
��������	�
����	�
������������

���������������������
������������������������������� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������

© 2010, IJARCS All Rights Reserved 62

ISSN No. 0976-5697

Formal Specification of Control Software Systems using Behavioral Views

Ayaz Isazadeh*
Department of computer science

University of Tabriz

Tabriz, Iran

isazadeh@tabrizu.ac.ir

Jaber Karimpour
Department of computer science

University of Tabriz

Tabriz, Iran

karimpour@tabrizu.ac.ir

Habib Izadkhah
Department of computer science

University of Tabriz

Tabriz, Iran

izadkhah@tabrizu.ac.ir

Abstract: Large-scale control software systems are generally complex to describe, construct, manage, understand, and maintain. This paper

approaches to reducing this complexity separate software structural and behavioral descriptions. Much research about control software systems

continues on software structures and their patterns, characterizations, and classifications. Currently, research on the behavioral aspect of control

software systems includes using formal notations for specifying software behaviors. Large formal specifications, however, can be difficult to

create and to understand; more research is needed into methods for assisting software requirements engineers in reducing these difficulties. This

paper uses the idea of a software behavioral view. We believe that a fully developed methodology based on views would significantly reduce the

complexity of creating and understanding software requirements. This paper deals with the use of view formalism, a state chart based formalism,

to specify of control logic for a telephone set system.

Keywords: Formal method; requirement specification; control system software; behavioral views and statecharts;

I. INTRODUCTION (HEADING 1)

An Automated Manufacturing System typically consists

of a controlling system and a controlled system where the

controlling system interacts with the controlled system using

information available from various sensors [4]. A control

system is a device, or a collection of devices that manage

the behavior of other devices and are modeled as continuous

real-valued functions of real valued time. We denote by

"Automated Manufacturing System" (AMS) all kind of

automated machine used in industrial factories to process

parts or products. Figure 1. gives the general structure of

AMS.

Software safety is an important property for safety

critical control systems and formality is essential in safety-

critical applications, such as embedded control systems used

in Manufacturing System, nuclear reactors or airplanes [1]

especially those in control systems, whose failure could

result in danger to human life, property or environment. It is

recently becoming more important due to the increase in the

complexity and size of safety critical control systems.

Formal software requirements specification is known as a

means to increase the safety of such systems in the early

phase of software development process. It guides the

developer to specify all requirements explicitly without any

assumptions or omissions.

In addition, formal specification can be verified using

tools such as model checker [1] or theorem prover.

The theory underlying formal software specification

languages has developed rapidly in the past few years. Most

of current methods for systems specifications are suitable

only for small systems. Requirements engineering of large-

scale software systems using current Formal Description

Techniques (FDT), is complex and difficult. In general,

when the scale of the system grows linearly, the number of

states (in FSM-based methods) grows exponentially.

Therefore, much research continues on introducing new

techniques for eliminating (or at least reducing) this

problem.

Figure 1. the general structure of AMS.

Because formality is essential in safety-critical

applications and formal methods can be difficult to create

and to understand, not been practical for large-scale

complex control systems. Based on experience with the A-7

project [6], John Guttag and others [7] conclude that one

Ayaz Isazadeh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 62-67

© 2010, IJARCS All Rights Reserved 63

problem with formal methods is size. The difficulties of

managing a large volume of formal specifications have

made formal methods impractical for large systems.

We use the idea of a software behavioral view:

intuitively, this is a complete description of the behavior of

the system observable from a specific point of view. We

define a formal notation, behavioral view (Viewcharts), with

a well-defined semantics based on Statecharts. Behavioral

view gives a means for precisely describing views and their

compositions.

This paper uses a behavioral view concept for formal

specification of control system model and this model can be

applied the large class of real Flexible Manufacturing

System. Using this model, a designer expresses the

functional capacities of his system and the product flows.

