
Volume 6, No. 2, March-April 2015

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 117

Detecting Memory Related Errors using a Valgrind Tool Suite and Detecting Data

Races using Thread Sanitizer Clang

Saroj. A.Shambharkar

 Kavikulguru Institute of Technology and Science

Nagpur, India

Abstract: It is important for a programmer to detect data races when a programming is done under concurrent systems or using shared memory

or parallel programming. Many researchers are implementing their applications using the parallel programming and even for simple c programs

,they are not much concentrating on memory issues,accuracy of a result obtained, speed. It is important and one must take care it. There may

found data races in their application code which has to be resolve and for that some data race detectors are required. There is also a need of

detecting the memory related problems that may occur with shared memory. As a result of such memory related bugs and data races, the system

may slow down the speed of the execution of a program .To improve the speed,the valgrind tool suite is used for memory related problems and

ThreadSanitizer is used for detecting data races and some authors used Intel Thread Checker,ADAT,on-the-fly techniques for detecting them.

Some tools are reducing the false positives but removing all false positives. Valgrind is providing a number of debugging and profiling tools

that helps in improving the accuracy and to enhance the performance of system. This paper is demonstrating and showing the different results

obtained by using the mentioned tool suite. The available tools in valgrind tool suite helps a programmer by displaying appropriate messages if

any memory related errors and based on these messages the appropriate action can be taken by the programmer. And next time when user start

writing similar type of application code, tries to avoid such errors and this makes our programs faster and avoids memory leaks. The memory

leaks may happen when the programmer tries to write or read or access any location of an array beyond its bound. There are different categories

of memory leaks. From the existing categories the two mostly used are definitely lost and probably lost and the result is showing both the

memory leaks. The result through the stack trace tells where the memory leak is allocated. The output can also be store in a log file or simply we

can display through appropriate error messages. This paper is showing some of the error messages and demonstrated through some programming

example and related error messages using valgrind tool suite.

Keywords: Memory leak; valgrind tool suite; profiling tools; stack trace; ThreadSanitizer; heap memory; Intel Thread Checker; false positive;

I. INTRODUCTION

When the programmer is working under multithreading
environment ,which is mostly used in many
applications,there may be chance of data races. Data races
are difficult to detect in concurrent systems and detected
when working in shared memory. The data races must be
handle by the programmer either by using some tools or
before writing the application code taking care of it. The
tools ThreadSanitizer,Address Sanitizer,Memory Sanitizer
same as Memcheck tool of valgrind used by c and c++
programmer is used to detect the data races,and it important
for the implementing any application .In concurrent system
,data races are mostly found type of debug and also they are
harder to detect. In multhreading application more than one
thread sharing the memory and tries to access the same
variable at the same time,because of this data race occurs in
the program. As result ,the system may crash and it may
corrupt the useful data store in the memory .

Sometimes ,due to mistake done by the programmer there
may be a need of memory management. And,the
programmer should always try to keep track of memory
errors. The tool is used for detecting memory errors, for
measuring heap memory used by the programmer. In this
paper some examples shown by using Memcheck tool for
reporting memory leaks in figure 4.

II. LITERATURE SURVEY

There are some applications where multiprocesing or
multi Threading or shared memory concepts were used. The
different languages available such as

C,C++,Java,OpenGL,openMp,OpenACC,POSIX-thread
API's and so on available. Earlier mostly preferred for
parallel processing are openMP based on C and POSIX-
thread but now other languages like CUDA programming is
also used to enhance the processor speed and its
performance. When writing the programs using
multithreading concept,it may found that data races
occurs,one variable reading a data at the same time another
thread tries to write to same memory location. The
programmer having loop carried dependencies in the code
and there will problem in debugging. The author of the
reference[1] made efforts to detect data races. The mentioned
in the paper, the Intel thread Checker can also be used for
detecting data races but it is not giving efficient performance
and the ADAT data race detection mechanism is used .They
have implemented an openMp parser and they have stated in
their paper ADAT tool used by them having better
functionality and giving better performance. They worked on
more challenging target program models and achieved faster
results than Intel thread Checker[1].

