
Volume 6, No. 2, March-April 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 4

Performance Evaluation of Microsoft StreamInsight as a Complex Events Processing

Platform

Ramakrishnan Iyer
Research and Innovation Tech CoE

IGATE Global Solutions Ltd.

Mumbai, India

Radharaman Mishra
Research and Innovation Tech CoE

IGATE Global Solutions Ltd.

Mumbai, India

Abstract: Internet of Things (IoT) is one of the most-hyped emerging areas of technology in recent times. With things communicating with each

other over the internet, it is only natural to expect that the volumes of the data collected and transmitted will become massive. Therefore,

analysing such explosive amounts of data in near real-time, to generate actionable information out of these, is an imperative. Complex Event

Processing (CEP) refers to the technology that enables near real-time processing of such data streams, without having the need to store and

retrieve them from databases. Microsoft StreamInsight is a product that enables Complex Event Processing. In this paper, we talk about how

Microsoft StreamInsight can be used to quickly develop a flexible high performance CEP solution. We have given an overview of

“IStreamAnalytics”, a platform that we have built using StreamInsight. Further, the performance of StreamInsight as a CEP solution is evaluated

through a series of experiments.

Keywords: Microsoft StreamInsight, Complex Events Processing, Internet of Things

I. INTRODUCTION

Due to the availability and affordability of wireless data
communication for personal and enterprise uses, enterprises are
witnessing an exponential increase in volume of data flowing
through its systems. This influx of data is going to rise higher
and higher as the number of connected devices increases.
According to an estimate by Cisco IBSG the number of
connected devices would be touching 50 billion by 2020[1].
Traditional database technology platforms and related
development approaches are not designed to handle this
unprecedented inflow of data for deriving information that can
be used for meaningful business purposes. Enterprises need a
platform that will enable them to go through these data streams,
analyze them in near real time and provide insight into it, while
ensuring good performance. This has led to the emergence of
Complex Event Processing (CEP) technology.

CEP is a technology for high-throughput, low-latency

processing of event streams, including data coming
continuously from systems, devices and sensors. CEP will play
an important role in various verticals such banking, financial
services, manufacturing, retail, telecommunication and
healthcare etc. which produce high volumes of streaming data
and need real-time analysis. Given the huge market potential
for CEP, many players are entering into CEP market products
such as Esper, HStreaming Cloud, Microsoft StreamInsight,
Oracle CEP, SAP Sybase Event Stream Processor, StreamBase
Systems’ Event Processing Platform etc. IGATE has developed
IStreamAnalytics as a platform using Microsoft StreamInsight
with various modules that can be used to develop a CEP
solution using the Microsoft .Net framework.

II. KEY CONSIDERATIONS FOR A CEP

IMPLEMENTATION

With the limitation of some analytical tools needing to store
large volumes of data, CEP has emerged as an alternative for
real-time detection and event based systems to analyze large
volumes of data quickly. The overall approach of a CEP

implementation has profound technological and architectural
implications such as:

 Ability to read the data from multiple sources of data
where the format of the input data could be different.

 Events processed in memory as it occurs to avoid any
storing of data.

 Configurable business rules defined by a business
analyst with no need to know the nitty-gritties of the
technology.

 Data aggregation and analysis to provide high level
summary, trends and statistics.

 Ability to detect certain patterns in events and trigger
off actions that needs to be taken.

 Guarantee good performance, high availability (24x7)
and scalability, since the number of connected devices
might increase drastically.

III. IGATE ISTREAMANALYTICS SOLUTION

A. A Generic Platform for Processing Complex Events

We investigated whether Microsoft StreamInsight[2] can be
leveraged as a technology platform for building intelligent
solutions with simple to medium complexity, which could be a
technology enabler for use cases in the context of Internet of
Things.

Our objective was to look at the StreamInsight from two
different perspectives:

 Observe its capability to consume high volume of
events data in a very short span of time. We used plain
command line based .NET programs both for brevity
and to minimize the overheads.

