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Abstract: Decision Support Systems are powerful tools to help support making decisions. However, they are known to be customized for a 

specific purpose and can rarely be reused. Moreover, they do not support complex situations sufficiently. Our work addresses this challenge and 

consists in building a DSS that aims to help emergency managers to manage cases of crisis. The DSS is designed to be flexible and adaptive, so 

that it may be applied on different subjects of studies and whose behaviour may change with the change of its environment. We endowed it 

therefore with a multiagent layered core whose role is to represent dynamically and in real time the current situation, to characterize it and to 

compare it with past known scenarios. The final result of the DSS will help decision-makers to analyse the current crisis and its possible 

evolution. The RoboCupRescue Simulation System is chosen as a test bed to illustrate and to test this approach. 
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I. INTRODUCTION  

Preventing and managing crisis is a complex task which 
requires new efficient approaches and means. This is already 
realized and accepted as a high priority task by many 
organizations, governments and companies in Europe and all 
over the world [1]. Our work addresses this challenge and 
aims to build a Decision Support System (DSS) that must be 
able to help emergency managers to deal with crisis and to 
provide them emergency management plans for avoiding or 
reducing their consequences. Indeed, DSSs have proved their 
ability to resolve such kind of problems. However, they are 
well known to be customized for a specific purpose and can 
rarely be reused. Moreover, they only support circumstances 
which lie in the known and knowable spaces and do not 
support complex situations sufficiently [4]. The approach we 
propose focuses on this issue. In fact, the system may be 
used in different subjects of studies. In other words, it 
operates in a generic manner and relies on specific 
knowledge related to the studied domain. Furthermore, the 
system may adapt its behaviour autonomously by altering its 
internal structure and modifying its behaviour to better 
respond to the change of its environment. The MultiAgent 
System (MAS) technology is an appropriate solution to 
achieve these objectives. Intelligent agents [14] are able to 
self-perform actions and to interact with other agents and 
their environment in order to carry out some objectives and 
to react to changes they perceive.  

The proposed system is made up of several agent 
organizations whose kernel is operating on three levels. A 
first level, in which a factual agent organisation has as role to 
represent dynamically and in real time the evolution of the 
current situation. This step is fundamental in the final 
assessment of the situation. Indeed, the system creates its 
own representation of the environment state in order to 
extract the significant facts that may reveal the existence of 
risks. It compares therefore the current situation with 
previous known ones stored as scenarios. That way, the 

system may have a generic and adaptive mechanism and may 
learn during its functioning.  

In our approach, it is necessary to test the MAS on 
several case studies to illustrate it and to validate it. The 
work presented here is addressed to the RoboCupRescue 
Simulation System (RCRSS) [7] [9]. We provide here a brief 
description of this application and we present and discuss the 
related experimentations. 

II. DSS ROLE AND DESIGN 

A. DSS Definition and Role 

DSSs are interactive, computer-based systems that aid 
users in judgement and choice activities. They provide data 
storage and retrieval but enhance the traditional information 
access and retrieval functions with support for model 
building and model-based reasoning. They support framing, 
modelling, and problem solving [2]. More precisely, the 
purposes of a DSS are the following [6]:  

• Supplementing the decision maker 

• Allowing better intelligence, design, or choice 

• Facilitating problem solving 

• Providing aid for non structured decisions 

• Managing knowledge 
In our context, the DSS could be used either to prevent a 

crisis or to deal with it. In both cases, the main internal aim 
of the system is to detect a crucial event. From the system 
point of view, detecting a crisis implies representing it, 
characterizing it and comparing it with other crises, 
permanently stored in scenarios. The result of this 
comparison is provided to the user as the answer of the 
global system. The system chooses to highlight parts of 
scenarios similar to the current situation. The information 
thus obtained will help decision-makers to analyse the 
current crisis and its possible evolutions. 

The DSS has to evaluate a dynamic situation. Monitoring 
the situation generates dynamic parameters which vary all 
the time. The system must be dynamic in order to be able to 
take into account the changes in the description of the 



© 2010, IJARCS All 

evolving situation. This requires a system able to be 
reconfigured when necessary, thus benefiting from a 
sufficiently flexible an
and dynamics of the situation to be treated, lead us to choose 
MAS paradigm for its modelling.