The openMP is used to achieve high performance and the
compiler directives or pragma's are used to convert
sequential program into parallel program. When writing the
programs in OpenMP ,it is important to detect data
races,otherwise on execution of such program, they may lead
to unpredictable results. They have used on-the-fly
technique. The existing tool Helgrind+ also helps in data race
detection and reducing false positives. In [2],the authors
concluded that the Helgrind+ is not giving precise results and
it is not efficient technique of detecting data races. The on-
the-fly technique is used for large openMP programs and
there will not be any false positives[2].

Saroj. A.Shambharkar, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,117-120

© 2015-19, IJARCS All Rights Reserved 118

For large High Performance Computing,the existing
static or dynamic data detection techniques are not very
useful,as creating high runtime overhead and not providing
much accuracy[6].

The limitation of clang is given in the paper[8] ,that when
clang used as c or c++ language,there is lack of support of
openmp implementation .But, it was mentioned that Intel has
contributed openMP implementation to clang[8].

In copyright material from Intel 2014,it is mentioned
support in clang/llvm is under development and also it
mentioned, there exist Clang omp-repo,based on clang or
llvm includes used trunk based version[7] .

III. DATA RACE DETECTION AND DEGUGGING

MEMORY RELATED PROBLEMS

A. Data Race Detection Using ThreadSanitizer and Thread

Analyzer

During runtime, Thread Analyzer is used to detect the
data races. Before running any application the user cannot
predict the behavior of the written application code. The
behavior of the some application programs using different
number of threads and different data sets, there may be a
chance of data races,in such situation Thread Analyzer is
used to detect them[5]. There are some drawbacks of using
Thread Analyzer , (1) When we have multiple threads,in
parallel programming environment,they are competing for
the processors and the threads are may be spawned between
the processes,here it is difficult for the Thread Analyzer to
report about the data races (2) Thread Analyzer also unable
to about the name of the variable accessed by different
thread , the programmer has to get this variable name by
observing the lines of source code (3) In some cases
Thread Analyzer is unable to detect false positives, example
synchronization of threads or when memory is recycled
between the threads, it is unable to recognize the
synchronization points. In such situations, the programmer
can prefer other tools mentioned in section II named as on-
the-fly.

Another tool for detecting data races is ThreadSanitizer.
In many respect ,the ThreadSanitizer is same as Helgrind
data race detector. ThreadSanitizer is supported by many
operating systems,like Ubuntu 14.04.The accuracy of
ThreadSanitizer is depends on the number of bugs and false
reports detected by it and it is not same for all,the speed
many vary from one system to another system.

B. Debugging Memory related Problems using valgrind

Valgrind is a memory debugger tool that provides a
number of tools for debugging memory related errors and
profiling tools. The tools available in its tool suite helps the
programmer to run their program faster and obtain results
correct. Thus ,it improves the accuracy of the output[3].

Many tools available in tool suite,the most popular is
Memcheck and is the default tool. The Memcheck tool helps
in performing various memory checking functions to detect
errors related to memory ,due to which may give unexpected
behavior after running the c and c++ programs. The tools of
valgrind automatically detect many memory and thread
related problems associated with shared memory. Some tools
are also used to detect bad memory usages, used to check
any misuse of memory allocated to the program, profile
CPU cache usage,profile heap usage. For example reading
uninitialized memory, writing past the buffer[3].

When loops are used in the program ,chunk of memory is
allocated and it not release by the the program variables and
there may happen memory leak. When the Memcheck tool is
used ,at the time of compilation -g option is used for
displaying debugging information,and using this option the
error messages include exact line numbers. The other
options used by Memcheck are -00,-01,-02 and above -
02.But above -02 is not suggested for debugging or
displaying memory related errors[4].Memcheck uses a option
–leak-check to tun on memory leak detector. If the program
having memory related errors then running process gets slow
down .Memcheck helps in memory leak by issuing
appropriate error messages[4].This tool for some programs
produces false positives.

