
Volume 6, No. 5, May - June 2015

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 33

A Comparative Analysis on ID3 and Backpropagation Algorithms

C.R.kavitha

Sri Lakshmi Narasimha College of Pharmacy

Andhra Pradesh, India

Abstract: This article briefly explain a comparative study on ID3 classification and Backpropagation algorithm. Both are belong to learning

paradigms, but ID3 gives the overview of learning through symbolic Artificial Intelligence algorithms, that is learning system based on the

inductive paradigms, whereas Backpropagation describe learning through Neural Network algorithms. But both are belongs to Supervised

Learning concept. Symbolist (Artificial Intelligence) and connectionist (Neural Network) approaches are learned from example; only differ in

knowledge-base representation and in inductive mechanism. To explore these differences here we compare and identify the aspects of each

system that may account for these performance differences.

Keywords: ID3, Backpropagation, Neural Network, Artificial Intelligence, Inductive

I. INTRODUCTION

Where does intelligence emerge? There are two

important ways to answer this question in computational

point of view. One is based on symbolism and the other is

based on connectionism. The former approach models

intelligence using symbols, while the latter using

connections and associated weight [1]. Symbolic and

connectionist (Neural network) learning strategies are

receiving more attention. Comparative studies should

qualify the advantages of system from each paradigm.

Symbolic and Connectionist learning methods often

address similar tasks, but they may differ considerably in

their processing assumptions. Thus there is impetus for

investigating the relative advantages and limitations of

systems of each paradigm [5].

A great variety of human experience can be described

as learning; the term machine learning is sometimes

obscure, research in machine learning has grown brisk in

recent years. A task that has commonly been explored in

each model is Learning from examples (or tutored

learning/Supervised learning): a tutor or a supervisor who

classifies the training examples into classes. From a set of

classified observation, a learning system abstracts a rule or

mapping that facilitates classification of new observations

[5].

The dominant approach in symbolism assumes that the

knowledge base is a flat or tree structure set of concept and

descriptions. Typically, each concept is a logical rule that

defines class membership. In contrast, Connectionist

methods assume a knowledge base of interconnected nodes,

each of which computes a weighted sum of its inputs.

External inputs are arithmetically combined and propagated

through the network. This process terminates with the

computation of external outputs that represent an objects

classification. Learning alters weights so that classification

correctness is improved [3].

II. ID3 (ITERATIVE DICHOTOMIZER 3)

ID3 stands for Iterative Dichotomizer (version) 3. J.

Ross Quinlan originally developed ID3 at the University of

Sydney. He first presented ID3 in 1975 in a book called

Machine leaning, Volume.1 [7]. It learns objects

classifications from labeled training examples. The basic

algorithm is based on earlier research programs known as

Concept Learner System (CLS). This system is also similar

in many respects to the expert system architecture. ID3 is an

implementation of the basic CLS algorithm with some

modifications like the way in which the attributes are

ordered for use in the classification process [2].

ID3 is a simple, but effective symbolic method for

learning from example. It uses a tree representation to

classify new unknown objects. To classify a set of instances,

we start at the top of tree and answer the questions

associated with the nodes in the tree until we reach a lead

node, where the classification or decision is stored.

ID3 begins by choosing a random subset of the training

instances. This subset is called the window. The procedure

builds a decision tree that correctly classifies all instances in

the window. The tree is then tested on the training instances

outside the window. If all the instances are classified

correctly, then the procedure halts. Otherwise, it adds some

of the instances incorrectly classified to the window and

repeats the process. This iterative strategy is empirically

more efficient than considering all instances at once. In

building a decision tree, ID3 select the feature which

minimizes the entropy function and thus best discriminates

among the training instances [1].

A. ID3 Algorithm:

1. Select a random subset W (called the ‘Window’) from

the training set.

2. Build a decision tree for the current window.

 Select the best feature which minimizes the

entropy function H:

Where pi is the probability associated with ith class. For

a feature, the entropy is calculated for each value. The sum

of the entropy weighted by the probability of each value is

the entropy for that feature.

 Categorize training instances into subsets

by this feature.

C.R.kavitha, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 33-42

© 2015-19, IJARCS All Rights Reserved 34

 Repeat this process recursively until each subset

contains instances of one kind (class) or some statistical

criterion is satisfied.

3. Scan the entire training set for exceptions to the

 decision tree.

