
��������	�
����	�
������������

���������������������
������������������������������� ��!�����"�������

�#"#�� $�%�%#��

����������&���������'''��(����������

© 2010, IJARCS All Rights Reserved 53

ISSN No. 0976-5697

Development of Distributed Monitoring Framework

Harikesh Singh*, Dr. Shishir Kumar
Department of Computer Science & Engineering

Jaypee University of Engineering & Technology

Guna, India

harikeshsingh@yahoo.co.in

shishir_ks@yahoo.com

Abstract: The problem of network intrusion has been tried to solve by many different approaches. Packet sniffing is one of the most simplistic

approaches. In this rapidity growing technological world where system safety questioned by different network intrusions is growing per minute,

network monitors help solve these problems of unwanted having and problems arising from the periodical failure in the working of wiring and

protocols due to their complication. Network monitor can be connected to the network to analyze what is happening and attempt to identify the

cause of the problem. “Monitoring data on internet” is used to develop a log file of packet contents that are transferred between two different

systems connected via a local area network. Their average data transfer rate and other details are analyzed by the software. Installing our

software the system is aimed to act like an approximate network monitor in some contexts as it helps in evaluation of data flow from system. It

can be successfully used for capturing data transfers between your PCs and any other network resource.

Keywords: distributed system, distributed monitoring, network, data transfer, performance monitoring

I. INTRODUCTION

In the distributed monitoring framework, the distributed

systems engross the compilation, analysis, and demonstrate of

information regarding the interactions among parallel executing

processes. This information and its display can sustain the

debugging, testing, performance assessment, and dynamic

documentation of distributed systems. When building

distributed systems, it has been pragmatic unexpectedly low

performance [1]. The bottlenecks can be in any of the following

components: Applications, Operating systems, Disks or

network adapters on either the sending or receiving host,

Network switches and routers, and so on.

The distributed monitoring of components is significant for

enabling high-performance distributed computing. Monitoring

data is needed to determine the source of performance

problems and to tune the system and application. Fault

detection and recovery mechanisms need monitoring data to

determine whether a server is down and to decide whether to

restart the server or to redirect service requests elsewhere. A

performance prediction service takes monitoring data as input

to a prediction model, which is in turn used by a scheduler to

determine which resources to assign to a job. Analysis tools

will be able to use the monitoring data for real-time analysis,

anomaly identification, and response [2].

II. RELATED WORK

A. Tools Used In Traffic Monitoring

This task can be time consuming and cumbersome and in

most cases accurate information about the network is not

obtained. Some researchers have developed modular software

architectures for extensible system, however only a few of

these systems are optimized to handle large amount of data and

continuous monitoring. The libpcap tool has greatly simplified

the task of acquiring network packets for measurement. The

limitation of the tool is its inability to analyze the captured data,

it will only capture the data and the programmer or network

administrator is left to carry out analysis manually. Other

researchers have developed systems for streaming data through

protocol layers and routing functions, but not much attention

has been given to the analysis of large/huge or broad data

collected over time[3][4].

The most common use for these tools is graphing the In

Octet and Out Octet counters on router interfaces, which

respectively provide counts of the number of bytes passing in

and out of the interface. Many other tools also support SNMP

monitoring. Simple Network Management Protocol (SNMP)

covers a class of tools such as Multi Router Traffic Grapher

(MRTG) and Cricket, which collect counter statistics from

network infrastructures, and visualizes these statistics by means

of graphs. This includes monitoring performed by Remote

Monitoring (RMON) agents, which can be useful in

determining the top hosts with regards to traffic, as well as the

distribution of packet sizes on a network. SNMP can only be

used to monitor devices that are SNMP managed, the reading

and writing of the In Octet and Out Octet counters in a router

could generate substantial traffic. Tcp dump prints out the

headers of packets on a network interface that match the

boolean expression. It is a network sniffer with in-built filtering

capabilities; it can only collect the data from the network, but

does not analyze collected data. The collected data can be

analyzed offline with another utility namely, tcp show and tcp

trace. As useful and powerful as tcp dump is, it is only suitable

for troubleshooting i.e., for tracking network and protocol

related connectivity problems [5][6].

MRTG is a versatile tool for graphing network data, this

tool can run on a Web server. Every five minutes, it reads the

inbound and outbound octet counter of the gateway router, and

then logs the data to generate graphs for web pages. These

graphs can be viewed using a web browser. Although MRTG

gives a graphical overview, it however does not give details

Harikesh Singh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 53-61

© 2010, IJARCS All Rights Reserved 54

about the host and protocol responsible for the traffic

monitored. Windmill is a modular system for monitoring

network protocol events; it is useful for acquiring the data from

the network, but it is however limited in its capability by not

providing any facility to aid in the analysis of those events or

non protocol events acquired. WebTrafMon uses a probe to

extract data from network packets and composes log files.

Analysis results are based on the collected log files.

