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Abstract: Internet of Things (IoT) is one of the most-hyped emerging areas of technology in recent times. With things communicating with each 

other over the internet, it is only natural to expect that the volumes of the data collected and transmitted will become massive. Therefore, 

analysing such explosive amounts of data in near real-time, to generate actionable information out of these, is an imperative. Complex Event 

Processing (CEP) refers to the technology that enables near real-time processing of such data streams, without having the need to store and 

retrieve them from databases. Microsoft StreamInsight is a product that enables Complex Event Processing. In this paper, we talk about how 

Microsoft StreamInsight can be used to quickly develop a flexible high performance CEP solution. We have given an overview of 

“IStreamAnalytics”, a platform that we have built using StreamInsight. Further, the performance of StreamInsight as a CEP solution is evaluated 

through a series of experiments. 
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I. INTRODUCTION 

Due to the availability and affordability of wireless data 
communication for personal and enterprise uses, enterprises are 
witnessing an exponential increase in volume of data flowing 
through its systems. This influx of data is going to rise higher 
and higher as the number of connected devices increases. 
According to an estimate by Cisco IBSG the number of 
connected devices would be touching 50 billion by 2020[1]. 
Traditional database technology platforms and related 
development approaches are not designed to handle this 
unprecedented inflow of data for deriving information that can 
be used for meaningful business purposes. Enterprises need a 
platform that will enable them to go through these data streams, 
analyze them in near real time and provide insight into it, while 
ensuring good performance. This has led to the emergence of 
Complex Event Processing (CEP) technology.  

 
CEP is a technology for high-throughput, low-latency 

processing of event streams, including data coming 
continuously from systems, devices and sensors. CEP will play 
an important role in various verticals such banking, financial 
services, manufacturing, retail, telecommunication and 
healthcare etc. which produce high volumes of streaming data 
and need real-time analysis. Given the huge market potential 
for CEP, many players are entering into CEP market products 
such as Esper, HStreaming Cloud, Microsoft StreamInsight, 
Oracle CEP, SAP Sybase Event Stream Processor, StreamBase 
Systems’ Event Processing Platform etc. IGATE has developed 
IStreamAnalytics as a platform using Microsoft StreamInsight 
with various modules that can be used to develop a CEP 
solution using the Microsoft .Net framework. 

II. KEY CONSIDERATIONS FOR A CEP 

IMPLEMENTATION 

With the limitation of some analytical tools needing to store 
large volumes of data, CEP has emerged as an alternative for 
real-time detection and event based systems to analyze large 
volumes of data quickly. The overall approach of a CEP 

implementation has profound technological and architectural 
implications such as: 

 Ability to read the data from multiple sources of data 
where the format of the input data could be different.  

 Events processed in memory as it occurs to avoid any 
storing of data. 

 Configurable business rules defined by a business 
analyst with no need to know the nitty-gritties of the 
technology. 

 Data aggregation and analysis to provide high level 
summary, trends and statistics. 

 Ability to detect certain patterns in events and trigger 
off actions that needs to be taken. 

 Guarantee good performance, high availability (24x7) 
and scalability, since the number of connected devices 
might increase drastically. 

III. IGATE ISTREAMANALYTICS SOLUTION 

A. A Generic Platform for Processing Complex Events 

 
We investigated whether Microsoft StreamInsight[2] can be 
leveraged as a technology platform for building intelligent 
solutions with simple to medium complexity, which could be a 
technology enabler for use cases in the context of Internet of 
Things.  
 
Our objective was to look at the StreamInsight from two 
different perspectives: 

 Observe its capability to consume high volume of 
events data in a very short span of time. We used plain 
command line based .NET programs both for brevity 
and to minimize the overheads.   

 Look at StreamInsight as a way to build an application 
platform surrounding it for enterprise level scenarios. 
We developed a multilayered platform to visualize 
enterprise scenarios.  We designed a tiered architecture 
to see how the complexity in architecture impacts and 
also to see how such architectures can be built.  
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Standardization is the way to generalization. We developed 
IStreamAnlaytics as a platform for building CEP based 
solutions using Microsoft StreamInsight. Our approach 
considers the following premises as a foundation: 

 The event data should be encapsulated in a class that 
serves various business scenarios, termed as payload in 
StreamInsight. We had to ensure that all the events will 
have the fields like event source, some field identifying 
the  data it carries, the event data for the field and the 
date and time of the event (there could be a start and 
end values for the date and time in certain cases).  

 The business rules are created in xml format and 
defined separate from the code and represented clearly 
using the logical operators (e.g., setting the threshold 
values for the events). The rules were given specific 
names and provided with alert messages that would be 
raised in case of a violation.  