4. If exceptions are found, inset some of them into W

and repeat from step-2. The insertion may be dine

either by replacing some of the existing instances

in the window or by augmenting it with the new

exceptions [1].

a. Given:

No. of instances given : 6

No. of attributes given : 4 (Class, Size,

 Color, Surface)

b. Solution:

Using Natural Logarithm first calculate the Entropy for

each attributes, by taking one attribute as the base (here take

‘Class’ attribute to calculate the entropy). The formula to

find out the Entropy function is as follows:

(i) Entropy of the attribute Size:

The attribute ‘size’ has three different sizes (Small,

Medium, and Big) [1].

 ii ppH log

𝑆𝑖𝑧𝑒: 𝐻 =
1

6
 (−

1

1
 log

1

1
) +

4

6
 (−

2

4
log

2

4
 −

2

4
log

2

4
)

+
1

6
(−

1

1
 log

1

1
)

𝑆𝑖𝑧𝑒: 𝐻 =
1

6
 (−

1

1
∗ (0.0000)

+
4

6
 (−

2

4
∗ (−0.6931))

−
2

4
∗ (−0.6931)) +

1

6
(−

1

1
∗ (0.0000))

𝑆𝑖𝑧𝑒: 𝐻 =
1

6
 (0) +

4

6
 (− 0.5 ∗ (0.6931) − 0.5

∗ (−0.6931)) +
1

6
∗ (0)

𝑆𝑖𝑧𝑒: 𝐻 = 0 +
4

6
 (0.34655) + 0.34655) + 0

𝑆𝑖𝑧𝑒: 𝐻 = 0 +
4

6
 (0.34655) + 0.34655) + 0

𝑆𝑖𝑧𝑒: 𝐻 = 0 +
4

6
(0.6931) + 0

𝑺𝒊𝒛𝒆: 𝑯 = 𝟎. 𝟒𝟔𝟐

(ii) Entropy of the attribute Color:

The attribute ‘Color’ has two different colors (Yellow

and Red) [1].

C.R.kavitha, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 33-42

© 2015-19, IJARCS All Rights Reserved 35

 ii ppH log

𝐶𝑜𝑙𝑜𝑟: 𝐻 =
3

6
 (−

2

3
 log

2

3
 −

1

3
 log

1

3
) +

3

6
(−

3

3
 log

3

3
)

𝐶𝑜𝑙𝑜𝑟: 𝐻

=
3

6
 (−

2

3
 ∗(−0.4055) −

1

3
 ∗ (−1.0986)) +

3

6
(−

3

3

∗ (0))

𝐶𝑜𝑙𝑜𝑟: 𝐻 =
3

6
 (0.2703 + 0.3662) + 0

𝐶𝑜𝑙𝑜𝑟: 𝐻 =
3

6
 (0.6365)

𝑪𝒐𝒍𝒐𝒓: 𝑯 = 𝟎. 𝟑𝟏𝟖

(iii) Entropy of the attribute Surface:

The attribute surface has two kinds of surfaces

(Smooth and Rough) [1].

 ii ppH log

𝑆𝑢𝑟𝑓𝑎𝑐𝑒: 𝐻 =
5

6
 (−

3

5
 log

3

5
−

2

5
log

2

5
) +

1

6
(−

1

1
 log

1

1
)

𝑆𝑢𝑟𝑓𝑎𝑐𝑒: 𝐻 =
5

6
 (−

3

5
∗ (−0.5108) −

2

5
∗ (−0.9163))

+
1

6
(−

1

1
∗ (0.0000))

𝑆𝑢𝑟𝑓𝑎𝑐𝑒: 𝐻 =
5

6
 (−0.6 ∗ (−0.5108) − 0.4 ∗ (−0.9163))

+
1

6
(−1∗ (0))

𝑆𝑢𝑟𝑓𝑎𝑐𝑒: 𝐻 =
5

6
 (0.3064 + 0.3665) + 0

𝑆𝑢𝑟𝑓𝑎𝑐𝑒: 𝐻 =
5

6
 (0.6729)

𝑺𝒖𝒓𝒇𝒂𝒄𝒆: 𝑯 = 𝟎. 𝟓𝟔𝟎

The entropies of the attribute are as follow:

 Table: 2

From the above table it’s clear that the attribute Color is

having minimum entropy of 0.318. So, select the attribute

color as the first decision node (root node). This node has

two different colors/branches: Red and Yellow. Under the

branch Red, only class A object fall, and hence no further

discrimination is needed. So, place it right side of the first

decision node color. Under branch Yellow, we need another

attribute to make further distinctions and it’s placed left side

of the first decision node color. So, we calculate the entropy

for the other two attributes (Size and Surface) under this

branch [1]:

Figure 1 : Decision tree with first decision node

(i) Entropy of the attribute Size:

Based on the color yellow the size attribute has two

kinds of size (Small and Medium). Totally there are three

yellow colors, out this one belongs to class A(1/3) and two

yellow colors belongs to class B(2/3).

 ii ppH log

𝑆𝑖𝑧𝑒: 𝐻 =
1

3
 (−

1

1
 log

1

1
) +

2

3
 (−

2

2
 log

2

2
)

 𝑆𝑖𝑧𝑒: 𝐻 =
1

3
 (−

1

1
 ∗ 0) +

2

3
 (−

2

2
 ∗ 0)