 Look at StreamInsight as a way to build an application
platform surrounding it for enterprise level scenarios.
We developed a multilayered platform to visualize
enterprise scenarios. We designed a tiered architecture
to see how the complexity in architecture impacts and
also to see how such architectures can be built.

Ramakrishnan Iyer et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,4-9

© 2015-19, IJARCS All Rights Reserved 5

Standardization is the way to generalization. We developed
IStreamAnlaytics as a platform for building CEP based
solutions using Microsoft StreamInsight. Our approach
considers the following premises as a foundation:

 The event data should be encapsulated in a class that
serves various business scenarios, termed as payload in
StreamInsight. We had to ensure that all the events will
have the fields like event source, some field identifying
the data it carries, the event data for the field and the
date and time of the event (there could be a start and
end values for the date and time in certain cases).

 The business rules are created in xml format and
defined separate from the code and represented clearly
using the logical operators (e.g., setting the threshold
values for the events). The rules were given specific
names and provided with alert messages that would be
raised in case of a violation.

 For most of the practical scenarios, the sources
generating the events (sensors etc.) won’t be accessing
the StreamInsight server directly. Hence, there has to
be a gateway that would accept the events, do basic
validations, filter and then pass it to the StreamInsight
engine ensuring quality of data.

Following diagram shows the high level architecture
components of the IStreamAnalytics solution:

Figure 1: IStreamAnalytics Architecture

Two more significant design decisions that we took were the

model (type) of the event and the mode of handshake for the

StreamInsight with the source and sink (StreamInsight names

destination as sink). StreamInsight allows processing of point

events (that have just a start time stamp and it is considered to

last on tick in time), interval events (having both the start and

the end time stamp) and edge events (it has both the start and

end time stamp, but they come separately)[3]. We selected

point model for two reasons, its similarity with the sensor

behavior and for the sake of simplicity.

Thus, we have 5 different building blocks for the overall

solution. Here is a short description for all of them:

B. Architecture Components and Configurations

The overall architecture of the solution has to be in line with

the development and integration framework provided by

StreamInsight[4]. We leveraged the Source, Sink and Adaptors

based model to build the IStreamAnalytics platform.

 Event Gateway: This is the contact point for the
various input sources (e.g., device sensors-
speedometer of a vehicle, device on a patient, smart
meters etc.). It does the necessary transformation to

make the payload standard and sends the event to the
Source Service.

 Source Service: It does the integration between the
Event Gateway and the CEP engine. All the events that
are sent from the Gateway reach to StreamInsight
through the “Source Service”.

 CEP Engine: The actual CEP program that runs within
the StreamInsight. The engine will house two types of
rules, pre-built (generic rules specified in the XML
files) and custom rules (non-generic complex
application specific rules not covered by the pre-built
rules).

 Sink Services: It does the integration between the CEP
engine and the Dashboard by sending the query results
and the events data to the Dashboard.

 Dashboard: Shows the data and the query results
(alerts, aggregates etc.) generated by the CEP.

Here is a sample of the simple rules using XML syntax:

<Parameter>

 <Name>vehicle_speed</Name>

 <MaxValue>60</MaxValue>

 <MinValue>10</MinValue>

 <Alert-message>

 Vehicle speed: crossing threshold value

 (allowed between 11-59)

 </Alert-message>

 <RuleName>RuleWithinThreshold</RuleName>

</Parameter>

This rule applies to an event that comes with a field identifier

name “vehicle_speed”. The rule has a name

“RuleWithinThreshold” and it states that if the value goes

below 10 or above 60, then an alert needs to be triggered.

The “Alert-message” can be used for displaying the

notification in the Dashboard.

The rules are set in sync with the payload structure. As long as

the source data can be encapsulated in the payload format and

rules specified in the given XML format, the CEP engine will

process it and any threshold violation will get triggered, which

will be displayed in the “Dashboard” almost instantaneously.