Furthermore the user is able to view the analysis result via a

generic web browser. WebTrafMon can show traffic

information according to the source and destination host

through any web interface; it can also show the traffic status

according to each protocol in use. The continuous Query

Systems share many of the concerns of other systems in

acquiring and filtering continuous streams of data, this system

however lack the ability to easily add new functions over the

data, hence they are not extensible[7][8].

The agile and scalable analysis of network events is a

system based on modular analysis and continuous queries

allowing users to assemble modules into an efficient system for

analyzing multiple types of streaming data. The system is

optimized for analyzing and filtering large streams of data, and

makes extensive use of polymorphic components that can

perform common functions on new and unforeseen types of

data without requiring any additional programming. This data

analysis system provides a scalable, flexible system for

composing ad-hoc analyses of high speed streaming data but

does not provide infrastructures for data gathering and network

monitoring[9].

Provides a display similar to the UNIX top command, but

for network traffic, it can be used for traffic measurement and

monitoring. Features such as the embedded HTTP server,

support for various network media types, light CPU utilization,

portability across various platforms, and storage of traffic

information into an SQL database makes ntop versatile. The

extensive cache usage has the drawback that memory usage is

increased. This makes ntop a memory and computational

intensive application. Like several of the other tools, ntop uses

the same packet capture library to obtain the network data. The

system is limited by not providing a universal web interface to

display the results of its monitoring. The system requires huge

storage, 11TB of shared disk space for data repository since it

is not web based and also there is high overhead since the

storage system is accessed through an NFS server over an

Ethernet link [10].

To understand network dynamics, and to analyze a wide

range of network behaviors, network data needs to be collected

over a long period of time, rather than as a onetime event to

capture transient behaviors that provide insight into immediate

network problems. Network monitoring and analysis have

become important topics in networking environments,

encouraging worldwide research and development. Many

organizations have developed automated network monitoring

and analysis systems, some of which are described below

[11][12].

The SunOS operating system provides Etherfind, which is a

software packet monitor. The software opens the network card

in the promiscuous mode and writes a summary line of each

packet to a file. Information includes protocol type, size, and

sending and receiving addresses. This tool extracts information

from each packet. Data is supplied as a text-based user

interface, and only users with root permission can access the

tool. NFSwatch monitors all incoming network traffic destined

to NFS file servers, and divides it into several categories. The

number and percentage of packets received in each category is

displayed on the screen, which is continuously updated. By

default, NFSwatch monitors all packets destined for the current

host. An alternate destination host to watch for may be

specified using an internal argument. If a source host is

specified with the -src argument, then only packets arriving at

the destination host which were sent by the source host are

monitored. This tool, like Etherfind, is inappropriate for our

needs because it was originally designed to monitor a single

host [13][14].

Etherload is a freely available LAN traffic analyzer for MS-

DOS system with an Ethernet or Token Ring controller. This

program was originally developed for measuring traffic load of

Ethernet segments. Etherload basically captures each packet

running through the LAN and provides various information on

the packet. The program displays important parameters, events

and loads for the protocols as well as the simple overall load

statistics. Etherload can be used to check which host is

generating the most traffic, which host is sending to which

host, and what kind of protocols are in use in a specific

Ethernet segment. It provides detailed parameter information

and statistical data of the segment traffic. Especially for the

TCP/IP network, Etherload is able to analyze and classify

traffic by TCP/UDP port numbers, which give statistical

information for various TCP/IP applications. After a careful

examination of the above-mentioned tools, it was found that

none of them provided the capability required for accurate

network monitoring and analysis. This motivated the

development of our new monitoring tool [15].

B. Packet Sniffing

A packet sniffer is also known as a network sniffer,

network analyzer or protocol analyzer, or for particular types of

networks, an Ethernet sniffer or a wireless sniffer. It is

computer software or a computer hardware that can intercept

and log traffic passing over a digital network or part of a

network. As data flows across the network and the sniffer

captures each packet and eventually decodes and analyzes its

content. The network adapter must be put into promiscuous

mode in order to capture the traffic which can be unicast,

multicast or, broadcast type, and is being sent to the machine

on which the sniffer software is running. Promiscuous mode or

promiscuous mode is configuration of a network card that

makes the network interface card pass all traffic it receives to

the central processing unit rather than just packets addressed to

it [16].

As promiscuous mode can be used to sniff on a network,

one might be interested in detecting network devices that are in

promiscuous mode. If a network device is in promiscuous

mode, the kernel will receive all network traffic, i.e., the CPU

load will increase. Then the latency of network responses will

also increase, which can be detected. Promiscuous mode is

often used to diagnose network connectivity issues. There are

programs that make use of these features to show the user all

the data being transferred over the network. The versatility of

packet sniffer means they can be used to:

• Analyze network problems.

• Detect network intrusion attempts.

• Gain information for effecting a network intrusion.

• Monitor network usage.

• Gather and report network statistics.

• Debug client/server communications.