𝑆𝑖𝑧𝑒: 𝐻 =
1

3
 (0) +

2

3
 (0)

𝑆𝑖𝑧𝑒: 𝐻 = (0) + (0)

Attributes Entropy values

Size 0.462

Color 0.318

Surface 0.560

C.R.kavitha, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 33-42

© 2015-19, IJARCS All Rights Reserved 36

𝑺𝒊𝒛𝒆: 𝑯 = 𝟎

(ii) Entropy of the attribute Surface:

 ii ppH log

𝑆𝑢𝑟𝑓𝑎𝑐𝑒: 𝐻 =
3

3
 (−

2

3
 log

2

3
 −

1

3
 log

1

3
)

𝑆𝑢𝑟𝑓𝑎𝑐𝑒: 𝐻 =
3

3
 (−

2

3
 ∗ (− 0.4055)

1

3
∗ (−1.0986))

𝑆𝑢𝑟𝑓𝑎𝑐𝑒: 𝐻 =
3

3
 (0.2703 + 0.3662)

𝑆𝑢𝑟𝑓𝑎𝑐𝑒: 𝐻 =
3

3
 (0.6365)

𝑺𝒖𝒓𝒇𝒂𝒄𝒆: 𝑯 = 𝟎. 𝟔𝟑𝟔𝟓

The entropies of the attribute are as follow:

Table: 3

This table shows that the attribute size is having

minimum entropy of H = 0. Select this attribute as second

decision node and the decision tree is created as follow:

Figure 2: A Decision tree for classified objects

The classes created by ID3 are inductive that is, given a

small set of training instances, the specific classes created

by ID3 are expected to work for all future instances. The

leaf nodes of the decision tree contain the class name,

whereas a non-leaf node is a decision node. The decision

node is an attribute test with each branch (to another

decision tree) being a possible value of the attribute [7].

III. BACKPROPAGATION

The founders of Backpropagation are Rumelhart, Hinto

and Williams, 1986. This network is the most well known

and widely used among the current type of supervised

Neural Network learning algorithm. The learning rule is

known as Backpropagation, which is a kind of gradient

descent techniques with backward error (gradient)

propagation.

Figure 3: The Backpropagation Network

The name ‘Backpropagation’ comes from the fact that

the error (gradient) of hidden units are derived from

propagating backward the errors associated with output units

since the target values for the hidden units are not given.

The activation function chosen is the sigmoid function,

which compresses the output value into the range between 0

and 1 [1]. It’s a three layered (input, output and hidden

layer) with feed-forward structure. The first layer of the

neuron is the input layer and the third layer is the output

layer. The middle layer is called the hidden layer, because it

is the only layer that does not communicate with the

external environment either by taking in the external input

or sending out the system output.

The Backpropagation model could have more than one

hidden layer, but the hidden layers have a hierarchical

structure a lower level communicates only to its immediate

upper level [4]. The training instance set for the network

must be presented many times in order for the

interconnection weights between the neurons to settle into a

state for correct classification of input patterns. While the

network can recognize patterns similar to those they have

learned, they do not have the ability to recognize new

patterns. In order to recognize new patterns, the network

needs to be retrained with these patterns along with

previously know patterns. If only new patterns are provided

for retraining, then old patterns may be forgotten. In this

way the learning is not incremental over time [1].

A. The Backpropagation Algorithm:

 Weight Initialization

Set all weights and node thresholds to small random

numbers. Note that the node threshold is the negative of the

weight from the bias unit (whose activation level is fixed at

1).

Attributes Entropy values

Size 0

Surface 0.6365

C.R.kavitha, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 33-42

© 2015-19, IJARCS All Rights Reserved 37

 Calculation of Activation:

a) The activation level of an input unit is determined

by the instance presented to the network.

b) The activation level Oj of a hidden and output unit

is determined by

𝑂𝑗 = 𝐹(∑𝑊𝑗𝑖𝑂𝑖 − Ө𝑗)

Where

 𝑊𝑗𝑖 – the weight from an input Oi

 Ө𝑖 - the node threshold

 F - Sigmoid Function

 𝐹(𝑎) =
1

 1+𝑒−𝑎

 Weight Training:

a) Start at the output units and work backward to the

hidden layers respectively. Adjust weight by

𝑊𝑗𝑖(𝑡 + 1) = 𝑊 𝑗𝑖 (𝑡) + ∆𝑊𝑗𝑖

where

 𝑊 𝑗𝑖 (𝑡) – Weight from unit i to unit j at

 time t (or) tth iteration.