Taking it to be of further use we wrote a few more type of

rules, namely:

 Check for only minimum or only maximum values

 Raise alert as soon the value falls within the specified
range

 Define threshold on the aggregates (for the example
when the total distance travelled in last 24 hour by a
vehicle goes beyond a certain limit)

C. Design Considerations

Our intention was to develop a CEP solution that can be

flexible enough to work with multiple sources of data in any

format and test various types of scenarios that could be

implemented with StreamInsight. The high level architecture

components were designed as independent modules and

integrated through services. Additionally this approach

allowed us to run multiple instances of the “Event Gateway”

and “Dashboard” applications in parallel. Following

Ramakrishnan Iyer et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,4-9

© 2015-19, IJARCS All Rights Reserved 6

illustration depicts the various scenarios that we were able to

create and test validating the flexibility and scalability of our

approach:

Figure 2: IStreamAnalytics Test Scenarios

IV. PERFORMANCE EVALUATION

With respect to ensuring a good performance for a CEP

solution, some key points to factor in are:

 System needs to process large volumes of data
published at a high speed, which will need a matching
infrastructure

 Effective, meaningful and cost effective mining and
analysis of the input events needs a robust analytics
platform

 Since the number of connected devices might increase
drastically, the architecture needs to be scalable

 Time is very critical in Complex events processing,
since there is a need to respond to critical situations
almost at near real-time

 Considering the high volume of data coming in at high
speed, need to ensure the data quality

 High network bandwidth is required to read all the raw
data generated by millions of connected devices

To evaluate the performance of StreamInsight, we set some
key objectives such as:

 To find the number of records processed every second
which will not depend on the number of records sent
for processing

 To evaluate the performance based on the multiple
sources of data sent

 To find how StreamInsight handles the concurrency of
events

 To find how the complexity in the architecture impacts
performance

A. Running the Performance Test

Our objective was to evaluate different types of scenarios that

could be mixed to articulate architectures depending upon the

business and performance needs. We tested the following

scenarios:

Check StreamInsight throughput

Large number of events were posted to StreamInsight and

persisted in some form without doing much processing on it.

We created a simple StreamInsight program that leveraged the

text and database adaptors for connecting with the source and

the sync. This scenario was tested for two different cases, one

when the output data (that was essentially same as of the data

posted) was written to a text file and the other when it was

stored into a database. This test was to run to check the

StreamInsight’s claim for handling the high volume scenarios

and also to get an insight into measure how the overall time

increase as the processing is added.

Check StreamInsight throughput with simple processing

Large number of events being posted to StreamInsight and

persist it in some form, StreamInsight was asked to calculate

aggregate for the events data periodically. We created a simple

StreamInsight program that leveraged the text and database

adaptors for connecting with the source and the sync. This

scenario was again tested for two different cases, one when the

output data (aggregate value) was written to a text file and the

other when it was stored into a database. This test in contrast

to the first one was to get some clue into how a simple

calculation impacts the overall processing time.

Check StreamInsight throughput for complex

architectures

Last scenario was to test how the StreamInsight based CEP

solution will perform when complicated multi-layer

architecture is in place. IStreamAnalytics platform, which we

have explained above, was built to simulate this scenario. And

as we have seen it has various components and services to

generate data, send it to the CEP Server, and show it to the

user.

This test scenario needs some detailed explanation as given

below:

Simulating the Sources

CEP solutions built on top of StreamInsight could process

thousands of events every second. Keeping the limitations

(infrastructure and time etc.) in mind we kept a moderate goal

in front of us; generate a handful of events (up to 50) every

second. Events details, along with a generation date time, were

kept in flat files that the “Event Gateway” can read and send to

the StreamInsight through “Source Service”. Keeping the date

time stamp in the file allows spacing the events in time but it

also restricts in creating a real life scenario where the events

could be bubbling. Keeping the objective of trying out as

many scenarios as possible we also allowed the source service

to replace the event date time with the date time when it is

being sent to StreamInsight, if required.