IV. DISCUSSION ON RESULT OBTAINED USING

VALGRIND

It has been observed that the programmer sometimes are
not that much concern about any data races or memory
related errors. But,its shows some output and not displaying
any error messages related to memory errors or any other
bugs. When the application based on parallel processing,it is
very much important to detect the data races,existing loop
carried dependencies, a memory location is accessing the
value of if the variable var is uninitialized for example a[i] is
dependent on its value using a[i-1] and other things which
may degrade the performance of an application .

To obtain ThreadSanitizer ,the required is clang and
gcc.The tool is used is after installing clang.In this paper
after installing clang learned about threadsanitizer and how
to test a c program using clang.The option used is -
fsanitize=thread -g -01 -FPIE -pie while executing the
code.To turn warning the option -warn is used.The additional
flags can be set through environment variables.To the
environment variable TSAN_ARGS ,the additional flags are
provided.Already mention the threadsanitizer is used to
detect data races present in a program.While doing parallel
programming using c code it is very important to detect the
m.

The below lines after execution using clang tells that the
code or program executed is found to have data races when
using clang followed by -fsanitize=thread -g -O1 option and
followed by program name is run on terminal.When the
simple program is executed by the programmer it cannot
analyze and cannot able to the warnings obtained by using
the Threaddsanitizer data race detector tool.Also the option -
warn can be used to see the warning.It is suggested that the
programmers should not ignore the warning and if they
understand theresult of their code on execution may affects
the performanceof the appication program for which they
have written the code and also some sometimes warning may
affect the execution and performance of the system.

WARNING: ThreadSanitizer: data race (pid=2896)

Write of size 4 at 0x7fd6ae56cc3c by thread T1:

 #0 Thr1 /home/saroj/testThread.c:5 (exe+0x0000000a02bf)

 Previous write of size 4 at 0x7fd6ae56cc3c by main thread:

 #0 main /home/saroj/testThread.c:12
(exe+0x0000000a0313)

 Thread T1 (tid=2898, running) created by main thread at:

Saroj. A.Shambharkar, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,117-120

© 2015-19, IJARCS All Rights Reserved 119

 #0 pthread_create ??:0 (exe+0x0000000458db)

 #1 main /home/saroj/testThread.c:11
(exe+0x0000000a0304)

SUMMARY: ThreadSanitizer: data race
/home/saroj/testThread.c:5 Thr1

ThreadSanitizer: reported 1 warnings

Consider another a simple program to demonstrate the
use of valgrind tool a simple program shown in figure 1. In
figure 1 it is clearly shown that the program is having
uninitialized variable var. The program containing a variable
var declared as integer ,but not initialized any value,and after
execution and compilation not displayed any error messages.
And,it displayed the output as 0,which is not an accurate
result of this program.

Figure 1. Program containing uninitialized variable var

It has been also observed that without using the tool
Memcheck , of valgrind,the programmer is not able to get
any information for the uninitialized variable. The command
used using valgrind tool , memcheck is saroj@saroj:~$
valgrind --tool=memcheck --leak-check=yes --show-
reachable=yes --num-callers=20 –track-fds=yes
./prg1out.,but this command is executed,using valgrind tool it
shows the details about this uninitialized variable.

#include <stdio.h>

#include <malloc.h>

void main()

{

 int *ptr;

 ptr=(int *)malloc(10);

 free(ptr);

 ptr=(int *)malloc(12);

 ptr=(int *)malloc(14);

}

Figure 2. Second program for demonstrating memory leak

Figure 3. Showing the error messages for an uninitialized
variable var

The Memcheck tool is showing the error messages using
available options of valgrind Memcheck tool helping to
detect the uninitialized variable. When ,the c program code is
executed using simple gcc compiler,it is not possible to get
any information regarding whether any memory location
that is whether the variable is initialized or not.

The memory leak detection is also very important for the
programmer,compiling a program using gcc compiler and
running it does not show any memory leaks,Figure 2
containing the C program is written to demonstrate the
memory allocation .And without using a tool, the proper
allocation and wastage of memory is not detected and one
cannot analyze memory related problems present in the
program .