 ∆𝑊𝑗𝑖 - the weight adjustment.

b) The weight change is computed by

∆𝑊𝑗𝑖 = 𝜂𝛿𝑗 𝑂𝑖

 where

 𝜂 - a trial-independent learning rate

 (0 < 𝜂 < 1, e.g., 0.3)

 𝛿𝑗 - the error gradient at unit j

 Convergence is sometimes faster by adding a

 momentum term:

 𝑊𝑗𝑖(𝑡 + 1) = 𝑊 𝑗𝑖 (𝑡) + 𝜂𝛿𝑗 𝑂𝑖 + 𝛼[𝑊𝑗𝑖(𝑡) −

 𝑊𝑗𝑖(𝑡 − 1)]

 Where 0 < 𝛼 < 1

c) The error gradient is given by

 * For the output units

𝛿𝑗 = 𝑂𝑗(1 − 𝑂𝑗) (𝑇𝑗 − 𝑂𝑗)

 where

 𝑇𝑗 - the desired (target) output activation

 𝑂𝑗 - the actual output activation at output

 unit j .

 * For the hidden units

 𝛿𝑗 = 𝑂𝑗(1 − 𝑂𝑗) ∑ 𝛿𝑘 𝑊𝑘𝑗

 where

 𝛿𝑘 – the error gradient unit k to which a

 connection points from hidden unit j.

d) Repeat iterations until convergence in terms of the

selected error criterion. An iteration includes presenting an

instance, calculating activation, and modifying weights.

B. Limitations of Backpropagation:

1. Learning is not incremental:

The network can recognize only old patterns and

doesn’t have the ability to recognize new patterns. While

retraining it forgot old patterns and recognize only new.

2. Local minima:

The Backpropagation network is Prone to local minima,

just like any other gradient descent algorithm the below

figure shows that Backpropagation searches on the error

surface along the gradient (steepest descent) in order to

minimize the error criterion [1].

Backpropagation uses a gradient-descent procedure and

follows the curve of an error surface with weight updates

moving it in the direction of steepest descent. For simple

two-layer networks(without a hidden layer), the error

surface is bowl shaped and using gradient-descent to

minimize error is not a problem, the network will always

find an errorless solution (At the bottom of the bowl). Such

errorless solutions are called ‘Global Minima’. When an

extra hidden layer is added to solve more difficult problems,

the possibility arises for complex error surfaces which

contain many minima. Since some minima are deeper than

others it is possible that gradient descent will not find a

global minimum. The network may fall into Local Minima

which represent suboptimal solutions. It’s difficult to avoid

local minima while training a Backpropagation in some

cases. But in practice the more hidden units you have in a

network then less likely you are to meet a local minimum

during training [6].

Figure 4: Search on the error surface along the gradient

3. Network [10] paralysis occurs when the weights

are adjusted to very large values during training large

weights can force most of the units to operate at extreme

values, in a region where the derivative of the activation

function is very small.

4. A multilayer neural network requires many

repeated presentation of the input patterns, for which the

weights need to be adjusted before the network is able to

settle down into an optimal solution [10].

C. Derivation of Backpropagation learning rule:

Here, [1] we show how to derive the Backpropagation

learning rule given by

∆𝑾𝒋𝒊 = 𝜼𝜹𝒋 𝑶𝒊

If unit j is an output unit, then its 𝛿𝑗 is calculated by

𝛿𝑗 = (𝑇𝑗 − 𝑂𝑗)𝐹′(𝑛𝑒𝑡𝑗)

where

𝑛𝑒𝑡𝑗 = ∑𝑊𝑗𝑖𝑂𝑖

 i

C.R.kavitha, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 33-42

© 2015-19, IJARCS All Rights Reserved 38

F is a sigmoid function, and

 𝑂𝑗 = 𝐹 (𝑛𝑒𝑡𝑗) = 𝐹(∑𝑊𝑗𝑖𝑂𝑖)

 i

if unit j is a hidden unit, then its 𝛿𝑗 is given by

 𝛿𝑗 = 𝐹′𝑗(𝑛𝑒𝑡𝑗)∑𝛿𝑘𝑊𝑘𝑖

 k

the Backpropagation procedure minimizes the error criterion

 E =
1

2
 ∑ (𝑇𝑗 − 𝑂𝑗)

2

 j

Gradient descent yields

 ∆𝑊𝑗𝑖 = − 𝜂(𝜕𝐸/𝜕𝑊𝑗𝑖)

by using the chain rule, we obtain

𝜕𝐸/𝜕𝑊𝑗𝑖 = (𝜕𝐸/𝜕𝑊𝑗)/(𝜕𝑂𝑗/𝜕𝑊𝑗𝑖)

in the case when unit j is an output unit,

𝜕𝐸/𝜕𝑂𝑗 = −(𝑇𝑗 − 𝑂𝑗)

and

 𝜕𝑂𝑗/𝜕𝑊𝑗𝑖 = 𝐹′𝑗(𝑛𝑒𝑡𝑗)𝑂𝑗

Thus

 𝜕𝐸/ 𝜕𝑊𝑗𝑖 = (𝜕𝐸/ 𝜕𝑂𝑗)(𝜕𝑂𝑗/𝜕𝑊𝑗𝑖)