Dealing with multiple Sources

CEP solutions will often be receiving events that will be

coming from more than one source. It would not be unlikely

that multiple events were generated at same point of time from

one or more devices. These events will be assumed to be

duplicates, only one of them will be considered a valid event

for a device although all of them could be potentially a valid

event. There can be several approaches to tackle this problem.

Ramakrishnan Iyer et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,4-9

© 2015-19, IJARCS All Rights Reserved 7

Create multiple streams for different sources and combine

them together (using UNION on all of the sources) within the

StreamInsight. This approach could be workable when there

are a limited number of fixed sources. If the number of sources

is changing or too large this would be complex. Apart from

that scenarios when the sources are not providing any data

could complicate the solution.

Add tick level differences to the event time stamp:

StreamInsight can differentiate the event times at the tick level

(10 million ticks add up to a second). The event gateway can

keep a counter, that increment itself every time there is a new

event and resets itself every second (or when there is change in

the time). We are assuming that the events are arriving with

time precision in seconds. This tick is added to the event time

stamp and that makes it unique to StreamInsight. Since there

can be up to 10 million ticks in a second we have a very large

number of records that could be made unique. For certain

cases a refined approach could be applied. The payload could

have two date time fields. One of them will hold the date time

that the event source provided and second could be the date

time generated by the “Event Gateway” that is the current date

time. “Event Gateway” can capture the time when it is about

to send the event and add the tick variation to it. This approach

will ensure that the events are made unique without losing the

information about the time when they were actually generated.

Handling the Concurrency of the Events

CEP solutions by nature have to deal with large number of

events. The timing of the event is important because, unless

specified otherwise, the events will need to be ordered as per

time. Overriding this basic rule, although possible, brings its

own possible complications and challenges. The approach and

the solution developed for handling the multiple sources that

makes the events unique across the time scale, worked for this

issue as well. Since the event’s time has been added with a tick

variation, even the events having the same date and time

stamps don’t have the matching date time stamp at the tick

level. This keeps the original time stamp of the data unaltered

at the HH:MM:SS level, while still making them unique.

Managing the time for aggregations

Usually we calculate the aggregate to know the cumulative

value over a period of time. In CEP scenarios there could be

cases where apart from the period of time, when the

aggregation happened also might be critical. Consider a

hypothetical scenario where we are calculating the sum of the

temperature received from all the engine parts and also want to

know exactly when the temperature was detected to cross a

threshold value. Adding to the complexity, assume that the

processing is being executed not in real time, rather is based

on the input feeds that have been received from the engine

sensors. When this data is fed to the CEP engine, the

aggregations will go as defined but the aggregation queries

will not record the time of the aggregation correctly. As a

solution this time could be the time stamp of the last event

from the event window and needs to be captured and reported

along with the aggregate data. When the stream is analyzed in

real time and CEP receives the data almost instantaneously,

this time could be the time of aggregation done by the CEP

itself.

After reading the events file in a defined format and sending

the events to the StreamInsight and before displaying them in

a dashboard (these activities will remain more or less similar

in any of the approach), here is what we did within the CEP

solution:

 Integrate the event source with the event generator
which will be reading data based on a format specified
in the xml file

 Define and bind with the sinks (destination, the
dashboard)

 Collect the events as they arrive

 Execute LINQ queries on the event stream for:
- Finding alerts based on defined rules in xml files

- Calculating aggregates based on defined parameters

in xml files

- Executing temporal comparisons which will need to

be custom developed

- Transmitting the results including the event details to

the dashboard

 Perform the cleanup once the execution is over

All this was covered within just a few LINQ queries[5] (a

scripting language provided with Microsoft StreamInsight)

and some code for managing the configurable rules, besides a

few lines of code for setting up the source and sinks. In

addition to what can be configured, StreamInsight provides as

in-built functions:

 Detection of the latest event as it arrives

 Automatic execution of the LINQ queries every time a
new event is there, including the aggregates

 Ability to move backward and forward in time in the
streams and incorporating the altered events into the
LINQ queries

 Easy binding with the source and sink adaptors.