When using the valgrind tool , the details about the error
messages related to memory is shown in figure 4 it is
showing the error messages related to memory on executing
a command using Memcheck tool .

==4324== HEAP SUMMARY:

==4324== in use at exit: 26 bytes in 2 blocks

==4324== total heap usage: 3 allocs, 1 frees, 36 bytes

allocated

==4324==

==4324== 12 bytes in 1 blocks are definitely lost in loss

record 1 of 2

Saroj. A.Shambharkar, International Journal of Advanced Research in Computer Science, 6 (2), March- April, 2015,117-120

© 2015-19, IJARCS All Rights Reserved 120

==4324== at 0x4C2AB80: malloc (in

/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==4324== by 0x4005A8: main (prg2meml.c:8)

==4324==

==4324== 14 bytes in 1 blocks are definitely lost in loss

record 2 of 2

==4324== at 0x4C2AB80: malloc (in

/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==4324== by 0x4005B6: main (prg2meml.c:9)

==4324==

==4324== LEAK SUMMARY:

==4324== definitely lost: 26 bytes in 2 blocks

==4324== indirectly lost: 0 bytes in 0 blocks

==4324== possibly lost: 0 bytes in 0 blocks

==4324== still reachable: 0 bytes in 0 blocks

==4324== suppressed: 0 bytes in 0 blocks

==4324==

==4324== For counts of detected and suppressed errors,

rerun with: -v

==4324== ERROR SUMMARY: 2 errors from 2 contexts

(suppressed: 0 from 0)

Figure 4. Showing the memory leak related error messages

and leak summary

V. CONCLUSION AND FUTURE WORK

The valgrind tool is useful as shown from the figure 4, it
is clearly shown,from the figure 4,of Leak Summary,the
memory lost of 26 bytes, which may be sometimes not taken
care by the programmer. From figure 3 related to
uninitialized variable not showing any information related to
memory leak,the error messages are displayed according to
the problems found in the program. There are some
drawback of using Memcheck tool ,it cannot detect static
allocation,out-of-range reads or writes to arrays .There are

other tools available with valgrind are addresses check which
is similar to Memcheck, cache grind,lackey,massif not
worked out. These tools of valgrind can also be tested to
analyze the actual errors that should be known to the
programmer and it should be known other types of errors
before writing application using C and C++ languages.

VI. REFERENCES

[1] Young-Joo Kim, Sejun Song,Young-Kee Jun, “ADAT :An
Adaptable Dynamic Analysis Tool for Race Detection in
OpenMp Programs”, Parallel and Distributed Processing with
Applications (ISPA) ,2011 IEEE 9th International Symposium
,26-28 may 2011 conference.

[2] OK-Kyoon Ha, In-Bon Kuh, Guy Martin Tchamgous, Yong-
Kee Jun, "On-the-fly detection of data races in OpenMP
programs," PADTAD 2012 Proceedings of the 2012
workshop on parallel and Distributed Systems : Testing,
Analysis and Debugging.

[3] HTTP://Valgrind.org .

[4] HTTP:// Valgrind.org/docs/manual/quick-start.html.

[5] HTTP: //Docs.oracle.com/cd E18659-01/html/821-
2124/gkgov.html.

[6] Joachim. Protze,Simone Atzani, Dong H.Ahn, Martin Schulz,
Ganesh GopaloKrishnan,Matthias S. Mul ler, Ignacia Laguna,
Zvonimir Rakamuric, greg L. Lee," Towards Providing Low-
Overhead Data Race Detection for Large OpenMP
Applications ", This work performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-660004).

[7] Alexey Bataev, Zinovy Nis Intel ,“OpenMP* Support in
Clang/LLVM:Status Update and Future Directions”, LLVM
Developer's Meeting,2014.

[8] David Chisnall ,“LLVM in the FreeBSD
Toolchain”,AsiaBSDCon 2014, March 15, 2014.