 = −(𝑇𝑗 − 𝑂𝑗) 𝐹′𝑗(𝑛𝑒𝑡𝑗)𝑂𝑖

 = - 𝛿𝑗 𝑂𝑖

So, we obtain

∆𝑊𝑗𝑖 = 𝜂𝛿𝑗 𝑂𝑖

When unit j is hidden units, Tj is not given. Applying the

chain rule gives

𝜕𝐸/𝜕𝑂𝑗 = ∑(𝜕𝐸/ 𝜕𝑂𝑘) (𝜕𝑂𝑘/ 𝜕𝑂𝑗)

 k

The output of unit k is given by

𝑂𝑘 = 𝐹(∑𝑊𝑘𝑖𝑂𝑗)

 j

thus, the term 𝜕𝑂𝑘/ 𝜕𝑂𝑗 can be transformed by

𝜕𝑂𝑘/ 𝜕𝑂𝑗 = 𝐹′(𝑛𝑒𝑡𝑘)𝑊𝑘𝑗

 As a result

 𝜕𝐸/𝜕𝑂𝑗 = ∑ (𝜕𝐸/𝒌 𝜕𝑂𝑘)(𝜕𝑂𝑘 /𝜕𝑂𝑗)

 = - ∑ (𝑘 𝑇𝑘 − 𝑂𝑘) 𝐹′(𝑛𝑒𝑡𝑘) 𝑊𝑘𝑗

 = − ∑ 𝛿𝑘 𝑘 𝑊𝑘𝑗

Thus

𝜕𝐸/ 𝜕𝑊𝑗𝑖 = (𝜕𝐸/ 𝜕𝑂𝑗)(𝜕𝑂𝑗/𝜕𝑊𝑗𝑖)

 = −(∑ 𝛿𝑘 𝑘 𝑊𝑘𝑗) 𝐹′𝑗(𝑛𝑒𝑡𝑗)𝑂𝑖

 = - 𝛿𝑗 𝑂𝑖

 Thus we obtain

∆𝑾𝒋𝒊 = 𝜼𝜹𝒋 𝑶𝒊

D. Backpropagation and XOR:

As we know the truth table for XOR gate is as follow:
X Y Z

1 1 0

1 0 1

0 1 1

0 0 0

Table 4: Truth table for XOR gate

Implement a Backpropagation network to simulate the

exclusive-or function as shown in the following figure. Here

we have taken the first pattern x=1, y=1 and z=0 for training

the instances, that is z= XOR(x, y).

Figure 5: A three layered Backpropagation network for learning the XOR

function (training process)

In this figure the circles represent neurons or units or

nodes that are extremely simple analog computing devices.

The numbers within the circles represent the activation

values of the units. The main nodes are arranged in layers.

In this case there are three layers, the input layer that

contains the values for x,y and z. The hidden layer is so

named because the network can be regarded as a black box

with inputs and outputs that can be seen but the hidden units

can’t be seen. There is another unit present in this network is

called as ‘bias unit’ whose values are always 1. The lines

connecting

The circles represent weights and the number beside a

weight is the value of the weight. Mostly Backpropagation

networks only have connections within adjacent layers,

however this one has two extra connections that go directly

from the input units to the output unit. In some cases, like

these XOR input-output connections make training the

network much faster [7].

 Weight Initialization:

The weights are initialized randomly as follows

Wzx = 0.02, Wzy = 0.03, Wzh = -0.02,

Whx = 0.01, Why = 0.02, Wzb = -0.01,

Whb = -0.1

 Calculation of Activation:

C.R.kavitha, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 33-42

© 2015-19, IJARCS All Rights Reserved 39

The function which is used to compute the value of a

neuron can be called the ‘Activation function or Squashing

function or Transfer function’ [7]. The activation function

chosen is the Sigmoid Function

𝐹(𝑎) =
1

 1 + 𝑒−𝑎

This function compresses output value into the range

between 0 and 1. The sigmoid function is advantageous in

that it can accommodate large signals without saturation

while allowing the passing of small signals without

excessive attenuation. It’s a smooth function so that

gradients can be calculated, which are required for a

gradient descent search [1].

1. Input layer (x,y):

Here the Activation of Input layers x and y are assigned

to 1.