The remaining parts of this paper are organized as

follows: In Section 2, we have a brief review of behavioral

views. Section 3, the telephone set specified by behavioral

views.

II. BEHAVIORAL VIEWS

This section provide a brief over of the behavioral

views formalism; a separate paper [2,10] describes it in

more detail. The Viewcharts formal notation with well-

defined semantics is based on Statecharts. Statecharts,

however, has no concept of behavioral views. Viewcharts

extends Statecharts to include behavioral views and their

hierarchy of composition. This extension enables a systems

analyst to specify the behavior of a large scale system by

means of its simple views.

A behavioral view of a software system is the behavior

of the system observable from a specific point of view. The

caller view of a telephone set and telephone set view of a

switching system is an example of behavioral views.

In the remainder of this section we provide some

informal descriptions of the View concepts. The following

section is dedicated to the formal description of the

formalism.

A. Ownership of Elements

In general, the scope of an element (event, actions or

variables) is limited to the view that owns the element. In

the other words an element (event, actions or variables)

belongs to the view that declares it. On the other hand

composition of views may require communication between

the composed views; the scope of an event in one view. An

action belongs to the view that generates the action.

Similarly, a variable belongs to the view that declares it. The

scope of a variable declared by a view is the view and all its

sub views. An event or an action may have multiple owners

while variables cannot. This notion of ownership, in

behavioral views, adds name space control to limit the scope

of broadcast communication, solving a problem with

Statecharts[3,5].

B. Composing Behavioral Views

Views can be composed in three ways: SEPARATE,

OR, and AND. Except for the effect of ownership and

scoping restrictions the OR and AND compositions of

views, in behavioral views, are similar to the OR and AND

compositions of states, in statecharts, respectively. The

SEPARATE composition of views, all the views are active

if any one of them is active and no transition between the

views is allowed. In an OR composition only one view can

be active, and there can be transitions between the views.

Notice that a transition from a source view to a destination

view interrupts the source view, i.e., takes the system out of

any state(s) of the source view; it is, therefore called an

interrupt transition. In case of a conflict between the

interrupt transition and one internal to the source view, the

interrupt transition has higher priority. Visually, the views

involved in a SEPARATE composition are drawn on the top

of each other, as shown in Figure 2, giving the impression

that they are located on different planes and, consequently,

are hidden from each other.

In an AND composition of views, all the views are

active. The scope of all elements owned by each view is

extended to the other views. Behavioral view adopts Harel’s

synchrony hypothesis that events are instantaneous.

Specifically, events, action, and checking the value of a

condition expression ideally take no time; therefore,

transitions are also instantaneous [4].

Figure 2. Visual representation of separate compositions.

Figure 3. Composition of views in behavioral views.

An example of this representation is given in Figure 3,

which includes a SEPARATE composition of views V5 and

V6. The OR and SEPARATE compositions are similar,

except that in an OR composition, only one view can be

active and there can be transitions between the views. In

Figure 3, for example, the view V consists of an OR

composition of and V2. In an AND composition of views,

all the views are active; the scopes of all the elements owned

by each view are extended to the other views. All the

subviews and states in one view are visible to (i.e., can be

referenced by) the other views; variables, however, must be

referenced by their qualified names. The view V7 of Figure

3, for example, is ANDed with a SEPARATE composition

of v5 and V6. In a HIERARCHICAL encapsulation of

views, some views form a superview; all the subviews and

states in a superview are visible to the superview; and the

Ayaz Isazadeh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 62-67

© 2010, IJARCS All Rights Reserved 64

scopes of the elements owned by a superview covers all its

subviews.

The behavioral views of Figure 3, for example, is

composed of a SEPARATE composition of V5 and V6,

which in turn is ANDed with V7 forming v3. A SEPARATE

composition of two identical views V3 and V4 forms V2.

The full view V is an OR composition of VI and V2.

C. Effect on transitions

The following examples demonstrate the way in which

the compositions affect transitions with the same label.

