produced in the previous step.

If D >= 35 then

For(i=D; i<D+8; i++)

Key= i*i

a) Example

This example explains how we could generate the key from

short message.

Assuming that the message length is one line and number of

characters in the message are 3. Now, according to the steps

above we will get the following:

Step 1: Dividing the number of characters on the message by

the number of lines multiplied by 2.

 D = int (3/(2*1))=1.5

Step 2: the result produced in the previous step is compared

with 35. Since it is less than 35, we need to make it 35

according to this algorithm, so it would be 36 (added 1).

 D < 35 THEN 35+1=36

Step 3: repeat from the first digit produced in the previous

step and quotient in next 8 digits.

 for (i=D; i < D+8; i++)

 (36,37,38,…43)

Step 4: get and store the final values of the key by getting the

squareness of the result produced in the previous step.

 Key= i * i

 (1296- 1369-1444-1521-1600-1681-1764-1849)

b) Another case study

This example explains how we could generate the key from

a long message.

It is assumed that the message contains 400 lines, each line

contains 80 characters. Now, according to the steps above, we

will get the following:

Step 1: calculate the number of characters in the message.

 400x80=32000 Characters.

Step 2: Dividing the number of characters on the number of

lines multiplied by 2.

 D= int (32000/(2*400))

 int (32000)/(800)=40

Step 3: the result produced in the previous step is compared

with 35, and it is greater than 35.

 40>35

Step 4: repeat from the first digit produced in the previous

step and quotient in next 8 digits.

 For (i=D; i<D+8; i++)

 (40,41,42,43,…47)

Step 5: get and store the final value of the key by getting the

squareness of the result produced in the previous step.

 Key = i * i

 (1600,1681,1764,1849,1936,2025,2116,2209)

V. ADVANTAGES OF THE NEW ALGORITHM

The main advantages of the new algorithm are as follows:

1. The BCES algorithm is fast and unbreakable for both

encrypting and decrypting processes.

2. The several complex operations which are present in this

algorithm would make it meet necessary security adequately.

3. Key-length is easily changed and makes it hard to break and

hard to guess. This offers better security.

VI. CONCLUSION

With the increasing number of users connected to large

communication networks, such as the Internet, many more of

security communication problems exist. In order to avoid them

various techniques and algorithms are developed. Among

these techniques, the encryption algorithms appear as one of

the most likely to be used and they are growing significantly.

This paper introduced a new algorithm for complex encrypting

and decrypting data. It falls under secret key encryption

algorithm. It offers a very good and efficient security to the

data which is needed to be protected.

BINARY (COUNT)

ASCII(BINARY)

CHAR(ASCII)

The decryption key

K"

Explicit text

"E"

Cipher text

T"

Khdega A.Yosef Galala, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 63-66

© 2015-19, IJARCS All Rights Reserved 66

VII. REFERENCES

[1] V. Magesh Babu, T. Shankar Ganesh, K. Ramraj. A

Comparative Analysis on Encryption and Decryption

Algorithms. International. Journal of Scientific and

Research Publications, Volume 4, Issue 12, December

2014 1 ISSN 2250-3153.

[2] Alfred J. Menezes, Scott A. Vanstone, Paul C. van

Oorschot . Handbook of Applied Cryptography. CRC

Press, 1996.
[3] Idrizi, Florim, Dalipi, Fisnik & Rustemi, Ejup. Analyzing

the speed of combined cryptographic algorithms with

secret and public key. International Journal of Engineering

Research and Development, e-ISSN: 2278-067X, p-ISSN:

2278-800X, Volume 8, Issue 2, pp. 45

[4] Abdul.Mina, D.S, Kader, H.M. Abdual & Hadhoud,

M.M. Performance Analysis of Symmetric

Cryptography.pp.1.

[5] Sunitha K, Prashanth K.S. Enhancing Privacy in Cloud

Service Provider Using Cryptographic Algorithm. IOSR

Journal of Computer Engineering (IOSR-JCE) e-ISSN:

2278-0661, p- ISSN: 2278- 8727Volume 12, Issue 5. pp.

64.

http://www.goodreads.com/author/show/201484.Alfred_J_Menezes
http://www.goodreads.com/author/show/201483.Scott_A_Vanstone
http://www.goodreads.com/author/show/201482.Paul_C_van_Oorschot
http://www.goodreads.com/author/show/201482.Paul_C_van_Oorschot
http://www.goodreads.com/author/show/201482.Paul_C_van_Oorschot