As planned, designed and developed we created following two

different sets of configurations (data files, their definitions, set

of rules etc.):

 First, dealing with the engine parameters transmitted
through the sensors of a vehicle while driving

 Second, real time inventory related feeds from a chain
of retail stores

We tried to run the IStreamAanalytics with both the

configuration files (and not a single line of code change). As

expected the “Dashboard” displayed the appropriate alerts

based on the data successfully.

Ramakrishnan Iyer et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,4-9

© 2015-19, IJARCS All Rights Reserved 8

Figure 3: Running IStreamAnalytics for different business cases

B. The Results

Following table captures the results of the first two
performance scenarios, where we checked for the
StreamInsight throughput without any processing and with a
simple aggregate calculation.

Table I. First Two Performance Scenarios

Scenario
Machine

No.

Number of

Records

processed

Total Time

taken in Milli

Seconds

Records

Processed

Per

Second

Comments

Scenario 1 M1 500 264 1894 Events stored to text file without processing

Scenario 2 M1 5211 1702 3062 Events stored to text file without processing

Scenario 3 M1 20000 6437 3107 Events stored to text file without processing

Scenario 4 M1 35500 11700 3034 Events stored to text file without processing

Scenario 5 M1 500 1730 289 Events stored to DB without processing

Scenario 6 M1 5211 17115 304 Events stored to DB without processing

Scenario 7 M1 20000 66468 301 Events stored to DB without processing

Scenario 8 M1 35500 156117 227 Events stored to DB without processing

Scenario 9 M1 500 143 3497

Aggregate calculations stored to text file

Aggregate calculated every 10 seconds

Scenario 10 M1 500 136 3676

Aggregate calculations stored to text file

Aggregate calculated every 20 seconds

Scenario 11 M1 500 127 3937

Aggregate calculations stored to text file

Aggregate calculated every 30 seconds

Scenario 12 M1 500 338 1479

Aggregate calculations stored to DB

Aggregate calculated every 10 seconds

Scenario 13 M1 500 280 1786

Aggregate calculations stored to DB

Aggregate calculated every 20 seconds

Scenario 14 M1 500 218 2294

Aggregate calculations stored to DB

Aggregate calculated every 30 seconds

Notes:

 M1 is the machine where StreamInsight is running. The data files and SQL Server Database is also running on the

same machine.

 The machines configuration: Intel Core 3.10 GHz Processor with 2.85 GB of RAM

A quick look at the table reveals that the number of records
processed every second is fairly consistent for each of the
scenarios.

 Data pushed to text file (scenarios 1, 2, 3 and 4)

 Date pushed to the database (scenarios 5, 6, 7 and 8)

 Aggregates stored to the text file (scenarios 9, 10 and
11)

 Aggregates stored to the database (scenarios 12, 13 and
14)

We can draw the following conclusions:

 As our test data shows StreamInsight can consume
thousands of records and perform simple calculations
on them every second, when running on a simple
desktop machine. We can hereby confirm that it will be
able to handle higher number of records and complex
business logic on a server class high end machine.

 Adaptors are important, as when the data is directly fed
from a text file to and written into flat file it performs
better than the scenario when the data is stored into a
database.

Following table depicts a snapshot of the third test scenario
where a layered architecture was in place and business rules
were more complicated:

Table II. Third Test Scenarios

If we look closely at the data here are a few useful
observations:

 The number of records processed every second is fairly
constant irrespective of the total number of records.

 In the “Scenario 7”, there is an improvement in the
performance when two instances of the “Events
Gateway” application are running together
simultaneously processing two different files.

 In the “Scenario 8”, when the file is being processed on
M2 that connects to the StreamInsight instance running
on M1 through the “Source Service”. Note that the
service is still running on M1.