Recall (Section 2.1) that a view can trigger the events it

owns. Assuming that the system described by the viewchart

of Figure 3 is in sub configuration

{V3.V5.B,V3.V6.A,V3.V7.A},

[a] if the view V3.V7 triggers a, then the sub-configuration

will change to {V3.V5.A, V3.V6.B, V3.V7.B};

[b] if the view V triggers c, non deterministically, then the

entire system configuration will change to either (V1.A)

or (V1.B);

[c] no other event can change the sub-configuration.

Assuming that the system is in sub-configuration

{V3.V5.A, V3.V6.B, V3.V7.B},

[d] if the view V3.V5 triggers b, then the sub-configuration

will change to {V3.V5.B, V3.V6.B, V3.V7.C};

[e] if the view V3.V6 triggers b, then the sub-configuration

will change to {V3.V5.A, V3.V6.C, V3.V7.C};

[f] if the view V triggers c, non deterministically, then the

entire system configuration will change to either (V1.A)

or (V1.B);

[g] No other event can change the sub-configuration.

Assuming that the system is in sub configuration

{V3.V6. C},

[h] if the view V triggers c, non deterministically, then the

sub-configuration will change to {V3.V6.A} or the

entire system configuration will change to either (V1.A)

or (V1.B);

[i] No other event can change the sub-configuration.

III. TELEPHONE SYSTEM

The behavioral views notation is designed to specify the

behavioral requirements of large-scale complex systems;

and we can do it on a need-to-specify basis. In behavioral

views, we do not have to specify the full behavior of the

system; therefore, we are not concerned with the complexity

or scale of the system. A complex system may have many

different features; we specify only the features of our

interest, i.e., our view of the system.

We present behavioral views specification of a

telephone service provided by a Plain Old Telephone

System (POTS). Their informal description of POTS

includes the diagrams shown in Figure 4 and 5 the diagrams

are self explanatory. A LOTOS specification of this service

is also given by Faci and others [8]. The timing aspect of

POTS is missing from the LOTOS specifications, because

timing aspects cannot be specified in LOTOS. As the

specifiers state, for example, LOTOS cannot deal with a

specification element such as "the telephone can only be off

hook for a maximum of 20 seconds, after which it would be

disconnected". Viewcharts specification, on the other hand,

includes the timing aspects of POTS.

We want to specify a telephone service provided by

POTS. That is only one of the many behavioral views of

POTS (and we will still specify it as a composition of even

simpler behavioral views).

Figure 4. A high level scenario for establishing a telephone connection

(From [8]).

Figure 5. A detailed scenario for establishing a telephone connection (From

[8]).

Accounting, routing, diagnostics, maintenance, and

other aspects of POTS have their own views of the system

and can be specified as separate behavioral views.

The behavioral views specification of POTS consists of

a separate composition of many, but a finite number of,

identical views called CALLs. A CALL is the behavioral

view of POTS with respect to a single telephone connection.

Each CALL, in turn, is composed of three behavioral views:

CALLER, the caller view of a telephone set, CALLED, the

called view of the set, and CONTROLLER, the telephone

set's view of POTS.

A. Specifying Behavioral Views

As a component of POTS, a telephone set has two different

behavioral views: CALLER and CALLED. In specifying the

behavior of a telephone set, we really want to specify these

two views. The fact that a telephone set is physically a

single device with two behavioral views and the issue of

how it provides these behaviors is not of our concern. In

Ayaz Isazadeh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 62-67

© 2010, IJARCS All Rights Reserved 65

fact, as far as our specification is concerned, an implementer

may choose to deliver two devices: one for CALLER and

the other for CALLED.