Harikesh Singh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 53-61

© 2010, IJARCS All Rights Reserved 55

• Debug network protocol implementations.

C. Protocols

Hypertext Transfer Protocol is used for retrieving inter-

linked resources led to the establishment of the World Wide

Web. It is a application layer protocol for distributed,

collaborative, hypermedia information system. HTTP is a

request/response standard between a client and a server. The

client making a HTTP request is referred to as user agent. The

responding server which stores or creates resources such as

HTML files and images is referred to as origin server. In

between the user agent and the origin server there may be

several intermediaries, such as proxies, gateway and tunnel.

Typically, an HTTP client initiates a request .It establishes a

TCP connection to a particular port on a host. An HTTP server

listening on that port waits for the client to send a request

message. Upon receiving the request , the server sends back a

status line and a message of its own, the body of which is

perhaps the requested resource, an error message or some other

information[17][18].

The Transmission Control Protocol is one of the core

protocols of the Internet Protocol Suite. TCP is so central that

the entire suite is often referred as “TCP/IP”. Whereas IP

handles lower-level transmissions from the computer to

computer as a message makes its way across the Internet, TCP

operates at a higher level , concerned only with the two end

systems, for example a Web browser and a Web server. TCP

provides reliable, ordered delivery of a stream of bytes from

one program on one computer to another program on another

computer. Besides the web other common application of TCP

includes e-mail and file transfer. Among its management tasks,

TCP controls message size, the rate at which message are

exchanged and network traffic congestion. TCP provides a

communication service at an intermediate level between an

application program and the Internet Protocol [19].

Due to network congestion, traffic load balancing, or other

unpredictable network behavior, IP packets can get lost or

delivered out of order. TCP detects these problems, request

transmission of lost packets, rearranges out-of-order packets,

and even helps minimize network congestion o reduce the

occurrence of the other problems. Once the TCP receiver has

finally reassembled a perfect copy of the data originally

transmitted, it passes that datagram to the application program.

User Datagram Protocol is one of the core members of the

Internet Protocol Suite, the set of network protocols used for

the internet. With UDP, computer applications can send

messages, in this case referred to as datagram’s, to other hosts

on an IP network without requiring prior communications to set

up special transmission channels or data paths.UDP is

sometimes called the Universal Datagram Protocol. TCP

provides connections that need to be established before sending

data. TCP connections have three phases:

1. Connection establishment

2. Data transfer

3. Connection termination

This is the reason why data transfer through UDP is faster

compared to TCP protocol but in TCP data transmit is much

more reliable. UDP provides an unreliable service and

datagram’s may arrive out of order, appear duplicated, or go

missing without notice.UDP assumes that error checking and

correction is either not necessary or performed in the

application, avoiding the overhead at the network interface

level. UDP’s stateless nature is also useful for servers that

answer small queries from huge number of clients. Unlike

TCP, UDP is compatible with packet broadcast and

multicasting. Common network applications that use UDP

include: Domain Name server (DNS), streaming media

applications.

The IP is a protocol used for communicating data across a

packet-switched internetwork using the Internet Protocol suite.

IP is the primary protocol in the Internet layer and has the task

of delivering distinguished protocol datagram’s (packets) from

the source host to the destination host solely based on their

addresses. For this purpose the internet protocol defines

addressing methods and structures for datagram encapsulation.

The first major version of addressing protocol, now referred to

as Internet Protocol Version 4(IPV4) is still dominant protocol

of the internet. Data from an upper layer is encapsulated as

packets. Circuit setup is not needed before a host may send

packet to another host that it has previously not communicated

with. Thus IP is a connection less protocol. Routers in the

transmission path simply forward packets to next known local

gateway matching the routing prefix for destination address

[20][21].

Internet Protocol provides best effort delivery and its

service can also be characterized as unreliable. In the network

architectural language it is a connection less protocol, in

contrast to so called connection oriented modes of

transmission. The lack of reliability allows any of the following

fault events to occur like data corruption, loss of data packet,

duplicate arrivals, out of order delivery, meaning if a packet

‘A’ is sent before packet ‘B’, ‘B’ may arrive before packet ‘A’.

Since routing is dynamic and there is no memory in the

network about the path of the prior packet, it is possible that the

first packet sent takes a longer path to its destination [22].

The only assistance that the Internet protocol provides in

Version 4(IPV4) is to ensure that IP packet header is error free

through computation of checksums at routing nodes. This has

the side effect of discarding packets with bad headers on the

spot. In this case no notification is required to be sent to either

node, although a facility exists in the Internet Control Message

Protocol (ICMP) to do so. Perhaps the most complex aspects of

IP are IP addressing and routing. Addressing refers to how end

hosts become assigned to IP addresses and how sub networks

of IP host addresses are divided and grouped together. IP

routing is performed by all hosts, but most importantly by

internetwork routers, which typically use either interior

gateway protocols (IGPs) or external gateway protocols (EGPs)

to help make IP datagram forwarding decisions across IP

connected networks.