 For most of the practical scenarios, the sources 
generating the events (sensors etc.) won’t be accessing 
the StreamInsight server directly. Hence, there has to 
be a gateway that would accept the events, do basic 
validations, filter and then pass it to the StreamInsight 
engine ensuring quality of data.  

 
Following diagram shows the high level architecture 
components of the IStreamAnalytics solution: 

 

 
Figure 1: IStreamAnalytics Architecture 

Two more significant design decisions that we took were the 

model (type) of the event and the mode of handshake for the 

StreamInsight with the source and sink (StreamInsight names 

destination as sink). StreamInsight allows processing of point 

events (that have just a start time stamp and it is considered to 

last on tick in time), interval events (having both the start and 

the end time stamp) and edge events (it has both the start and 

end time stamp, but they come separately)[3]. We selected 

point model for two reasons, its similarity with the sensor 

behavior and for the sake of simplicity.  

 

Thus, we have 5 different building blocks for the overall 

solution. Here is a short description for all of them: 

 

B. Architecture Components and Configurations 

 

The overall architecture of the solution has to be in line with 

the development and integration framework provided by 

StreamInsight[4]. We leveraged the Source, Sink and Adaptors 

based model to build the IStreamAnalytics platform.  

 

 Event Gateway: This is the contact point for the 
various input sources (e.g., device sensors- 
speedometer of a vehicle, device on a patient, smart 
meters etc.). It does the necessary transformation to 

make the payload standard and sends the event to the 
Source Service.  

 Source Service: It does the integration between the 
Event Gateway and the CEP engine. All the events that 
are sent from the Gateway reach to StreamInsight 
through the “Source Service”. 

 CEP Engine: The actual CEP program that runs within 
the StreamInsight. The engine will house two types of 
rules, pre-built (generic rules specified in the XML 
files) and custom rules (non-generic complex 
application specific rules not covered by the pre-built 
rules). 

 Sink Services: It does the integration between the CEP 
engine and the Dashboard by sending the query results 
and the events data to the Dashboard. 

 Dashboard: Shows the data and the query results 
(alerts, aggregates etc.) generated by the CEP.  

 

Here is a sample of the simple rules using XML syntax:  

 

<Parameter> 

        <Name>vehicle_speed</Name> 

        <MaxValue>60</MaxValue> 

        <MinValue>10</MinValue>  

        <Alert-message> 

                Vehicle speed: crossing threshold value  

                (allowed between 11-59) 

        </Alert-message> 

        <RuleName>RuleWithinThreshold</RuleName> 

</Parameter> 

 

This rule applies to an event that comes with a field identifier 

name “vehicle_speed”. The rule has a name 

“RuleWithinThreshold” and it states that if the value goes 

below 10 or above 60, then an alert needs to be triggered.  

 

The “Alert-message” can be used for displaying the 

notification in the Dashboard. 

 

The rules are set in sync with the payload structure. As long as 

the source data can be encapsulated in the payload format and 

rules specified in the given XML format, the CEP engine will 

process it and any threshold violation will get triggered, which 

will be displayed in the “Dashboard” almost instantaneously.  

 

Taking it to be of further use we wrote a few more type of 

rules, namely: 

 Check for only minimum or only maximum values 

 Raise alert as soon the value falls within the specified 
range  

 Define threshold on the aggregates (for the example 
when the total distance travelled in last 24 hour by a 
vehicle goes beyond a certain limit) 

C. Design Considerations   

 

Our intention was to develop a CEP solution that can be 

flexible enough to work with multiple sources of data in any 

format and test various types of scenarios that could be 

implemented with StreamInsight. The high level architecture 

components were designed as independent modules and 

integrated through services. Additionally this approach 

allowed us to run multiple instances of the “Event Gateway” 

and “Dashboard” applications in parallel. Following 



Ramakrishnan Iyer et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,4-9 
 

© 2015-19, IJARCS All Rights Reserved                    6 

illustration depicts the various scenarios that we were able to 

create and test validating the flexibility and scalability of our 

approach: 

 

 
Figure 2: IStreamAnalytics Test Scenarios 

IV. PERFORMANCE EVALUATION 

With respect to ensuring a good performance for a CEP 

solution, some key points to factor in are: 

 System needs to process large volumes of data 
published at a high speed, which will need a matching 
infrastructure 

 Effective, meaningful and cost effective mining and 
analysis of the input events needs a robust analytics 
platform 

 Since the number of connected devices might increase 
drastically, the architecture needs to be scalable 