The observed situation generally contains a great number 
of dynamic parameters, that is to say parameters whose value 
change 
situations must be dynamic in order to be able to handle 
these evolutions. As a consequence, to design these systems, 
a flexible and adaptive architecture is needed. Such a system 
must not only represent t
make it possible to evaluate it. Evaluating the situation can 
be performed by anticipating its possible consequences. This 
can be carried out using previous situations whose 
consequences are used relying on the followin
situation A looks like situation B, the consequences of 
situation A ought to be similar to those of situation B. This 
mechanism is similar to a Case
which is a methodology based on the re
experiments

B. DSS Architecture and Design

Fig. 1 shows the global architecture of this DSS. The 
interface
access the DSS and its kernel. This interface also displays the 
final results p
access outside d
specific information on the domain stores persistent data 
such as the 
also an aspect of this specific inf

 

 

C. DSS 

We chose the RCRSS in order to apply the proposed 
approach. The RCRSS is an agent
intends to reenact the rescue mission problem in real world. 
It reproduces an earthquake scenario which includes various 
kinds of incidents as the traff
civilians, road blockage, fire accidents, etc. A set of 
heterogeneous agents (RCR agents) coexist in the disaster 
space: rescue agents that are fire brigades, ambulance teams 
and police forces, and civilian agents. A model of th
disaster space and the properties of 
RCR agents are detailed
to extract knowledge and to formalise information.
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evolving situation. This requires a system able to be 
reconfigured when necessary, thus benefiting from a 
sufficiently flexible an
and dynamics of the situation to be treated, lead us to choose 
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make it possible to evaluate it. Evaluating the situation can 
be performed by anticipating its possible consequences. This 
can be carried out using previous situations whose 
consequences are used relying on the followin
situation A looks like situation B, the consequences of 
situation A ought to be similar to those of situation B. This 
mechanism is similar to a Case
which is a methodology based on the re
experiments for solving new problems.

DSS Architecture and Design

Fig. 1 shows the global architecture of this DSS. The 
interface allows the dialogue between all users authorised to 
access the DSS and its kernel. This interface also displays the 
final results provided by the kernel. The latter also needs to 
access outside distributed information systems 
specific information on the domain stores persistent data 
such as the ontology 
also an aspect of this specific inf

Figure 1. 

DSS Application: RoboCupRescue Case Study

We chose the RCRSS in order to apply the proposed 
approach. The RCRSS is an agent
intends to reenact the rescue mission problem in real world. 
It reproduces an earthquake scenario which includes various 
kinds of incidents as the traff
civilians, road blockage, fire accidents, etc. A set of 
heterogeneous agents (RCR agents) coexist in the disaster 
space: rescue agents that are fire brigades, ambulance teams 
and police forces, and civilian agents. A model of th
disaster space and the properties of 
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evolving situation. This requires a system able to be 
reconfigured when necessary, thus benefiting from a 
sufficiently flexible and adaptive architecture. Complexity 
and dynamics of the situation to be treated, lead us to choose 
MAS paradigm for its modelling. 

The observed situation generally contains a great number 
of dynamic parameters, that is to say parameters whose value 

over time. Systems allowing the management of such 
situations must be dynamic in order to be able to handle 
these evolutions. As a consequence, to design these systems, 
a flexible and adaptive architecture is needed. Such a system 
must not only represent the observed situation, but must also 
make it possible to evaluate it. Evaluating the situation can 
be performed by anticipating its possible consequences. This 
can be carried out using previous situations whose 
consequences are used relying on the followin
situation A looks like situation B, the consequences of 
situation A ought to be similar to those of situation B. This 
mechanism is similar to a Case-Based Reasoning (CBR) [8] 
which is a methodology based on the re

for solving new problems.

DSS Architecture and Design

Fig. 1 shows the global architecture of this DSS. The 
allows the dialogue between all users authorised to 

access the DSS and its kernel. This interface also displays the 
rovided by the kernel. The latter also needs to 

istributed information systems 
specific information on the domain stores persistent data 

ontology and scenarios
also an aspect of this specific information.