D. Layers

The Open Systems Interconnection model (OSI model) is a

product of the Open Systems Interconnection effort at the

International Organization for Standardization. It is a way of

sub-dividing a communications system into smaller parts called

layers. A layer is a collection of conceptually similar functions

that provide services to the layer above it and receives services

from the layer below it. On each layer an instance provides

services to the instances at the layer above and requests service

from the layer below. For example, a layer that provides error-

free communications across a network provides the path

needed by applications above it, while it calls the next lower

layer to send and receive packets that make up the contents of

Harikesh Singh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 53-61

© 2010, IJARCS All Rights Reserved 56

the path. Conceptually two instances at one layer are connected

by a horizontal protocol connection on that layer. For the

system the data link layer and the network layer needs to be

explored [23][24].

Figure 1: Communication Layer Structure

The Data Link Layer is concerned with local delivery of

frames between devices on the same LAN. Data Link frames,

as these protocol data units are called, do not cross the

boundaries of a local network. Inter-network routing and global

addressing are higher layer functions, allowing Data Link

protocols to focus on local delivery, addressing, and media

arbitration. In this way, the Data Link layer is analogous to a

neighborhood traffic cop; it endeavors to arbitrate between

parties contending for access to a medium.

When devices attempt to use a medium simultaneously,

frame collisions occur. Data Link protocols specify how

devices detect and recover from such collisions, and may

provide mechanisms to reduce or prevent them. A frame's

header contains source and destination addresses that indicate

which device originated the frame and which device is

expected to receive and process it. In contrast to the

hierarchical and routable addresses of the network layer, layer

2 addresses are flat, meaning that no part of the address can be

used to identify the logical or physical group to which the

address belongs [25].

Figure 2: Mechanism of Packet Transfer

The data link thus provides data transfer across the physical

link. That transfer can be reliable or unreliable; many data link

protocols do not have acknowledgments of successful frame

reception and acceptance, and some data link protocols might

not even have any form of checksum to check for transmission

errors. In those cases, higher-level protocols must provide flow

control, error checking, and acknowledgments and

retransmission.

The Network Layer is responsible for routing packets

delivery including routing through intermediate routers,

whereas the Data Link Layer is responsible for Media Access

Control, Flow Control and Error Checking. The Network Layer

provides the functional and procedural means of transferring

variable length data sequences from a source to a destination

host via one or more networks while maintaining the quality of

service functions. Functions of the Network Layer include:

• Connection model: connectionless communication

For example, IP is connectionless, in that a frame

can travel from a sender to a recipient without the

recipient having to send an acknowledgement.

Connection-oriented protocols exist higher at other

layers of that model.

• Host addressing

Every host in the network needs to have a unique

address which determines where it is. This address

will normally be assigned from a hierarchical system,

so you can be "Fred Murphy" to people in your house,

"Fred Murphy, Main Street 1" to Dubliners, or "Fred

Murphy, Main Street 1, Dublin" to people in Ireland,

or "Fred Murphy, Main Street 1, Dublin, Ireland" to

people anywhere in the world. On the Internet,

addresses are known as Internet Protocol (IP)

addresses.

• Message forwarding

Since many networks are partitioned into

subnetworks and connect to other networks for wide-

area communications, networks use specialized hosts,

called gateways or routers to forward packets between

networks. This is also of interest to mobile

applications, where a user may move from one

location to another, and it must be arranged that his

messages follow him. Version 4 of the Internet

Protocol (IPv4) was not designed with this feature in

mind, although mobility extensions exist. IPv6 has a

better designed solution. Within the service layering

semantics of the OSI network architecture the

Network Layer respond to service requests from the

Transport Layer and issues service requests to the

Data Link Layer [26][27].

E. Packet Structure

Everything we do on the internet involves packet. For

example, every web page we receive comes as a series of

packets, and every e-mail we send leaves as a series of packets.

Networks that ship data around a small packet are called packet

switched networks. On the internet, the network breaks an e-

mail message into parts of a certain size in bytes. These are the

packets. Each packet carries the information that will help get

to its destination – the senders IP address, the intended

receivers IP address, something that tells the network how

many packets this e-mail message has been broken into and the

number of this particular packet. The packets carry the data in

the protocols that the internet uses: Transmission Control

Protocol/Internet Protocol (TCP/IP). Each packet contains part

Header Payload

Field

Trailer Header Payload

Field

Trailer

Higher

Layers

Higher

Layers

Data Link

Layers

Data Link

Layers

Physical

Layers

Physical

Layers

Frame Stream

Automatic Repeat

Request (ARQ)

Cross-Layer

Information

Adaptive Modulation and Coding

(AMC)

Packet

Stream

Packet

Stream

Packet Packet

Sending machine Receiving machine

Frame

Harikesh Singh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 53-61

© 2010, IJARCS All Rights Reserved 57

of the body of your message. A typical packet contains perhaps

1,000 or 1,500 bytes.