 X = 1 and y= 1

2. Hidden layer (h):

The first step of this computation is to look at each

lower level unit and the bias unit that is connected to the

hidden unit. For each of these connections, find the value of

the unit and multiply by the weight and sum (a) all the result

[7]. The calculations give:

 1 * -0.01 = -0.01

 1 * 0.01 = 0.01

 1 * 0.02 = 0.02

 Sum (a) = 0.02

𝐹(𝑎) =
1

 1 + 𝑒−𝑎

=
1

 1 + 𝑒−0.02

=
1

1 + 0.9802

=
1

1.9802

Activation function for Hidden layer = 0.505

3. Output layer (z):

Calculation of activation function for the output unit z is:

 1 * -0.01 = -0.01

 1 * 0.02 = 0.02

 1 * 0.03` = 0.03

 0.505 * -0.02 = -0.0101

 Sum (a) = 0.0299

𝐹(𝑎) =
1

 1 + 𝑒−𝑎

 =
1

 1 + 𝑒−0.0299

 =
1

1 + 0.9705

 =
1

1.9705

Activation function for Output layer = 0.508

 Weight Training:

(i) First calculate the error gradient for ‘output layer

 (z)’

𝛿𝑗 = 𝑂𝑗(1 − 𝑂𝑗) (𝑇𝑗 − 𝑂𝑗)

𝛿𝑧 = 0.508(1 − 0.508) (0 – 0.508)

𝛿𝑧 = 0.508(1 − 0.508) (0 – 0.508)

𝛿𝑧 = 0.508 ∗ (0.492 ∗ −0.508)

𝛿𝑧 = 0.508 ∗ (−0.2499)

𝛿𝑧 = −0.127

(ii) Second compute the weight change/weight

 adjustment of output layer(z) as follow and

 assume learning rate 𝜂 = 0.3

∆𝑊𝑗𝑖 = 𝜂𝛿𝑗 𝑂𝑖

∆𝑊𝑧𝑥 = 0.3 ∗ (−0.127) ∗ 1

∆𝑊𝑧𝑥 = −0.038

∆𝑊𝑧𝑦 = 0.3 ∗ (−0.127) ∗ 1

∆𝑊𝑧𝑦 = −0.038

∆𝑊𝑧𝑏 = 0.3 ∗ (−0.127) ∗ 1

∆𝑊𝑧𝑏 = −0.038

∆𝑊𝑧ℎ = 0.3 ∗ (−0.127) ∗ 0.505

∆𝑊𝑧ℎ = 0.3 ∗ −0.06414

∆𝑊𝑧ℎ = −0.019242

(iii) Error gradient for ‘ Hidden layer (h)’

𝛿ℎ = 𝑂𝑗(1 − 𝑂𝑗) ∑ 𝛿𝑘 𝑊𝑘𝑗

𝛿ℎ = 0.5 ∗ (1 − 0.5) ∗ −0.127 ∗ −0.019242)

𝛿ℎ = 0.5 ∗ (1 − 0.5) ∗ 0.002443734

𝛿ℎ = 0.5 ∗ (1 − 0.5) ∗ 0.002443734

𝛿ℎ = 0.0006109335

(iv) weight change/weight adjustment of hidden

 layer(h) as follow and assume learning rate 𝜂 = 0.3

 ∆𝑊𝑗𝑖 = 𝜂𝛿𝑗 𝑂𝑖

∆𝑊ℎ𝑥 = 0.3 ∗ 0.0006109335 ∗ 1

∆𝑊ℎ𝑥 = 0.00018328005

∆𝑊ℎ𝑦 = 0.3 ∗ 0.0006109335 ∗ 1

∆𝑊ℎ𝑦 = 0.00018328005

∆𝑊ℎ𝑏 = 0.3 ∗ 0.0006109335 ∗ 1

∆𝑊ℎ𝑏 = 0.00018328005

C.R.kavitha, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 33-42

© 2015-19, IJARCS All Rights Reserved 40

(v) Weight change/weight adjust formula for a weight

is as follow:

𝑊𝑗𝑖(𝑡 + 1) = 𝑊 𝑗𝑖 (𝑡) + ∆𝑊𝑗𝑖

The new weights will [7] be:

𝑊𝑧𝑥 = 𝑊 𝑧𝑥 (𝑡) + ∆𝑊𝑧𝑥

𝑊𝑧𝑥 = 0.02 + (−0.038)

𝑊𝑧𝑥 = -0.018

𝑊𝑧𝑦 = 𝑊 𝑧𝑦(𝑡) + ∆𝑊𝑧𝑦

𝑊𝑧𝑦 = 0.03 + (−0.038)

𝑊𝑧𝑦 = -0.008

𝑊𝑧𝑏 = 𝑊 𝑧𝑏(𝑡) + ∆𝑊𝑧𝑏

𝑊𝑧𝑏 = −0.01 + (−0.038)

𝑊𝑧𝑏 = -0.048

𝑊𝑧ℎ = 𝑊 𝑧ℎ(𝑡) + ∆𝑊𝑧ℎ

𝑊𝑧ℎ = −0.02 + (−0.038)