Figure 1.  DSS Architecture

pplication: RoboCupRescue Case Study

We chose the RCRSS in order to apply the proposed 
approach. The RCRSS is an agent
intends to reenact the rescue mission problem in real world. 
It reproduces an earthquake scenario which includes various 
kinds of incidents as the traffic after earthquake, buried 
civilians, road blockage, fire accidents, etc. A set of 
heterogeneous agents (RCR agents) coexist in the disaster 
space: rescue agents that are fire brigades, ambulance teams 
and police forces, and civilian agents. A model of th
disaster space and the properties of 
RCR agents are detailed in [11]. We use this model in order 
to extract knowledge and to formalise information.
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As in real case, RCR agents play the actors role here, 

they send their perceiv
get a sequence of actions to perform. The DSS builds, based 
on these information, an overall knowledge which allows the 
evaluation of the whole situation. We focus, in this paper, on 
the fires incidents and their relat
therefore the perception and the representation of both the 
fires propagation and the behaviours of the fire brigades.

II.

A. Factual Semantic Features 

The system receives and analyses permanently 
elementary information coming from the environment. These 
information are presented in the shape of a Factual Semantic 
Feature (FSF). The noun given to this message content 
provides an explication to our approach: we stress observed 
and punctual elements t
knowledge or information based on real occurrences; it may 
be an event, an action, a phenomenon, etc.

Each FSF describes a fact and consequently a state 
change of an observed object issued from the environment. 
This may be mo
transition represents an instantaneous transit from a state to 
another. It is triggered by an event (message), followed by 
the performance of one or several actions in the new state. 
The observation of this change is
shape of an FSF. An FSF has a generic structure which is 
composed of <key, (qualifier, value)
identifier related to the observed object to which are 
associated some characteristics described by qualifiers a
their related values. We associated also time and spatial 
values to an FSF to describe the temporal and the spatial 
aspects of the observation. An example of an FSF is the 
following: <fire#1, intensity, strong, localisation, 
building#12, time, 10:00 pm>
fire, located in building#12 and which is observed at 10:00 
pm.  

 Dedicated to the observed environment, the ontology 
serves as a mean for establishing a conceptually concise 
basis for communicating knowledge. The vector of t
communication is the FSF, with the taxonomy structuring 
and defining the meaning of the observed facts. The measure 
functions use the ontology to compare FSFs. This 
comparison is coupled with temporal and spatial data carried 
by the FSF to obtain a nor
1]. A value of 
two compared FSFs. A value of 0 means neutral or not 
comparable. A value of 1 means identity between the two 
FSFs and any other value in this interval means a seman
connexion in the range from opposite to identical.

B. Factual Agents

The system is permanently fed by information describing 
the state of the environment. These information are handled 
thereafter by agents. The system needs knowledge about the 
environment
proximity measures.

The representation level is made of factual agents whose 
main aim is to represent the current situation dynamically. A 
Factual Agent (FA) is a reactive and a proactive agent 
according to Woo
part of the observed situation. Fig. 2 shows the internal 
structure of an FA. Each agent has:

• 
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get a sequence of actions to perform. The DSS builds, based 
on these information, an overall knowledge which allows the 
evaluation of the whole situation. We focus, in this paper, on 
the fires incidents and their relat
therefore the perception and the representation of both the 
fires propagation and the behaviours of the fire brigades.

II. PERCEPTION AND 

Factual Semantic Features 

The system receives and analyses permanently 
elementary information coming from the environment. These 
information are presented in the shape of a Factual Semantic 
Feature (FSF). The noun given to this message content 
provides an explication to our approach: we stress observed 
and punctual elements t
knowledge or information based on real occurrences; it may 
be an event, an action, a phenomenon, etc.