Each packet is then sent off to its destination by the best

available route – a route that might be taken by all the other

packets in the message or by none of the other packets in the

message. This makes the network more efficient. First, the

network can balance the load across various pieces of

equipment on a millisecond-by-millisecond basis. Second, if

there is a problem with one piece of equipment in the network

while a message is being transferred, packets can be routed

around the problem, ensuring the delivery of the entire

message. Depending on the type of network, packets may be

referred to by another name: Frame, Block, Cell, and Segment.

Most of the packets are further split into three parts:

Header- The header contains instructions about the data

carried by the packet. These instructions may include:

• Length of packet

• Synchronization

• Packet Number

• Protocol

• Destination address

• Source address

Payload- Also called the body or data of a packet. This is

actual data that the packet is delivering to the destination. If a

packet is of fixed length, then the payload may be padded with

blank information to make it the right size.

Trailer- The trailer, sometimes called the footer, typically

contains a couple of bits that tell the receiving device that it has

reached the end of the packet. It may also have some type of

error checking. The most common error checking used in

packets is Cyclic Redundancy Check (CRC). CRC is pretty

neat. It takes the sum of all the 1s in the payload and adds them

together. The result is stored in hexadecimal value in the trailer.

The receiving device adds up the 1s in the payload and

compares the result to the value stored in the trailer. If the

values match, the packet is good. But if the values do not

match, the receiving device sends a request to the source device

to resend the packet. The 16-bit checksum field in the packet

structure is used for error checking of header and data.

As an example, let’s look at how an email message might

get broken in packets. Let’s say that the email is about 3.500

bits in size. The network we send it over uses fixed length

packets of 1,024 bits. The header of each packet is 96 bit long

and the trailer is 32 bit long, leaving 896 bits for the payload.

To break the 3,500 bits of message into packets, we will need

four packets. Three packets will contain 896 bits of payload

and the fourth will have 812 bits. Each packet header will

contain the proper protocols, the source and the destination

address and the packet number. Routers in the network will

look at the destination address and compare it to the lookup

table to find out where to send the packet. Once the packet

arrives at its destination, the destination computer will strip the

header and the trailer off each packet and reassemble the e-mail

based on the numbered sequence of the packets [28].

F. Technology Used

We have used Java technology to implement the system

because the GUI that can be created from java is much simpler

in approach and better than other languages. We have used the

open source library of Jpcap and Winpcap to create the

required system. Jpcap is java library used for capturing and

sending network packets, also for rael time network traffic

capture and analysis. Jpcap is based on LibPcap/WinPcap, and

is implemented in C and JAVA. Jpcap has been tested on

Microsoft Windows (98/2000/XP/Vista), and Linux. It is an

API for developing packet capture applications in JAVA.

To understand how we capture packets we must know that

Ethernet networks mostly use common bus topology, using

either coax cable or twisted pair wire and hub. All of the nodes

on the network can communicate over the same wire and take

turns sending data using CSMA/CD. All the nodes on the

network have their unique MAC address that they use to send

packets of information to each other. If the network card is put

into promiscuous mode it will look for all packets on the wire it

is hooked to.

Figure 3: WinPcap Architecture to capture packets

The basic structure of WinPcap has the modules of a

filtering machine, two buffers (kernel and user) and a couple of

libraries at user level. The filtering process is started by a user-

level component that is able to accept a user defined filter,

compile them into a set of pseudo instructions, send these

instructions to the filtering machine, and activate that code. On

the other hand, the kernel module must be able to execute these

instructions; there it must have a “BPF virtual machine” that

executes the pseudo code on all the incoming packets. WinPcap

is made up of three modules, one at kernel level and two at use

level; user level modules come under the form of Dynamic link

Libraries (DLLs) [29][30].

First module is the kernel part (NPF) that filters the packets,

delivers them untouched to user level and includes some OS

specific code.

Second module, packet.dll, is created to provide a common

interface to the packet driver among the Win32 platforms. In

fact, each Windows version offers different interfaces between

kernel modules and user level applications: packet.dll deals

with these differences, offering a system independent API.

Programs based on packet.dll are able to capture packets on

every Win32 platforms without being recompiled. Packet.dll

includes several additional functionalities. It performs a set of

low level operations like obtaining the adapters name or

dynamic loading of the driver, and it makes available some

system specific like the net mask of the machine and some

hardware counters [31].

Harikesh Singh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 53-61

© 2010, IJARCS All Rights Reserved 58

Third module, wpcap.dll, is not OS dependent and it

contains some other high level functions such as filter

generation and user level buffering, plus advanced features

such as statistics and packet injection. Therefore programmers

can have access to two type of API: a set of raw functions

contained in packet.dll, which are directly mapped to kernel

level calls, and a set of higher level functions that are provided

by WPcap.dll and that are more user friendly and powerful

[32].