Figure 6 shows the caller view of a telephone set. The

view specifies that the telephone by default is in the

READY state. When a caller picks up the handset, an event

offhook is triggered by CALLER and the telephone set

enters to the state of WAITING. In addition to the event

offhook, the view CALLER also owns the events

st(DIALING), which occurs when the user starts dialing,

and onhook, which occurs when the user hangs up. (These

events must be declared by CALLER; for clarity, however,

in this and the following views, wherever the ownership of

an element is obvious, we have omitted the corresponding

declaration from the views.) All other events be long to

CONTROLLER and are described below. As far as

CALLER is concerned, however, they are events that

CALLER expects to occur and upon their occurrences it

behaves as specified.

Figure 6. The caller view of a telephone set.

Figure 7. The called view of a telephone set.

Figure 7 shows the called view of a telephone set. This view

owns only the events offhook and onhook. All other events

belong to CONTROLLER. The figure is self-explanatory.

Figure 8 shows the view CONTROLLER. It provides the

interactions between CALLER and CALLED. The view

CONTROLLER owns all the events that occur in this view,

except those that belong to CALLER or CALLED.

CONTROLLER also declares the ownership of n (a variable

used for the caller's telephone number), m (a variable used

for the called's telephone number), and x (a temporary

variable). In addition, CONTROLLER uses another variable

B (the set of busy numbers) which is global to

CONTROLLER.

Figure 8. A telephone set's view of POTS.

As the figure shows, CONTROLLER is ready for the

offhook event of CALLER. This event triggers an action

st(B := B U {n}), which means "start adding n to the set B".

The time-consuming activity of adding n to B takes place in

the state PROCESS.ADDING. The completion of this

activity triggers the event done which, in turn, triggers the

action st(DT). The actions st(DT), st(BS), and st(RS), start

dialtone, busy signal, and ring signal, respectively. rd(m) is

an event that occurs when m, the called's telephone number

is read. The action st([Bm ∈]) starts checking whether or

not m is in B, i.e., whether or not the called party is busy.

Again, the checking activity takes place in the state

CHECKING. Finally, the event tm(en(PROCESS); t) occurs

at exactly t time units after the time that the system enters to

the PROCESS state. The rest of the specification in Figure 8

should now be self-explanatory.

Figure 9. A behavioral view for the telephone service provided by POTS.

B. Composing Behavioral Views

Similar to the previous example, having specified the

behavioral views of the system, we can now compose them

to form the overall system behavioral requirements

specification. The behavioral view POTS, shown in Figure

9, specifies the composition.

Ayaz Isazadeh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 62-67

© 2010, IJARCS All Rights Reserved 66

A separate composition of CALLER and CALLED

forms the view PHONE, which describes the behavior of the

system observable at the two ends of a telephone line.

PHONE is, in turn, ANDed with CONTROLLER, forming

the view CALL which specifies the behavior of the system

with respect to one telephone connection. Finally, POTS

consists of a separate composition of k CALLs, where k is

the maximum number of connections that POTS allows at

any given time.

Notice that all CALLs are completely independent of

each other except for sharing the variable B.

C. Discussion

The Statecharts specification of POTS would require

extending Statecharts to support parameterized repetition of

AND-states. Without parameterized states, considering the

number of CALLs, the Statecharts specification of POTS

will not be practical. Recognizing this fact, Harel describes

that such an extension "represent significant potential

strengthening of the Statecharts formalism as a tool for

specifying real systems" [9]. Assuming that Statecharts is

extended to support this capability, Harel provides an

informal diagram of a portion of a statechart that would

specify a telephone system (Figure 10).

Figure 10. A portion of a statechart specifying POTS (From [9]).

This diagram does not show the complete picture of the

statechart; but we can still see how much more easily our

behavioral view specification of POTS expresses the

specification compared to Statecharts. Notice that the

telephone states of the statechart is similar to the CALL

views of our behavioral view. However, the telephone states

are ANDed, while the CALL views are separated.