Each FSF describes a fact and consequently a state 
change of an observed object issued from the environment. 
This may be modelled as a state
transition represents an instantaneous transit from a state to 
another. It is triggered by an event (message), followed by 
the performance of one or several actions in the new state. 
The observation of this change is
shape of an FSF. An FSF has a generic structure which is 
composed of <key, (qualifier, value)
identifier related to the observed object to which are 
associated some characteristics described by qualifiers a
their related values. We associated also time and spatial 
values to an FSF to describe the temporal and the spatial 
aspects of the observation. An example of an FSF is the 
following: <fire#1, intensity, strong, localisation, 
building#12, time, 10:00 pm>
fire, located in building#12 and which is observed at 10:00 

Dedicated to the observed environment, the ontology 
serves as a mean for establishing a conceptually concise 
basis for communicating knowledge. The vector of t
communication is the FSF, with the taxonomy structuring 
and defining the meaning of the observed facts. The measure 
functions use the ontology to compare FSFs. This 
comparison is coupled with temporal and spatial data carried 
by the FSF to obtain a nor
1]. A value of -1 means a complete opposition between the 
two compared FSFs. A value of 0 means neutral or not 
comparable. A value of 1 means identity between the two 
FSFs and any other value in this interval means a seman
connexion in the range from opposite to identical.

Factual Agents 

The system is permanently fed by information describing 
the state of the environment. These information are handled 
thereafter by agents. The system needs knowledge about the 
environment such as the ontologies of the domain and the 
proximity measures. 

The representation level is made of factual agents whose 
main aim is to represent the current situation dynamically. A 
Factual Agent (FA) is a reactive and a proactive agent 
according to Wooldridge in [13]. Each FA reflects a partial 
part of the observed situation. Fig. 2 shows the internal 
structure of an FA. Each agent has:

 An FSF that represents its knowledge
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As in real case, RCR agents play the actors role here, 
they send their perceived information to the DSS in order to 
get a sequence of actions to perform. The DSS builds, based 
on these information, an overall knowledge which allows the 
evaluation of the whole situation. We focus, in this paper, on 
the fires incidents and their related facts. The work concerns 
therefore the perception and the representation of both the 
fires propagation and the behaviours of the fire brigades.

ERCEPTION AND REPRESENTATION 

Factual Semantic Features  

The system receives and analyses permanently 
elementary information coming from the environment. These 
information are presented in the shape of a Factual Semantic 
Feature (FSF). The noun given to this message content 
provides an explication to our approach: we stress observed 
and punctual elements that are the facts. A fact is a 
knowledge or information based on real occurrences; it may 
be an event, an action, a phenomenon, etc.

Each FSF describes a fact and consequently a state 
change of an observed object issued from the environment. 

delled as a state
transition represents an instantaneous transit from a state to 
another. It is triggered by an event (message), followed by 
the performance of one or several actions in the new state. 
The observation of this change is sent to the system in the 
shape of an FSF. An FSF has a generic structure which is 
composed of <key, (qualifier, value)
identifier related to the observed object to which are 
associated some characteristics described by qualifiers a
their related values. We associated also time and spatial 
values to an FSF to describe the temporal and the spatial 
aspects of the observation. An example of an FSF is the 
following: <fire#1, intensity, strong, localisation, 
building#12, time, 10:00 pm>. This fact describes a strong 
fire, located in building#12 and which is observed at 10:00 

Dedicated to the observed environment, the ontology 
serves as a mean for establishing a conceptually concise 
basis for communicating knowledge. The vector of t
communication is the FSF, with the taxonomy structuring 
and defining the meaning of the observed facts. The measure 
functions use the ontology to compare FSFs. This 
comparison is coupled with temporal and spatial data carried 
by the FSF to obtain a normalised proximity measure in [

1 means a complete opposition between the 
two compared FSFs. A value of 0 means neutral or not 
comparable. A value of 1 means identity between the two 
FSFs and any other value in this interval means a seman
connexion in the range from opposite to identical.

The system is permanently fed by information describing 
the state of the environment. These information are handled 
thereafter by agents. The system needs knowledge about the 

such as the ontologies of the domain and the 
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Factual Agent (FA) is a reactive and a proactive agent 

ldridge in [13]. Each FA reflects a partial 
part of the observed situation. Fig. 2 shows the internal 
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• 

• 
• 
When a given FSF reaches the system, either an FA 

whose FSF has the same key 
its internal FSF with the new one, or a new FA is created.

Thus, at any time, the whole population of FAs with their 
embedded FSFs reflects the current view of the situation.