 Time is very critical in Complex events processing, 
since there is a need to respond to critical situations 
almost at near real-time 

 Considering the high volume of data coming in at high 
speed, need to ensure the data quality  

 High network bandwidth is required to read all the raw 
data generated by millions of connected devices  
 

To evaluate the performance of StreamInsight, we set some 
key objectives such as: 

 To find the number of records processed every second 
which will not depend on the number of records sent 
for processing 

 To evaluate the performance based on the multiple 
sources of data sent 

 To find how StreamInsight handles the concurrency of 
events 

 To find how the complexity in the architecture impacts 
performance 

 

A. Running the Performance Test  

 

Our objective was to evaluate different types of scenarios that 

could be mixed to articulate architectures depending upon the 

business and performance needs. We tested the following 

scenarios: 

 

Check StreamInsight throughput 

Large number of events were posted to StreamInsight and 

persisted in some form without doing much processing on it. 

We created a simple StreamInsight program that leveraged the 

text and database adaptors for connecting with the source and 

the sync. This scenario was tested for two different cases, one 

when the output data (that was essentially same as of the data 

posted) was written to a text file and the other when it was 

stored into a database. This test was to run to check the 

StreamInsight’s claim for handling the high volume scenarios 

and also to get an insight into measure how the overall time 

increase as the processing is added.  

 

Check StreamInsight throughput with simple processing 

Large number of events being posted to StreamInsight and 

persist it in some form, StreamInsight was asked to calculate 

aggregate for the events data periodically. We created a simple 

StreamInsight program that leveraged the text and database 

adaptors for connecting with the source and the sync. This 

scenario was again tested for two different cases, one when the 

output data (aggregate value) was written to a text file and the 

other when it was stored into a database. This test in contrast 

to the first one was to get some clue into how a simple 

calculation impacts the overall processing time. 

 

Check StreamInsight throughput for complex 

architectures 

Last scenario was to test how the StreamInsight based CEP 

solution will perform when complicated multi-layer 

architecture is in place. IStreamAnalytics platform, which we 

have explained above, was built to simulate this scenario. And 

as we have seen it has various components and services to 

generate data, send it to the CEP Server, and show it to the 

user.  

 

This test scenario needs some detailed explanation as given 

below: 

 

Simulating the Sources 

CEP solutions built on top of StreamInsight could process 

thousands of events every second. Keeping the limitations 

(infrastructure and time etc.) in mind we kept a moderate goal 

in front of us; generate a handful of events (up to 50) every 

second. Events details, along with a generation date time, were 

kept in flat files that the “Event Gateway” can read and send to 

the StreamInsight through “Source Service”. Keeping the date 

time stamp in the file allows spacing the events in time but it 

also restricts in creating a real life scenario where the events 

could be bubbling. Keeping the objective of trying out as 

many scenarios as possible we also allowed the source service 

to replace the event date time with the date time when it is 

being sent to StreamInsight, if required.  

 

Dealing with multiple Sources 

CEP solutions will often be receiving events that will be 

coming from more than one source. It would not be unlikely 

that multiple events were generated at same point of time from 

one or more devices. These events will be assumed to be 

duplicates, only one of them will be considered a valid event 

for a device although all of them could be potentially a valid 

event. There can be several approaches to tackle this problem.  
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Create multiple streams for different sources and combine 

them together (using UNION on all of the sources) within the 

StreamInsight. This approach could be workable when there 

are a limited number of fixed sources. If the number of sources 

is changing or too large this would be complex. Apart from 

that scenarios when the sources are not providing any data 

could complicate the solution.   

 

Add tick level differences to the event time stamp: 

StreamInsight can differentiate the event times at the tick level 

(10 million ticks add up to a second). The event gateway can 

keep a counter, that increment itself every time there is a new 

event and resets itself every second (or when there is change in 

the time). We are assuming that the events are arriving with 

time precision in seconds. This tick is added to the event time 

stamp and that makes it unique to StreamInsight. Since there 

can be up to 10 million ticks in a second we have a very large 

number of records that could be made unique. For certain 

cases a refined approach could be applied. The payload could 

have two date time fields. One of them will hold the date time 

that the event source provided and second could be the date 

time generated by the “Event Gateway” that is the current date 

time.  “Event Gateway” can capture the time when it is about 

to send the event and add the tick variation to it. This approach 

will ensure that the events are made unique without losing the 

information about the time when they were actually generated.  