𝑊𝑧ℎ = -0.039242

𝑊ℎ𝑥 = 𝑊 ℎ𝑥(𝑡) + ∆𝑊ℎ𝑥

𝑊ℎ𝑥 =0.01 + 0.00018328005

𝑊ℎ𝑥 =0.01018328005

𝑊ℎ𝑦 = 𝑊 ℎ𝑦(𝑡) + ∆𝑊ℎ𝑦

𝑊ℎ𝑦 =0.02 + 0.00018328005

𝑊ℎ𝑦 =0.02018328005

𝑊ℎ𝑏 = 𝑊 ℎ𝑏(𝑡) + ∆𝑊ℎ𝑏

𝑊ℎ𝑏 = −0.01 + 0.00018328005

𝑊ℎ𝑏 = −0.00981672

The rest of the weight adjustments are omitted. Note

that the threshold (which is the negative of the weight from

the bias unit) is adjusted likewise. It takes much iteration

like this before the learning process stops. The following set

of final weights gives the mean squared error of less than

0.01 values [1].

Wzx = 4.98, Wzy = 4.98, Wzh = -11.30, Whx = 5.62, Why

= 5.62, Wzb = -2.16, Whb = -8.83

(vi) Training process:

In [7] this example the network weights are initialized

randomly and the training process will try to adjust the

weights to get correct output. A small recall of the working

process of the Backpropagation is as follow:

a. First, put one of the patterns to be learned on the input

units.

b. Second, find the values for the hidden and output unit.

c. Third, find out how large the error is on the output unit.

d. Fourth, use one of the back-propagation formulas to

adjust the weights leading into the output unit. (the

ideas is try to make the answer little bit closer to the

right answer).

e. Fifth, use another formula to find out errors for the

hidden unit.

f. Last one is, adjust the weights leading into the hidden

layer unit via another formula. Repeat steps from 1 to 6

for the second, third and fourth XOR patterns.

g. Last one is, adjust the weights leading into the hidden

layer unit via another formula. Repeat steps from 1 to 6

for the second, third and fourth XOR patterns.

h. Iteration:

Even though all these changes to the weights the

answers will only be a little closer to the rights answer and

the whole process has to be repeated many times. Each time

all the patterns in the problem have been used once we will

call that an iteration, often other people call this an epoch.

The [7] unfortunate problem with Backpropagation is

that the learning rate is too large the training can fails as it

did in the case when 𝜂 = 0.3.

IV. COMPARATIVE ANALYSIS ON ID3 AND BACKPROPAGATION

Table 5

Sr.No. Principle Concepts ID3 Backpropagation References

1.

Learning Method:
 Any interventions that are deliberately

undertaken to assist the process of

learning at individual, team or
organizational level.

Supervised Learning/ Error

based learning /

Monitor Learning / Inductive
Learning/

 Tutor Learning/

Supervised Learning /

Error based learning /

Monitor Learning /
Inductive Learning/

Tutor Learning/

[1], [5]

2. Learning Community Learning from example Learning from example [4]

3.

Learning Mode:
 Through the manner a program

learned.

Non-incremental Non-incremental [1], [5]

4.

Learning System:

 A software applications or web-based

technology used to plan, implemented
and assess a specific learning process.

Concept Learning

System(CLS)
Neural Network System

 [1], [2]

5.

Learning Algorithm:

 A branch of artificial intelligence in
which a computer generates rules

underlying or based on raw data that has

been fed into it. Basically both are
belong to Machine Learning algorithm.

Artificial Intelligence

Learning Algorithm
Neural Network Learning Algorithm [1]

6.

Learning Rule:

 Algorithm for determining the
connection strength to ensure learning.

Decision Tree

Widrow-Hoff Delta Rule (or) Error

Correction Learning Rule (or)
Generalized delta rule

[9]

C.R.kavitha, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 33-42

© 2015-19, IJARCS All Rights Reserved 41

7.
Representation Concept:
 Illustrating the network model.

Represented through
‘Symbolism’

Represented through
‘Connectionism’

[5]

8.

Backtracking:
 To return by the same route by

which one has come.

Backtracking is not applicable.
The algorithm uses a greedy

search, to picks the best

attribute and never looks back
to reconsider earlier choices.

The name “Backpropagation” comes

from the fact that the errors

(Gradient) of hidden units are
derived from propagation backward

the errors associated with output

units.

[1], [8]

9.

Weight Adjustment

 A small positive (or) negative

number assigned to a parameter
associated with a connection from one

neuron to another are adjusted to get

correct or closer to target output.

Not applicable

Backpropagation adjust weights, so
as to improve the match between

actual and ideal output.

The weights on the connections
encode the knowledge of a network.

It uses a highly parallel, distributed

control and can learn to adjust itself

automatically.

 [1], [3]

10.

Network Model:

 Semantic description of the
arrangement of a network, including its

nodes and connecting lines.

Top-down tree structure with
divide and conquer approach

Multi-layered feed-forward Neural
Network

[4], [7]

11..