 

 

We defined two kinds of 
RoboCupRescue case study:

• 

• 

FAs represent the dynamic evolution of the situation 
thanks to their internal indicators. These indicators must 
reflect as much as possible the reality, their definition
therefore on the treated application. We defined two 
indicators for the RCR case study: 

• 

• 

The acquaintances network of every FA is generic and 
dynamically constructed. It contains all the other FAs which 
are semantically connected (proximity n
FA of a given acquaintances network is close when its 
proximity is positive and is opposite when its proximity is 
negative. The evolution of the FA is managed by 
strengthening and weakening mechanisms. Internal 
indicators reflect this e
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 An Augmented Transition Newtork (ATN) of four 
states that describe its behaviour.
carries conditions and actions, and are specific to the 
FA type 

 Specific indicators that reflect its dynamics 

 An Acquaintances Network (AN) 
When a given FSF reaches the system, either an FA 

whose FSF has the same key 
its internal FSF with the new one, or a new FA is created.

Thus, at any time, the whole population of FAs with their 
embedded FSFs reflects the current view of the situation.

Figure 2. 

We defined two kinds of 
RoboCupRescue case study:

 Factual agents managing FSFs that describe 
phenomena (fires, injuries, building collapses,...).

 Factual agents managing FSFs that describe the 
states and the events related to the RCR agents. More 
precisely, these agents manage the evolution of the 
states and the actions of the RCR agents. 

FAs represent the dynamic evolution of the situation 
thanks to their internal indicators. These indicators must 
reflect as much as possible the reality, their definition
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Figure 4. 

At the end of the scenario. the system knows an evident 
bending result of the fires extinction. The factual agents 
become less meaningful since there are not 
related to fires that come stimulating them. However, the 
system still in a warning state in order to alert every notable
change in the environment. We may notice this at the 63
second of the simulation, when a fire reappears suddenly. 
The system reacts immediately to this fact and resumes its 
activities, then it becomes again stable after the fire were put 
out. 
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on geometric criteria, insuring thus the independence of the 
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dynamics of the agent during its evolution. This gives a 
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consequently to the prominence of the s
that it carries.
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quantitative, hence it is possible to 
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(dis)similarity measure. Indeed, this measure is the most 
suited to our problem since we try to compare vectors that 
express the changes of the FA activities. The value provided 
by CS is
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created clusters, that we do not know in advance. We ke
finally DBScan for its concordance with our approach, but 
also for its efficiency. 

B. DBScan Implementation

Fig. 5 shows an example of a DBScan experimentation. 
A number of parameters should be specified, such as the 
radios of the neighbourhood and the th
parameters are determined based on pattern scenarios that we
define for each case study and on which relies the DSS 
scenarios base. The two axis of the chart represent AI values 
and PI values. We have two formed clusters in this exam
which are colored by red and blue, and a third set of 
unclassified agents, called “noise”. At this stage, these agents 
do not have sufficiently evolved to integrate other clusters, 
consequently they do not have significant semantic 
characters. 
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entering FSF may change the form of the clusters by altering 
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The decision agents access to a common knowledge base 
in order to accomplish their tasks. This knowledge base 
includes the world model of the RoboCupRescue and the 
current state of the disaster space, which is updated 
continuously by all the RCR agents. In addition, the decision 
agents have intelligent modules, which allow them to make 
computing operations and to combine certain actions to make 
them more suited to the

This paper aimed at addressing the problem of the 
decision support in crisis situations. A DSS layered 
multiagent core has been presented here, whose goal is to 
help decision
situations
the current situation using factual agents, then characterizes it 
and compares it with past known scenarios to provide finally 
results to decision

We saw that the factual agents play a fundamental
all the process, since it allow the emerge of the noteworthy 
occurred facts of the environment. Moreover, they insure the 
system adaptivity thanks to their flexible internal structure. 
The DBscan algorithm is used to characterise the situation 
and to extract FAs subsets. Indeed this method is powerful to 
form dynamic clusters based
insures the independence of the system from the treated 
application. The parameters are defined based
scenarios, but we contemplat
aiming to change these parameters during the process. 

We intend to introduce other types of factual agents 
related to the RoboCupRescue and to enrich consequently the 
scenario base in order to deal with all the captured event
is also necessary to carry out the approach to other 
applications in order to test and to validate the multiagent 
core. 
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