 

Handling the Concurrency of the Events 

CEP solutions by nature have to deal with large number of 

events. The timing of the event is important because, unless 

specified otherwise, the events will need to be ordered as per 

time. Overriding this basic rule, although possible, brings its 

own possible complications and challenges. The approach and 

the solution developed for handling the multiple sources that 

makes the events unique across the time scale, worked for this 

issue as well. Since the event’s time has been added with a tick 

variation, even the events having the same date and time 

stamps don’t have the matching date time stamp at the tick 

level. This keeps the original time stamp of the data unaltered 

at the HH:MM:SS level, while still making them unique.  

 

Managing the time for aggregations 

Usually we calculate the aggregate to know the cumulative 

value over a period of time. In CEP scenarios there could be 

cases where apart from the period of time, when the 

aggregation happened also might be critical. Consider a 

hypothetical scenario where we are calculating the sum of the 

temperature received from all the engine parts and also want to 

know exactly when the temperature was detected to cross a 

threshold value. Adding to the complexity, assume that the 

processing is being executed not in real time, rather is based 

on the input feeds that have been received from the engine 

sensors. When this data is fed to the CEP engine, the 

aggregations will go as defined but the aggregation queries 

will not record the time of the aggregation correctly. As a 

solution this time could be the time stamp of the last event 

from the event window and needs to be captured and reported 

along with the aggregate data. When the stream is analyzed in 

real time and CEP receives the data almost instantaneously, 

this time could be the time of aggregation done by the CEP 

itself.  

 

After reading the events file in a defined format and sending 

the events to the StreamInsight and before displaying them in 

a dashboard (these activities will remain more or less similar 

in any of the approach), here is what we did within the CEP 

solution: 

 Integrate the event source with the event generator 
which will be reading data based on a format specified 
in the xml file 

 Define and bind with the sinks (destination, the 
dashboard) 

 Collect the events as they arrive 

 Execute LINQ queries on the event stream for:  
- Finding alerts based on defined rules in xml files 

- Calculating aggregates based on defined parameters 

in xml files 

- Executing temporal comparisons which will need to 

be custom developed 

- Transmitting the results including the event details to 

the dashboard   

 Perform the cleanup once the execution is over  
 

All this was covered within just a few LINQ queries[5] (a 

scripting language provided with Microsoft StreamInsight) 

and some code for managing the configurable rules, besides a 

few lines of code for setting up the source and sinks. In 

addition to what can be configured, StreamInsight provides as 

in-built functions: 

 Detection of the latest event as it arrives 

 Automatic execution of the LINQ queries every time a 
new event is there, including the aggregates  

 Ability to move backward and forward in time in the 
streams and incorporating the altered events into the 
LINQ queries  

 Easy binding with the source and sink adaptors. 
 

As planned, designed and developed we created following two 

different sets of configurations (data files, their definitions, set 

of rules etc.): 

 First, dealing with the engine parameters transmitted 
through the sensors of a vehicle while driving  

 Second, real time inventory related feeds from a chain 
of retail stores  

 

We tried to run the IStreamAanalytics with both the 

configuration files (and not a single line of code change). As 

expected the “Dashboard” displayed the appropriate alerts 

based on the data successfully. 
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Figure 3: Running IStreamAnalytics for different business cases 

B. The Results 

Following table captures the results of the first two 
performance scenarios, where we checked for the 
StreamInsight throughput without any processing and with a 
simple aggregate calculation.  

Table I.  First Two Performance Scenarios 

Scenario  
Machine 

No. 

Number of 

Records 

processed  

Total Time 

taken in Milli 

Seconds 

Records 

Processed 

Per 

Second 

Comments 

Scenario 1 M1 500 264 1894 Events stored to text file without processing 

Scenario 2 M1 5211 1702 3062 Events stored to text file without processing 

Scenario 3 M1 20000 6437 3107 Events stored to text file without processing 

Scenario 4 M1 35500 11700 3034 Events stored to text file without processing 

Scenario 5 M1 500 1730 289 Events stored to DB without processing 

Scenario 6 M1 5211 17115 304 Events stored to DB without processing 

Scenario 7 M1 20000 66468 301 Events stored to DB without processing 

Scenario 8 M1 35500 156117 227 Events stored to DB without processing 

Scenario 9 M1 500 143 3497 

Aggregate calculations stored to text file 

Aggregate calculated every 10 seconds 

Scenario 10 M1 500 136 3676 

Aggregate calculations stored to text file 

Aggregate calculated every 20 seconds 

Scenario 11 M1 500 127 3937 

Aggregate calculations stored to text file 

Aggregate calculated every 30 seconds 

Scenario 12 M1 500 338 1479 

Aggregate calculations stored to DB 

Aggregate calculated every 10 seconds 

Scenario 13 M1 500 280 1786 

Aggregate calculations stored to DB 

Aggregate calculated every 20 seconds 

Scenario 14 M1 500 218 2294 

Aggregate calculations stored to DB 

Aggregate calculated every 30 seconds 

Notes: 

 M1 is the machine where StreamInsight is running. The data files and SQL Server Database is also running on the 

same machine.   