III. MONITORING ARCHITECTURE

A. Computational Model

The client–server model of computing is a distributed

application structure that partitions tasks or workloads between

the providers of a resource or service, called servers, and

service requesters, called clients. Often clients and servers

communicate over a computer network on separate hardware,

but both client and server may reside in the same system. A

server machine is a host that is running one or more server

programs which share their resources with clients. A client

does not share any of its resources, but requests a server's

content or service function. Clients therefore initiate

communication sessions with servers which await incoming

requests.

Figure 4: Client-Server Architecture for communication

The client–server characteristic describes the relationship of

cooperating programs in an application. The server component

provides a function or service to one or many clients, which

initiate requests for such services. Functions such as email

exchange, web access and database access, are built on the

client–server model. Users accessing banking services from

their computer use a web browser client to send a request to a

web server at a bank. That program may in turn forward the

request to its own database client program that sends a request

to a database server at another bank computer to retrieve the

account information. The balance is returned to the bank

database client, which in turn serves it back to the web browser

client displaying the results to the user. The client–server

model has become one of the central ideas of network

computing. Many business applications being written today use

the client–server model. So do the Internet's main application

protocols, such as HTTP, SMTP, Telnet, and DNS. Specific

types of clients include web browsers, email clients, and online

chat clients[33][34][35].

Figure 5: Architecture of Common Gateway Interface

The Web is based on client/server architecture and basically

operates as follows. Hypertext documents that are to be made

available on the Web are prepared in HTML and made

accessible by the Web server. User wishing to retrieve the

documents can do so by using a Web client (Web browsers

such as Netscape Navigator or Internet Explorer) to connect to

the Web server which contains the documents. The Common

Gateway Interface (CGI) is the most popular method for

interfacing external applications with Web servers [36].

With the potential for thousands of resources at

geographically distant sites and tens-of thousands of

simultaneous users, it is critical that data collection and

distribution mechanisms scale. A general-purpose information

management system such as an off-the-shelf database or

directory service cannot efficiently meet this requirement

because the characteristics of performance information are

fundamentally different from the characteristics of the data

these types of systems were designed to handle. In general, the

following characteristics distinguish performance-monitoring

information from other forms of system or program-produced

data [37].

Performance information has a fixed, often short, lifetime of

utility. Most monitoring data goes stale quickly, making rapid

read access important but obviating the need for long-term

storage. The notable exception to this is data that gets archived

for accounting or postmortem analysis. Updates are frequent.

Unlike the more static forms of “metadata,” dynamic

performance information is typically updated more frequently

than it is read. Since most existent information-base

technologies are optimized for query and not for update, they

are potentially unsuitable for dynamic information storage.

Performance information is often stochastic. It is frequently

impossible to characterize the performance of a resource or an

application component by using a single value. Therefore,

dynamic performance information may carry quality-of-

information metrics quantifying its accuracy, distribution,

lifetime, and so forth, which may need to be calculated from

the raw data. Systems that collect and distribute performance

information should satisfy certain requirements [38][39][40]:

• Low latency: As previously stated, performance data

is typically relevant for only a short period of time.

Therefore, it must be transmitted from where it is

measured to where it is needed with low latency.

• High data rate: Performance data can be generated at

high data rates. The performance monitoring system

should be able to handle such operating conditions.

• Minimal measurement overhead: If measurements are

taken often, the measurement itself must not be

CLIENT

(WEB

BROWS

ERS)

WEB

SERVER

CGI

PROGR-

AM

Request

Execute

CGI

Return

Generated
Document

Retur

n

Harikesh Singh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 53-61

© 2010, IJARCS All Rights Reserved 59

intrusive. Further, there must be a way for monitoring

facilities to limit their intrusiveness to an acceptable

fraction of the available resources. If no mechanism

for managing performance monitors is provided,

performance measurements may simply measure the

load introduced by other performance monitors.

• Secure: Typical user actions will include queries to the

directory service concerning event data availability,

subscriptions for event data, and requests to instantiate

new event monitors or to adjust collection parameters

on existing monitors. The data gathered by the system

may itself have access restrictions placed upon it by

the owners of the monitors. The monitoring system

must be able to ensure its own integrity and to

preserve the access control policies imposed by the

ultimate owners of the data.

• Scalable: Because there are potentially thousands of

resources, services, and applications to monitor and

thousands of potential entities that would like to

receive this information, it is important that a

performance monitoring system provide scalable

measurement, transmission of information, and

security.

In order to meet these requirements, a monitoring system

must have precise local control of the overhead and latency

associated with gathering and delivering the data. We believe

that data discovery needs to be separated from data transfer if

this level of control is to be achieved [41][42].

IV. ALGORITHM IMPLEMENTATION

A. To implement the proposed architecture of computational
model following steps of algorithm required:

Step 1: Obtaining the list of network interfaces

1.1 Create an array of objects of NetworkInterface class

names ‘devices’
1.2 Use ‘JpcapCaptor.GetDevicesList’ function to detect the

network interface device list.
1.3 Store the above list in the ‘devices’ variable.