 The overall performance drops significantly in a
layered architecture because we are now able to push
far lesser number of records to the StreamInsight in a
given unit of time.

Here are some of the important observations from the overall
exercise.

 Loosely coupled adaptor based architecture is required
for the enterprise level CEP solutions. It allows
separation of concerns and hence optimization of the
architecture flexibility. But it also adds a lot of
overheads. If the throughput related requirements are
big, a tradeoff approach has to be found.

 Since the StreamInsight can process thousands of
records in a second the gateway application/ service
and adaptors that will feed the events to it have to be
designed especially to receive and send the expected
inflow of events.

 The gateway and adaptors should be designed for
handling the scenarios where multiple instances of
them could be deployed to share the workload.

 The events files could be read in sequence and that put
a limitation on the number of records that could be
pushed in a second. To break this barrier the event
generator was designed in a way that multiple instances
of it could be made running and each can read a
separate file and connect to the same source service. In
the enterprise context, architects will need to pay
special attention to the flow of incoming events, how
fast they will be arriving, whether there will be a peak
time for them, whether they will need some processing
before entering CEP engine, whether the servers have
enough capacity to process them, etc.

 The approach of payload having two date time fields
where one was based on the event source and the
second one based on the current date time suited real-
time customer requirements better since it allows
accommodating a very large number of events with
unique time stamps and doesn’t add any additional
complexities in the process. One of our use cases dealt

Ramakrishnan Iyer et al, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,4-9

© 2015-19, IJARCS All Rights Reserved 9

with a scenario where each event was supposed to be
unique and should not get ignored. There could be
business cases where events with matching details
(especially the date-time stamp) will be considered as
duplicates and hence need not be processed. Depending
upon the nature of the events this approach might need
to get adjusted.

These observations elucidate the importance of designing the
application architecture that suits the business requirements.
Apart from that the design of the data provider applications and
adaptors that connect the sources and sinks (destinations) to the
CEP engine are the critical factors having impact on the
performance and stability of the overall solution. StreamInsight
capabilities, when combined together with a suitable
architecture, can definitely deliver high performing CEP
solutions.

V. CONCLUSION

CEP has opened up a tremendous opportunity for
enterprises to leverage the large amounts of data and bring a
new transformation in how to detect any change in parameters

or data, use this information to trigger new events to help save
costs and better decision making. StreamInsight capabilities
when combined together with the suitable architecture can
definitely deliver high performing CEP solutions.

VI. REFERENCES

[1] The Internet of Things How the Next Evolution of the Internet Is
Changing Everything
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0
411FINAL.pdf

[2] Microsoft StreamInsight

 https://msdn.microsoft.com/en-in/sqlserver/ee476990.aspx

[3] Introducing Microsoft StreamInsight
http://web.cecs.pdx.edu/~tufte/410-
510DS/readings_files/Microsoft%20CEP%20Overview.pdf

[4] StreamInsight Server Architecture
https://msdn.microsoft.com/en-us/library/ee391536(v=sql.111)

[5] A Hitchhiker's Guide to Microsoft StreamInsight Queries

http://blogs.msdn.com/b/streaminsight/archive/2012/08/01/a-
hitchhiker-s-guide-to-streaminsight-2-1-queries.aspx

http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://msdn.microsoft.com/en-in/sqlserver/ee476990.aspx
http://web.cecs.pdx.edu/~tufte/410-510DS/readings_files/Microsoft%20CEP%20Overview.pdf
http://web.cecs.pdx.edu/~tufte/410-510DS/readings_files/Microsoft%20CEP%20Overview.pdf
https://msdn.microsoft.com/en-us/library/ee391536(v=sql.111)
http://blogs.msdn.com/b/streaminsight/archive/2012/08/01/a-hitchhiker-s-guide-to-streaminsight-2-1-queries.aspx
http://blogs.msdn.com/b/streaminsight/archive/2012/08/01/a-hitchhiker-s-guide-to-streaminsight-2-1-queries.aspx