 The machines configuration: Intel Core 3.10 GHz Processor with 2.85 GB of RAM 

 

 
A quick look at the table reveals that the number of records 
processed every second is fairly consistent for each of the 
scenarios.  

 Data pushed to text file (scenarios 1, 2, 3 and 4) 

 Date pushed to the database (scenarios 5, 6, 7 and 8) 

 Aggregates stored to the text file (scenarios 9, 10 and 
11) 

 Aggregates stored to the database (scenarios 12, 13 and 
14) 

 
We can draw the following conclusions: 

 As our test data shows StreamInsight can consume 
thousands of records and perform simple calculations 
on them every second, when running on a simple 
desktop machine. We can hereby confirm that it will be 
able to handle higher number of records and complex 
business logic on a server class high end machine. 

 Adaptors are important, as when the data is directly fed 
from a text file to and written into flat file it performs 
better than the scenario when the data is stored into a 
database.  

 
Following table depicts a snapshot of the third test scenario 
where a layered architecture was in place and business rules 
were more complicated: 

Table II.  Third Test Scenarios 

 
 
If we look closely at the data here are a few useful 
observations: 

 The number of records processed every second is fairly 
constant irrespective of the total number of records. 

 In the “Scenario 7”, there is an improvement in the 
performance when two instances of the “Events 
Gateway” application are running together 
simultaneously processing two different files.  

 In the “Scenario 8”, when the file is being processed on 
M2 that connects to the StreamInsight instance running 
on M1 through the “Source Service”. Note that the 
service is still running on M1.  

 The overall performance drops significantly in a 
layered architecture because we are now able to push 
far lesser number of records to the StreamInsight in a 
given unit of time.  

 
Here are some of the important observations from the overall 
exercise.  

 Loosely coupled adaptor based architecture is required 
for the enterprise level CEP solutions. It allows 
separation of concerns and hence optimization of the 
architecture flexibility. But it also adds a lot of 
overheads. If the throughput related requirements are 
big, a tradeoff approach has to be found. 

 Since the StreamInsight can process thousands of 
records in a second the gateway application/ service 
and adaptors that will feed the events to it have to be 
designed especially to receive and send the expected 
inflow of events. 

 The gateway and adaptors should be designed for 
handling the scenarios where multiple instances of 
them could be deployed to share the workload. 

 The events files could be read in sequence and that put 
a limitation on the number of records that could be 
pushed in a second. To break this barrier the event 
generator was designed in a way that multiple instances 
of it could be made running and each can read a 
separate file and connect to the same source service. In 
the enterprise context, architects will need to pay 
special attention to the flow of incoming events, how 
fast they will be arriving, whether there will  be a peak 
time for them, whether they will need some processing 
before entering CEP engine, whether the servers have 
enough capacity to process them, etc.  

 The approach of payload having two date time fields 
where one was based on the event source and the 
second one based on the current date time suited real-
time customer requirements better since it allows 
accommodating a very large number of events with 
unique time stamps and doesn’t add any additional 
complexities in the process. One of our use cases dealt 



Ramakrishnan Iyer et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,4-9 
 

© 2015-19, IJARCS All Rights Reserved                    9 

with a scenario where each event was supposed to be 
unique and should not get ignored. There could be 
business cases where events with matching details 
(especially the date-time stamp) will be considered as 
duplicates and hence need not be processed. Depending 
upon the nature of the events this approach might need 
to get adjusted. 
 

These observations elucidate the importance of designing the 
application architecture that suits the business requirements. 
Apart from that the design of the data provider applications and 
adaptors that connect the sources and sinks (destinations) to the 
CEP engine are the critical factors having impact on the 
performance and stability of the overall solution. StreamInsight 
capabilities, when combined together with a suitable 
architecture, can definitely deliver high performing CEP 
solutions.   

V. CONCLUSION 

CEP has opened up a tremendous opportunity for 
enterprises to leverage the large amounts of data and bring a 
new transformation in how to detect any change in parameters 

or data, use this information to trigger new events to help save 
costs and better decision making. StreamInsight capabilities 
when combined together with the suitable architecture can 
definitely deliver high performing CEP solutions. 
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