Step 2: Displaying the list of network interface

2.1 Put the integer variable i=0
2.2 Till the value of i is less than the length of array
 ‘devices’ i.e, till i < devices. length goto Step 2.3 else
 goto Step 3
 /* Here, it is noted that length of array devices
 Signify the number of network interface (NI) detected
 */
2.3 Print out the name of the captured NI.
 System.out.println (devices[i].name+” (“+
 Device[i].description+”)”);
2.4 i=i+1 i.e incrementing the value of i
2.5 Goto step 2.2
Step 3: Open a network interface with Open Device
 Function

3.1 Put the integer variable J=0
3.2 Till J<device.length goto step 3.3 else goto step 3.8
3.3 int index = J ; // set index of the interface that we
 want to open.
3.4 JpcapCaptor captor ; // create an instance of
 Jpcaptor class.

3.5 captor = JpcapCaptor.openDevice (device[index],
65535, false, 20);

 /* Here parameters passed are in the function are:
 JpcapCaptor.openDevice(NetworkInterface interface
 , int snaplen, Boolean promics, int to_ms). */
3.6 J=J+1
3.7 Goto 3.2
3.8 Step6

Step 4: Capture packets from the network interface

4.1 Is the menu button of stop capture packet selected.
 If yes goto Step 3.8 else Step 4.2
4.2 Capture a single packet
 String str = captor.getpacket();
 // We are calling getpacket() method of JpcapCaptor
 class multiple times to capture consecutive packets.
4.3 print packet by going to Step 5

Step 5: Close all the open network interface

7.1 Close the file i.e, writer.close();
7.2 captor.close();

Step 6: End

B. Pseudocode for opening of network interface using JPCAP
functions:

//Obtain the list of network interfaces
NetworkInterface[] devices =

JpcapCaptor.getDevicesList ();
//For each network interface
For(i = 1 to device.length)
//print out its name and description
System.out.println(i+”:”+devices[i].name+”(“+devices[i].
 description+”);
//print out its datalink name and description
System.out.println(“datalink:”+devices[i].datalink_name
 +”(“+devices[i].datalink_description+”)”);
//print out the MAC address
System.out.println(“MAC address:”);
For (byte b: device[i].mac_address)
System.out.print(Integer.toHexString(b&0xff)+”:”);
System.out.println();
/*print out its IP address, subnet mask and broadcast
Address */
For (NetworkInterfaceAddress a:device[i].addresses)
System.out.println(“address:”+a.address+” ”+ a.subnet
 +” “a.broadcast);

The following steps obtain the list of network interfaces and
prints out their information:

1. First of all prepare an ArrayList of all the network

interfaces on the node.
2. Now for getting the device description we have to

print the datalink description, MAC address. IP
address, Subnet mask in a file. And then print all the
data of the file.

3. Finally we will take anyone interface open it and will
check for the packets entering through it.

Harikesh Singh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 53-61

© 2010, IJARCS All Rights Reserved 60

V. EXPERIMENTAL RESULTS

To measure the impact of the monitoring system on

the target application. It shows how monitoring can help

to identify performance hotspots in the application design.

For testing purposes, a small web application has been

built. Users use a web browser to load in the web

application, which has a simple form. After completing

the form, the user submits it and then it call the methods

of the web application in the LAN.

The overhead of the monitoring system on the global

application response time has been measured. The results

are shown in figure 6. The dotted lines describes the

response time when monitoring is enabled. This test

shows that with a large increase in the number of

simultaneous users, the monitoring process does not affect

the application response time significantly. This is largely

due to the efficient use of the messaging infrastructure

that enables the monitoring component to induce

minimum overhead when notifying the listeners.

Figure 6: Performance of monitoring Overhead

We have analyzed that monitoring framework can be used
to identify the causes of the increase in execution time
presented in figure 5.

VI. CONCLUSION AND FUTURE WORK

The application system has been developed as one of the

framework of web-based network traffic monitoring and

analysis system. This application framework has been

operated over a manageable network snooping and packet

analysis system, and provides easy-to-use, omnipresent Web

user interface. It provides network managers with real-time

and historic traffic monitoring capabilities based on

destination, source and source-destination host pair as well as

based on network-layer, transport-layer and application-layer

protocols.

The application will easily provide answers to questions

such as “which application is consuming the most of network

resources?”, “and “which host pairs are generating the most

network traffic?”. This ability will provide more

comprehensive insight into the network’s use. Further, it can

be extended this application system in such a way so that it

can monitor and analyze switched networks (such as Fast

Ethernet and Gigabit Ethernet).

VII. REFERENCES

[1] Jeffrey Joyce, Greg Lomow, Konrad Slind, Brian Unger,
“Monitoring Distributed System”, ACM Transactions on
Computer System, ACM Trans. Comput. Syst., Vol. 5,
No. 2. (May 1987), pp. 121-150.