Activation Function:

 Describe the output behavior of a
neuron (or) function which is used to

compute the value of a neuron. Also

called as Squashing function (or)
transfer function.

Entropy Function

 ii ppH log

Sigmoid Function

𝐹(𝑎) =
1

 1 + 𝑒−𝑎

 [1]

12.
Statistical/ Stopping Criterion:

Statistical criterion can be
applied to stop the tree from

growing as long as most of the

instances are classified

correctly.

3 types of stopping criterion:

1. Based on the error to be

minimized.
2. Based on the gradient.

3. Based on cross-validation

performance.

 [1]

13.
Amount of training data

ID3 perform worse on small
amount training sets. And it

may be related to the problem

of small disjunction.

For small amount of training data

Backpropagation is a better choice.
[11]

14. Training Process
ID3 processes the data only

once.

Backpropagation repeatedly process
the data until one of the stopping

criteria is met.

[12]

15.
Human Interpretability of the acquired

rules.

Symbolic learning can produce

interpretable rules.

Networks of weights are harder to

interpret.
[12]

16. Utility of attributes

ID3 is a ‘Monothetic

‘classification, that is learning
considers the utility of a single

attribute at a time. And this

may lead ID3 to weak.

Backpropagation is ‘Polythetic’, in

that the values of multiple attributes
are simultaneously considered.

[3]

17. Information Processing Decision tree style Brain-Style / Neurally-inspired [1], [12]

18. Level of abstraction
Cognitive Learning (at

conscious level)

Perceptual Learning (at

Subconscious level)
[1]

V. CONCLUSION

In this article we have formulated two important

learning algorithms. The main purpose of this review article

is to provide readers with good introduction and comparison

about both algorithms. The fundamental differences between

the ID3 and Backpropagation will help the beginners of

machine learning to understand the learning paradigm

easily. Future investigation on these algorithms will

hopefully give a best solution to the relative strengths and

weakness of the symbolic and connectionist approaches to

machine learning.

VI. ACKNOWLEDGEMENT

I would like to thank my parents and my brother for

their support for completing this journal. Last, and most

obvious but not least, I thank the IJARCS for their valuable

guidance to rectify mistakes in my article.

VII. REFERENCES

[1]. LiMin Fu, Neural Networks in Computer Intelligence, 2003,

Tata McGraw Hill Edition, pp. 3-94.

[2]. Dan W. Patterson, Introduction to Artificial Intelligence and

Expert Systems, 2004, Prentice Hall of India Private

Limited, pp. 401-414.

[3]. Dogulas H.Fisher and Kathleen B.McKusick “An Empirical

Comparison of ID3 and Back-Propagation”, International

Joint Conference on Artificial Intelligence, Aug. 1989,

pp.788-793, doi:August 1989(Article in a Conference

Proceeding)

C.R.kavitha, International Journal of Advanced Research in Computer Science, 6 (5), May-June, 2015, 33-42

© 2015-19, IJARCS All Rights Reserved 42

[4]. James R. Noan, “Computer System that learn: An Empirical

study of the effect of noise on the performance of three

classification methods”, Expert System with Applications,

vol. 23, July 2002, pp.39-47, doi:July 2002 (Article in a

Journal).

[5]. Douglas Fisher, Kathleen McKusick, Raymond Mooney,

Jude W.Shalik, Geoffrey Towell, “Proceedings of the Sixth

International Workshop on Machine Learning” Morgan

Kaufmann Publishers, vol.6, June 1989, pp.169-173.

[6]. Simon Dennis ,http://staff.itee.uq.edu.au/janetw/cmc/

chapters/BackProp/index2.html.

[7]. Donald R.Tveter, http://www.dontveter.com/pbr/public2.

html.

[8]. Douglas D.Dankel II, http://www.cise.ufl.edu/~ddd/cap

6635/Fall-97/short-papers/2.htm.

[9]. Kiyoshi Kawaguchi, http://wwwold.ece.utep.edu/research/

webfuzzy/docs/kk-thesis/kk-thesis-html/node22.html.

[10]. Saduf, Mohd Arif Wani, “Comparative study of

Back Propagation Learning Algorithms for Neural

Networks”, International Journal of Advanced Research in

Computer Science and Software Engineering, vol.3, Dec.

2013, pp.1151-1156, doi: December 2013(Article in a

Journal).

[11]. Y.h.VAVCOUVER, www.ece.ubc.ca/~yingh/review/

shawlik91.html.

[12]. Raymond Mooney, Jude Shavlik, Geoffrey Towell, Alan

Gove, “An Experimental Comparison of Symbolic and

Connectionist Learning Algorithms”, IJCAI’89 Proceedings

of the 11th International Joint conference on Artificial

Intelligence, vol.1, Aug.1989, pp.775-780, doi:1989-08-

20(Article in a Conference Proceeding).