Therefore, in the statechart we have to make sure that

all the elements are uniquely specified within the 10,000

orthogonal states; and to do that we have to use parameters

like i and j (e.g., receiver i lifted, receiver j replaced, etc.). In

the behavioral view, on the other hand, there is no need for

these parameters. As mentioned in the previous example, the

parameters are within the structure of the behavioral view.

The diagram of Figure 10 does not show a portion of

the statechart, the controller, that establishes the connections

between telephones. The controller must be ANDed with all

telephones. To get an idea of the complexities associated

with expressing the behavior of the controller, note that if

the network had only two telephones, then we could express

the behavior of the controller as the CONTROLLER view of

our behavioral view (Figure 8). The network, however, has

many telephones and we have to express the behavior of a

controller that interacts with many telephones. Many

telephones may request call setup independent of each other.

We have to specify the way in which the controller must

uniquely identify all these telephones and respond to their

concurrent requests. Consequently, compared to our

behavioral view specification, we have to provide

[a] more details to uniquely identify the telephones and the

events they generate;

[b] An additional component, a queuing mechanism, to

handle the concurrent requests.

We do not see any of these details in our behavioral

view specification of POTS. The details are implicitly

provided by our notion of views and their compositions. In

summary, when we specify the behavioral requirements of a

system by a behavioral view, part of the specification is

expressed implicitly by the structure of the behavioral view.

The specifications therefore, are expressed more easily in

behavioral view compared to Statecharts.

IV. CONCLUSIONS

A large-scale control software system may exhibit a

combination of many different and identical behavioral

views. The behavioral view notation allows these views to

be specified as stand-alone systems and provides a method

of composing them to form the overall system behavior

specification. It is important, however, to realize that

composing behavioral views is different from integrating

them. Consequently, since large-scale control system

behavior can be described in terms of simple behavioral

views, Viewcharts simplifies the specification by reducing it

to the specifications of behavioral views.

V. REFERENCES

[1] Junbeom Yoo, Taihyo Kim. 2005. A formal software

requirements specification method for digital nuclear

plant protection. The Journal of Systems and Software

74 , 73–83

[2] A. Isazadeh, D. A. Lamb, and G. H. MacEwen. 1996.

Viewcharts: A behavioral specification language for

complex systems. In Proceedings of International

Workshop on Parallel and Distributed Real-Erne

System (WPDRTS), pages 208- 215, Honolulu, Hawaii.

IEEE Computer Society Press.

[3] D. Harel. 1987. Statecharts: A visual formalism for

complex systems Science of Computer Programming,

8:23 1-274.

[4] Amir A. Khwaja, Joseph E. Urban. 2009. RealSpec: An

Executable Specification Language for Modeling

Control Systems. IEEE International Symposium on

Object/Component/Service-Oriented Real-Time

Distributed Computing

[5] D. Hard and A. Naamad. 1995. The STATEMATE

semantics of Statecharts. Technical report, i-logix, Inc.,

22 Third Avenue Burlington, Mass. 01803, USA.

[6] K. L. Heninger, J. W. Kallander, J. E. Shore, and D. L.

arnas. 1978. Requirements for the A-7E aircraft.

Technical Report NRL 3876, Naval Research

Laboratory, Washington, DC.

[7] J. Guttag, J. Horning, and J. Wing. 1982. Some notes on

putting formal specifications, to productive use. Science

of Computer Programming, 2(1):53-68.

Ayaz Isazadeh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 62-67

© 2010, IJARCS All Rights Reserved 67

[8] M. Faci, L. Logrippo, and B. Stepien. 1991. Formal

specification of telephone systems in LOTOS: The

constraint-oriented approach. Computer Networks and

ISDN Systems, 21:53-67.

[9] D. Harel. 1987. Statecharts: A visual formalism for

complex systems. Science of Computer Programming,

8:231-274.

[10] A. Isazadeh and J. Karimpour. 2008. Viewcharts:

Syntax and Semantics. Informatica, Lith. Acad. Sci.

19(3): 345-362.