[2] B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee,
and M. Thompson. A Monitoring Sensor Management
System for Grid Environments. Proceedings of the IEEE
High Performance Distributed Computing Conference
(HPDC-9), August 2000.

[3] Eason, B. Noble, and I. N. Sneddon, “On certain integrals
of Lipschitz-Hankel type involving products of Bessel
functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp.
529–551, April 1955.

[4] CORBA. Systems Management: Event Management
Service. X/Open Document Number:P437.
http://www.opengroup.org/onlinepubs/008356299/.

[5] R. Housely, W. Ford, W. Polk, and D. Solo, “Internet
X.509 Public Key Infrastructure,” IETFRFC 2459. Jan.
1999

[6] R. Ribler, J. Vetter, H. Simitci, and D. Reed. Autopilot:
Adaptive Control of Distributed Applications.
Proceedings of the 7th IEEE Symposium on High-
Performance Distributed Computing, Chicago, July 1998.

[7] W. Smith. A Framework for Control and Observation in
Distributed Environments. NASA Advanced
Supercomputing Division, NASA Ames Research Center,
Moffett Field, CA.NAS-01-006, June 2001.

[8] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks,
and D. Gunter. The Net Logger Methodology for High
Performance Distributed Systems Performance Analysis .
Proceedings of IEEE High Performance Distributed
Computing Conference, July 1998.http://www-
didc.lbl.gov/NetLogger/.

[9] Waheed, W. Smith, J. George, and J. Yan.An
Infrastructure for Monitoring and Management in
Computational Grids. In Proceedings of the 2000
Conference on Languages, Compilers, and Runtime
Systems, 2000.

[10] M. Wahl, T. Howes, and S. Kille. Lightweight Directory
Access Protocol (v3). Available from ftp://ftp.isi.edu/in-
notes/rfc2251.txt.

[11] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance
Forecasting Service for Metacomputing. Future
Generation Computing Systems, 1999.
http://nws.npaci.edu/.

[12] http://cseminar.web.cern.ch/cseminar/2002/2002-
OtherFormats /t-20020716a.ppt

[13] http://datatag.web.cern.ch/datatag/WP3/grid_app_mon/net
logger.htm

[14] http://acs.lbl.gov/NetLoggerWiki/index.php/NetLogger_T
oolkit

[15] http://www-didc.lbl.gov/Talks/NetLogger.tutorial.
HPDC99.pdf

[16] http://www-didc.lbl.gov/papers/chep.2K.Netlogger.pdf

[17] http://www.ace.ual.es/~jaberme/docsppal/cluster/DstrbtdP
rllSystemsCluster_Grid.pdf

[18] http://www.escholarship.org/uc/item/3654d4bw?display=
all#page-1

[19] http://www.computer.org/portal/web/csdl/abs/proceedings
/hpdc/1998/8579/00/85790260abs.htm

[20] http://www.elsevier.com/wps/find/journaldescription.cws
_home/505617/description#description

[21] http://www.gridcomputing.com/

Harikesh Singh et al, International Journal of Advanced Research in Computer Science, 2 (1), Jan-Feb, 2011, 53-61

© 2010, IJARCS All Rights Reserved 61

[22] https://computing.llnl.gov/tutorials/parallel_comp/

[23] http://searchdatacenter.techtarget.com/sDefinition/0,
sid80_gci773157,00.html

[24] http://rajith.2rlabs.com/2008/07/23/5-reasons-why-
distributed-systems-are-hard-to-develop/

[25] http://portal.acm.org/citation.cfm?id=800056.802068

[26] http://lincolnventures.org/images/HPCA_paperRev1.pdf

[27] http://www.nec-labs.com/~gfj/saboori-icdcs-08.pdf

[28] http://www.globus.org/alliance/publications/papers/xuehai
MP04.pdf

[29] http://ganglia.info/papers/science.pdf

[30] http://arxiv.org/ftp/cs/papers/0410/0410012.pdf

[31] http://datatag.web.cern.ch/datatag/pfldnet2003/papers/tier
ney.pdf

[32] http://lcb99.in2p3.fr/BTierney.pdf

[33] http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.p
df

[34] http://publib.boulder.ibm.com/infocenter/txformp/v6r0m0
/index.jsp?topic=/com.ibm.cics.te.doc/erziaz0015.htm

[35] http://www.cs.helsinki.fi/u/jakangas/Teaching/DistSys/Di
stSys-08f-1.pdf

[36] http://cnx.org/content/m31661/latest/

[37] http://www.ida.liu.se/~TDDB37/lecture-notes/lect2-
3.frm.pdf

[38] http://people.brunel.ac.uk/~csstrmh/research/distributed_t
esting.html

[39] http://www.globus.org/alliance/publications/papers/ogsa.p
df

[40] http://portal.acm.org/citation.cfm?id=1286589#

[41] http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=016
28415

[42] http://www.stickyminds.com/sitewide.asp?ObjectId=1462
&Function=edetail&ObjectType=ART

